

Carnegie Mellon

Must-read Material (cont'd)

- D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, Generators and Algorithms, in ACM Computing Surveys, 38 (1), 2006

15-826

(c) 2013 C. Faloutsos

4

Carnegie Mellon

Main outline

- Introduction
- Indexing
- Mining
 - Graphs – patterns
 - Graphs – generators and tools
 - Association rules
 - ...

15-826

(c) 2013 C. Faloutsos

5

Carnegie Mellon

Outline

- • Introduction – Motivation
- Problem#1: Patterns in graphs
- Problem#2: Scalability
- Conclusions

15-826

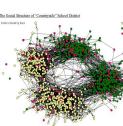
(c) 2013 C. Faloutsos

6

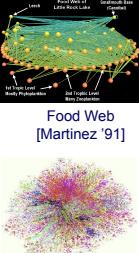
Carnegie Mellon

Graphs - why should we care?

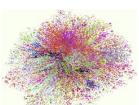
Friendship Network [Moody '01]



Food Web [Martinez '91]



Internet Map [lumeta.com]

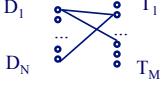


15-826 (c) 2013 C. Faloutsos 7

Carnegie Mellon

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)
- web: hyper-text graph
- ... and more:



15-826 (c) 2013 C. Faloutsos 8

Carnegie Mellon

Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
-

15-826 (c) 2013 C. Faloutsos 9

Carnegie Mellon

Outline

- Introduction – Motivation
- ➡ • Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826 (c) 2013 C. Faloutsos 10

Carnegie Mellon

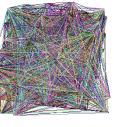
Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’/‘abnormal’?
- which patterns/laws hold?

15-826 (c) 2013 C. Faloutsos 11

Carnegie Mellon

Problem #1 - network and graph mining

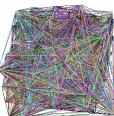


- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’/‘abnormal’?
- which patterns/laws hold?
 - To spot **anomalies** (rarities), we have to discover **patterns**

15-826 (c) 2013 C. Faloutsos 12

Carnegie Mellon

Problem #1 - network and graph mining



15-826

- What does the Internet look like?
- What does FaceBook look like?
- What is ‘normal’/‘abnormal’?
- which patterns/laws hold?
 - To spot **anomalies** (rarities), we have to discover **patterns**
 - **Large** datasets reveal patterns/anomalies that may be invisible otherwise...

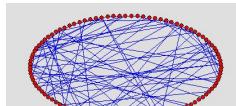
(c) 2013 C. Faloutsos 13

Carnegie Mellon

Are real graphs random?

- random (Erdos-Renyi) graph – 100 nodes, avg degree = 2
- before layout
- after layout
- No obvious patterns

(generated with: pajek
<http://vlado.fmf.uni-lj.si/pub/networks/pajek/>)



15-826

(c) 2013 C. Faloutsos 14

Carnegie Mellon

Graph mining

- Are real graphs random?

15-826

(c) 2013 C. Faloutsos 15

Carnegie Mellon

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

15-826

(c) 2013 C. Faloutsos

16

Carnegie Mellon

Solution# S.1

- Power law in the degree distribution [SIGCOMM99]

internet domains

log(degree)

att.com

ibm.com

log(rank)

$\log(\text{degree}) = \exp(3.9293) \cdot \log(\text{rank})^{-1.58918}$

15-826

(c) 2013 C. Faloutsos

17

Carnegie Mellon

Solution# S.1

- Power law in the degree distribution [SIGCOMM99]

internet domains

log(degree)

log(rank)

att.com

ibm.com

-0.82

15-826

(c) 2013 C. Faloutsos

18

Carnegie Mellon

Solution# S.1

- Q: So what?

internet domains

log(rank)

log(degree)

att.com

ibm.com

-0.82

0.1 1 10 100 1000 10000

log(degree)

log(rank)

15-826

(c) 2013 C. Faloutsos

19

Carnegie Mellon

Solution# S.2: Eigen Exponent E

Eigenvalue

$\exp(4.3031) \cdot x^{-0.47754}$

Exponent = slope

$E = -0.48$

May 2001

$A x = \lambda x$

Rank of decreasing eigenvalue

\bullet A2: power law in the eigenvalues of the adjacency matrix

Carnegie Mellon

Solution# S.2: Eigen Exponent E

Eigenvalue

$\exp(4.3031) \cdot x^{-0.47734}$

IP3, Oregon

Exponent = slope

$E = -0.48$

May 2001

Carnegie Mellon

But:

How about graphs from other domains?

15-826

(c) 2013 C. Faloutsos

25

Carnegie Mellon

More power laws:

- web hit counts [w/ A. Montgomery]

15-826

(c) 2013 C. Faloutsos

26

Carnegie Mellon

epinions.com

• who-trusts-whom
[Richardson + Domingos, KDD 2001]

15-826

(c) 2013 C. Faloutsos

27

And numerous more

- # of sexual contacts
- Income [Pareto] – ‘80-20 distribution’
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs (‘mice and elephants’)
- Size of files of a user
- ...
- ‘Black swans’

15-826

(c) 2013 C. Faloutsos

28

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles
 - Weighted graphs
 - Time evolving graphs

15-826

(c) 2013 C. Faloutsos

29

Solution# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles

15-826

(c) 2013 C. Faloutsos

30

Carnegie Mellon

Solution# S.3: Triangle ‘Laws’

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

15-826 (c) 2013 C. Faloutsos 31

Carnegie Mellon

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

HEP-TH ASN

Epinions

X-axis: # of participating triangles
Y: count (~ pdf)

15-826 Faloutsos 32

Carnegie Mellon

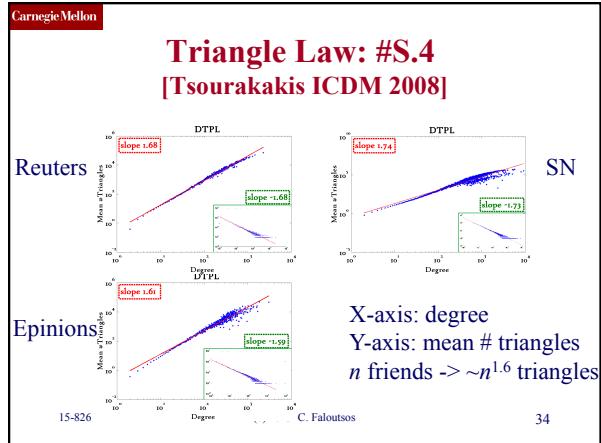
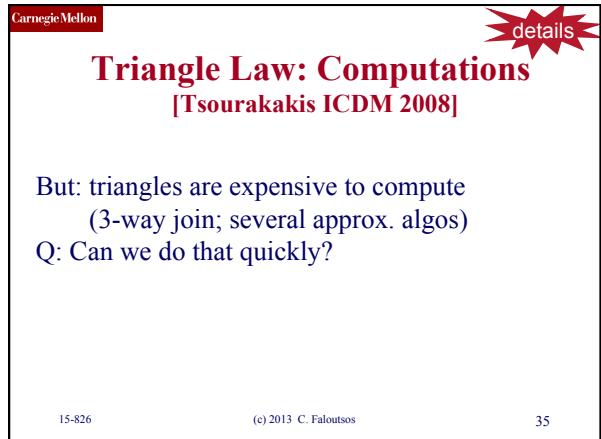
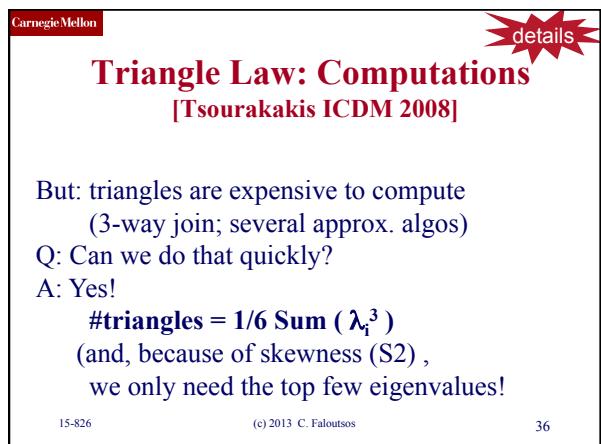
Triangle Law: #S.3 [Tsourakakis ICDM 2008]

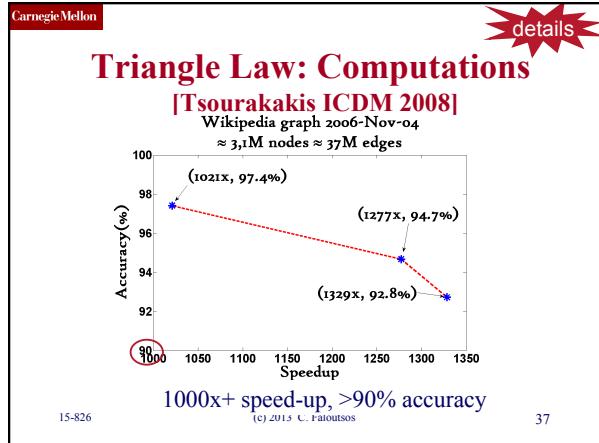
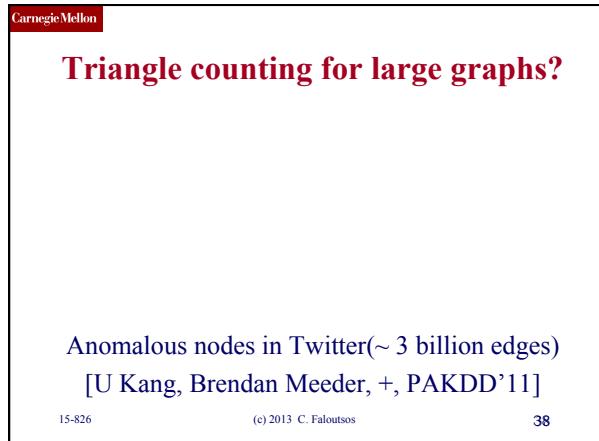
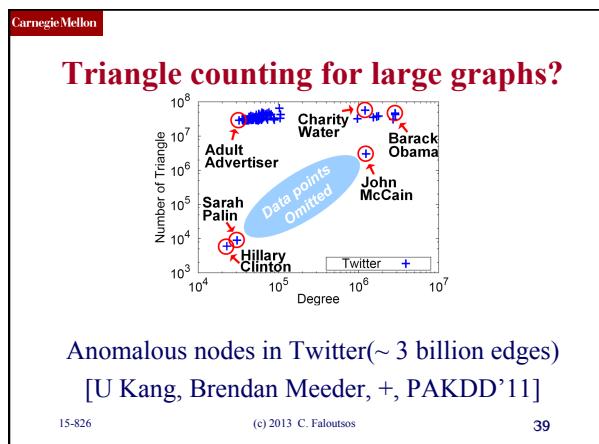
HEP-TH ASN

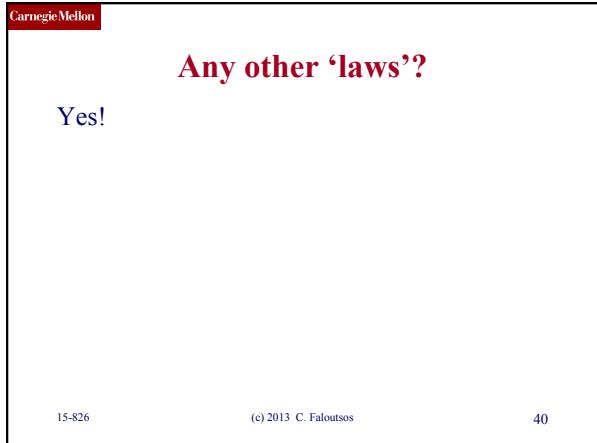
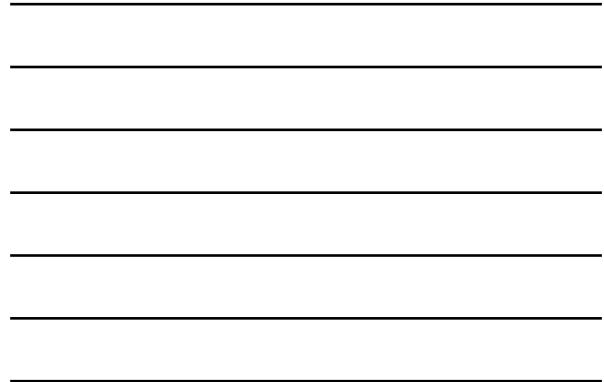
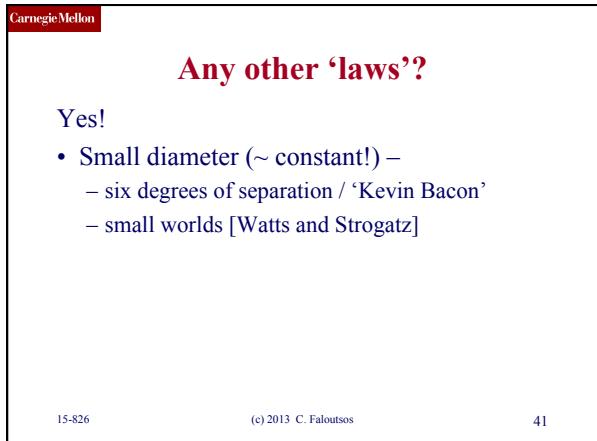
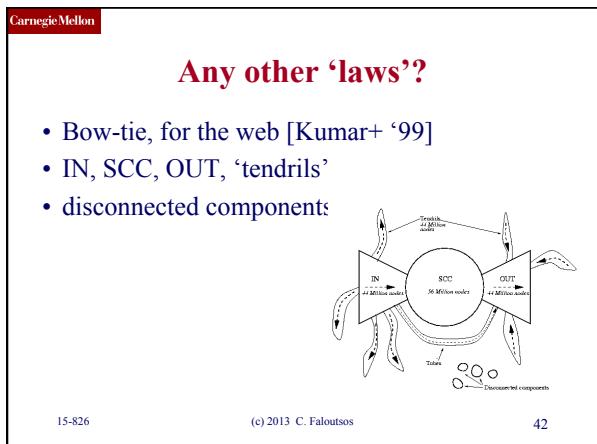
Epinions

X-axis: # of participating triangles
Y: count (~ pdf)

15-826 Faloutsos 33







Carnegie Mellon

Any other ‘laws’?

- power-laws in communities (bi-partite cores) [Kumar+, ‘99]

Log(count)

(c) 2013 C. Faloutsos

15-826

43

2:3 core (m:n core)

Carnegie Mellon

Any other ‘laws’?

- “Jellyfish” for Internet [Tauro+ ‘01]
- core: ~clique
- ~5 concentric layers
- many 1-degree nodes

(c) 2013 C. Faloutsos

15-826

44

Carnegie Mellon

EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

Useful for fraud detection!

(c) 2013 C. Faloutsos

15-826

45

Carnegie Mellon

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$$A = U\Sigma U^T$$

The diagram illustrates the decomposition of a matrix A into $U\Sigma U^T$. It shows three components: a large square matrix U on the left, a diagonal matrix Σ in the middle, and a transpose matrix U^T on the right. The Σ matrix is represented by a 2x2 grid of squares, with the top-right square being empty, indicating it is a diagonal matrix with some zero entries.

15-826

(c) 2013 C. Faloutsos

46

Carnegie Mellon

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$$A = U\Sigma U^T$$

$\vec{u}_1 \vec{u}_i$

(c) 2013 C. Faloutsos

Carnegie Mellon

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$$A = U\Sigma U^T$$

15-826

(c) 2013 C. Faloutsos

48

Carnegie Mellon

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$A = U\Sigma U^T$

15-826 (c) 2013 C. Faloutsos 49

Carnegie Mellon

EigenSpokes

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$A = U\Sigma U^T$

15-826 (c) 2013 C. Faloutsos 50

Carnegie Mellon

EigenSpokes

- EE plot:
- Scatter plot of scores of u_1 vs u_2
- One would expect
 - Many points @ origin
 - A few scattered ~randomly

2nd Principal component u_2

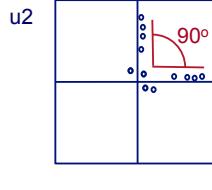
1st Principal component u_1

15-826 (c) 2013 C. Faloutsos 51

Carnegie Mellon

EigenSpokes

- EE plot:
- Scatter plot of scores of u_1 vs u_2
- One would expect
 - Many points @ origin
 - A few scattered ~randomly

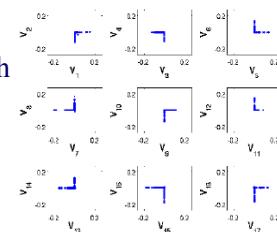


15-826 (c) 2013 C. Faloutsos 52

Carnegie Mellon

EigenSpokes - pervasiveness

- Present in mobile social graph
 - across time and space
- Patent citation graph

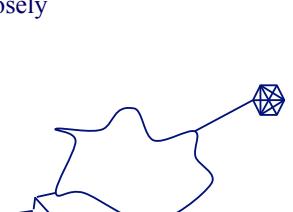


15-826 (c) 2013 C. Faloutsos 53

Carnegie Mellon

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected



15-826 (c) 2013 C. Faloutsos 54

Carnegie Mellon

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

15-826 (c) 2013 C. Faloutsos 55

Carnegie Mellon

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

15-826 (c) 2013 C. Faloutsos 56

Carnegie Mellon

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good “communities”

15-826 (c) 2013 C. Faloutsos 57

Carnegie Mellon

Bipartite Communities!

patents from
same inventor(s)
'cut-and-paste'
bibliography!

magnified bipartite community

Useful for fraud detection!

15-826

(c) 2013 C. Faloutsos

58

Carnegie Mellon

Bipartite Communities!

IP – port scanners

victims

Useful for fraud detection!

(c) 2013 C. Faloutsos

59

Carnegie Mellon

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826

(c) 2013 C. Faloutsos

60

Carnegie Mellon

Observations on weighted graphs?

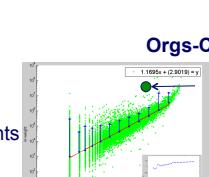
Carnegie Mellon

Observation W.1: Fortification

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent ‘iw’: $1.01 < iw < 1.26$

More donors, even more \$



1.1055x + (2.5019 * y)

e.g. John Kerry, \$10M received, from 1K donors

Edges (# donors)

In-weights (\$)

15-826

(c) 2013 C. Faloutsos

64

Carnegie Mellon

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826

(c) 2013 C. Faloutsos

65

Carnegie Mellon

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)
- and Jon Kleinberg (Cornell – sabb. @ CMU)

A black and white portrait of Jure Leskovec, a man with dark hair and glasses, wearing a dark shirt.

A black and white portrait of Jon Kleinberg, a man with dark hair and glasses, wearing a light-colored polo shirt.

15-826

(c) 2013 C. Faloutsos

66

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$
- What is happening in real data?



15-826

(c) 2013 C. Faloutsos

67

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$
- What is happening in real data?
- Diameter **shrinks** over time

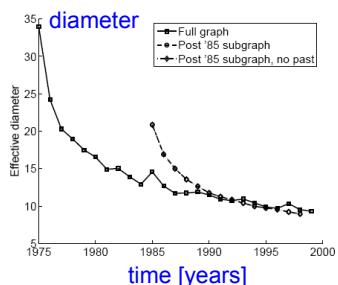
15-826

(c) 2013 C. Faloutsos

68

T.1 Diameter – “Patents”

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges



15-826

(c) 2013 C. Faloutsos

69

Carnegie Mellon

T.2 Temporal Evolution of the Graphs

- $N(t)$... nodes at time t
- $E(t)$... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$
- Q: what is your guess for

$$E(t+1) = ? * E(t)$$

15-826 (c) 2013 C. Faloutsos 70

Carnegie Mellon

T.2 Temporal Evolution of the Graphs

- $N(t)$... nodes at time t
- $E(t)$... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$
- Q: what is your guess for

$$E(t+1) = ? * E(t)$$
- A: over-doubled!
– But obeying the “Densification Power Law”

15-826 (c) 2013 C. Faloutsos 71

Carnegie Mellon

T.2 Densification – Patent Citations

- Citations among patents granted
- @1999
 - 2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint

15-826 (c) 2013 C. Faloutsos 72

Carnegie Mellon

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Scalability
- Conclusions

15-826

(c) 2013 C. Faloutsos

73

Carnegie Mellon

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected Components: Patterns and a Generator.
SIG-KDD 2008

15-826

(c) 2013 C. Faloutsos

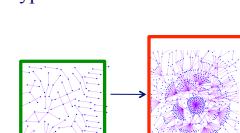
74

Carnegie Mellon

[Gelling Point]

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.

IMDB
t=1914



Diameter

Time

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?

(``NLCC'' = non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

15-826

(c) 2013 C. Faloutsos

76

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?

(``NLCC'' = non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

15-826

(c) 2013 C. Faloutsos

77

Observation T.3: NLCC behavior

Q: How do NLCC's emerge and join with the GCC?

(``NLCC'' = non-largest conn. components)

YES – Do they continue to grow in size?

YES – or do they shrink?

YES – or stabilize?

15-826

(c) 2013 C. Faloutsos

78

Carnegie Mellon

Observation T.3: NLCC behavior

- After the gelling point, the GCC takes off, but NLCC's remain ~constant (actually, **oscillate**).

IMDB

CC size

Time-stamp

15-826 (c) 2013 C. Faloutsos 79

Carnegie Mellon

Timing for Blogs

- with Mary McGlohon (CMU->Google)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)

[SDM'07]

15-826 (c) 2013 C. Faloutsos 80

Carnegie Mellon

T.4 : popularity over time

in links

lag: days after post

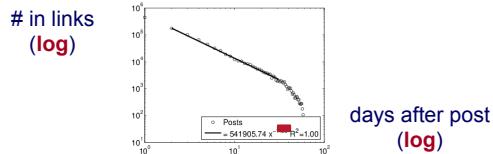
Post popularity drops-off – exponentially?

@t

@t + lag

15-826 (c) 2013 C. Faloutsos 81

T.4 : popularity over time



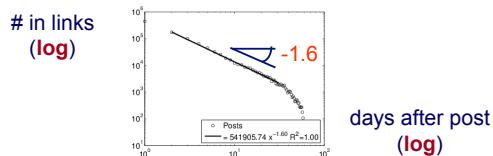
Post popularity drops-off – exponentially?
POWER LAW!
Exponent?

15-826

(c) 2013 C. Faloutsos

82

T.4 : popularity over time



Post popularity drops-off – exponentially?
POWER LAW!

Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk

15-826

(c) 2013 C. Faloutsos

83

-1.5 slope

J. G. Oliveira & A.-L. Barabasi Human Dynamics: The Correspondence Patterns of Darwin and Einstein. *Nature* 437, 1251 (2005) . [\[PDF\]](#)

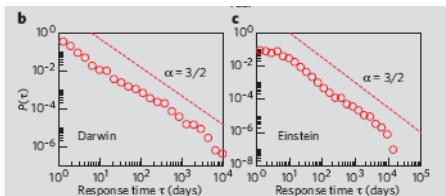


Figure 1 | The correspondence patterns of Darwin and Einstein. 84

Carnegie Mellon

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

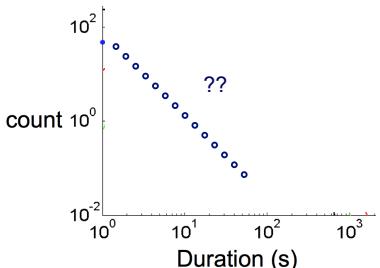
Pedro O. S. Vaz de Melo, Leman Akoglu, Christos Faloutsos, Antonio A. F. Loureiro

PKDD 2010

15-826 (c) 2013 C. Faloutsos 85

Carnegie Mellon

Probably, power law (?)



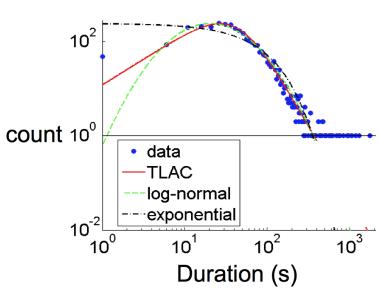
count

Duration (s)

15-826 (c) 2013 C. Faloutsos 86

Carnegie Mellon

No Power Law!

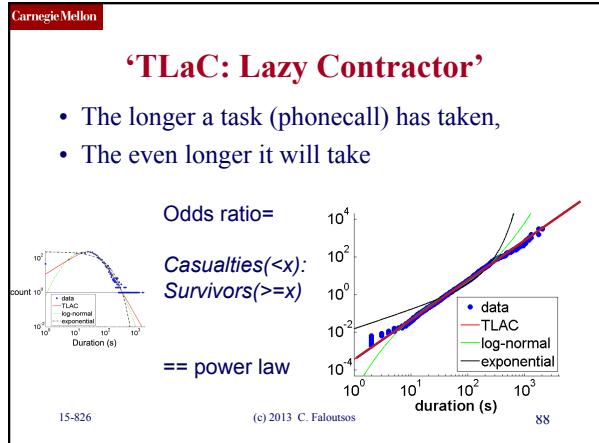
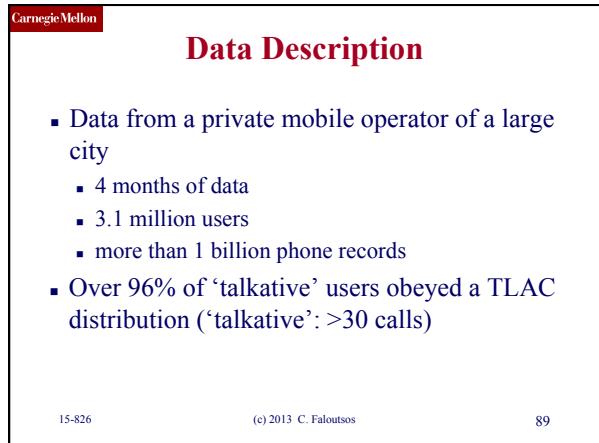
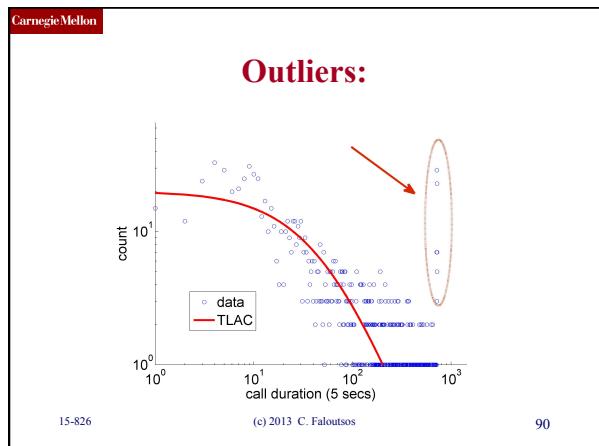


count

Duration (s)

Legend: data (blue dots), TLAC (red line), log-normal (green dashed line), exponential (black dashed line)

15-826 (c) 2013 C. Faloutsos 87



Carnegie Mellon

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- ➡ • Problem#2: Scalability -PEGASUS
- Conclusions

15-826

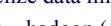
(c) 2013 C. Faloutsos

91

Carnegie Mellon

Scalability

- Google: > 450,000 processors in clusters of ~2000 processors each [Barroso, Dean, Hölzle, "*Web Search for a Planet: The Google Cluster Architecture*" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce – hadoop (open-source clone)
<http://hadoop.apache.org/>



15-826

(c) 2013 C. Faloutsos

92

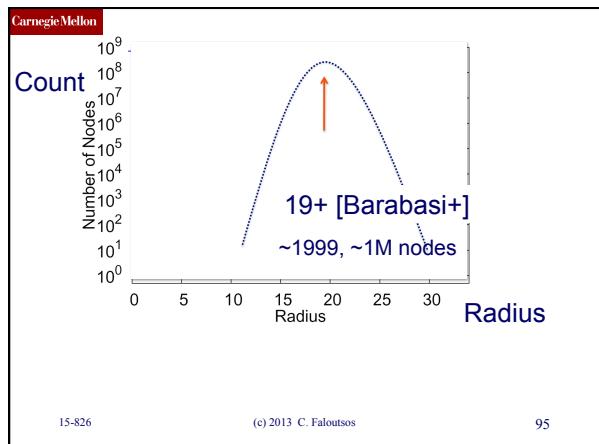
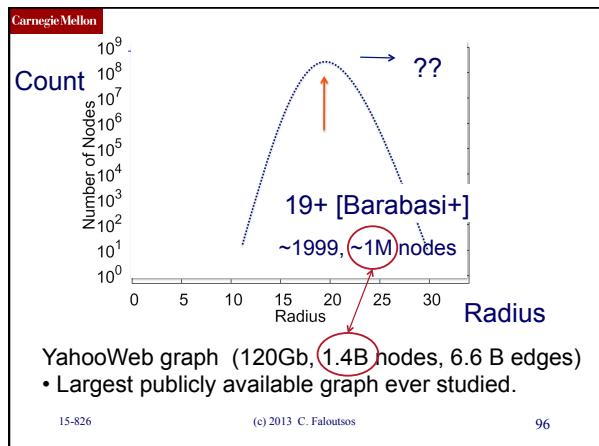
Outline – Algorithms & results

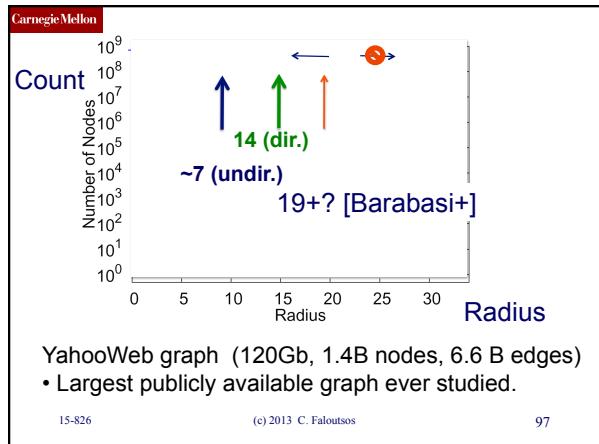
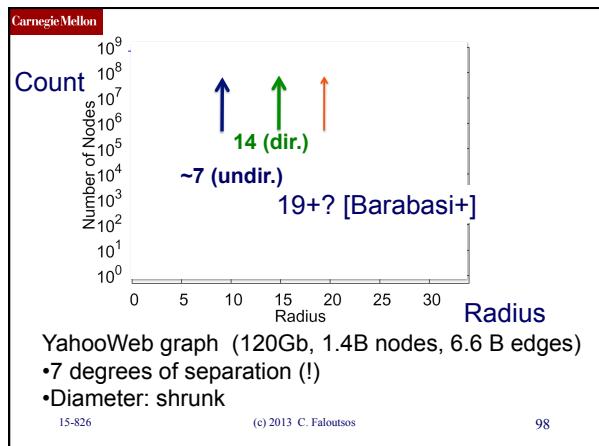
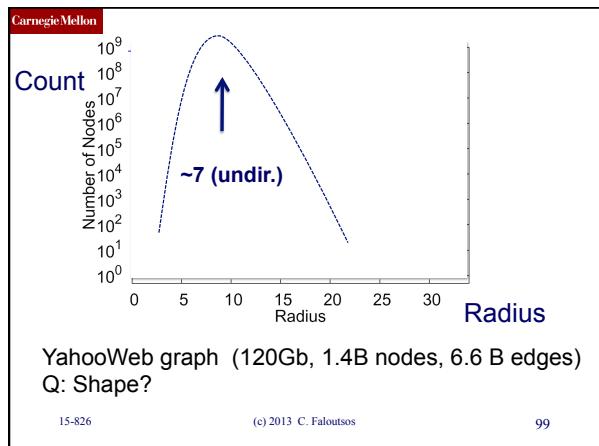
Carnegie Mellon

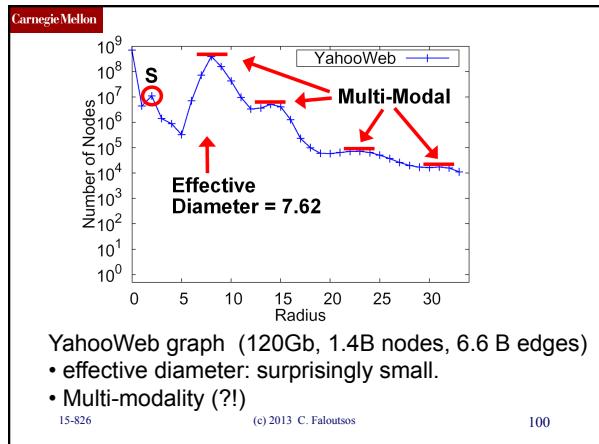
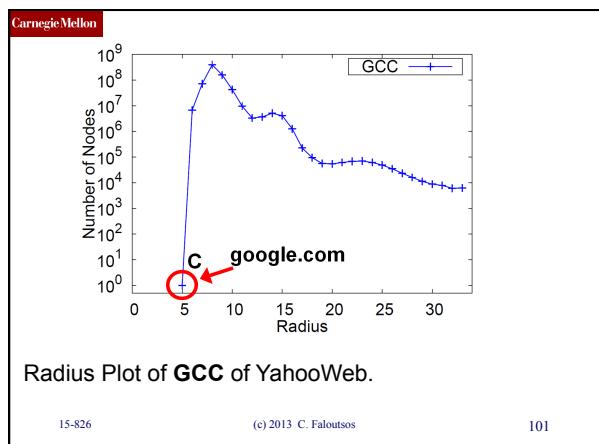
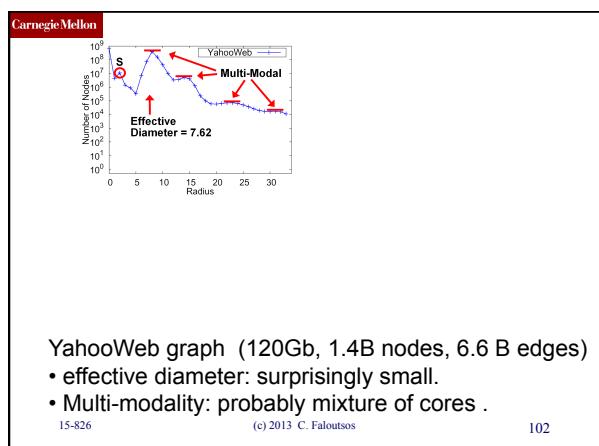
HADI for diameter estimation

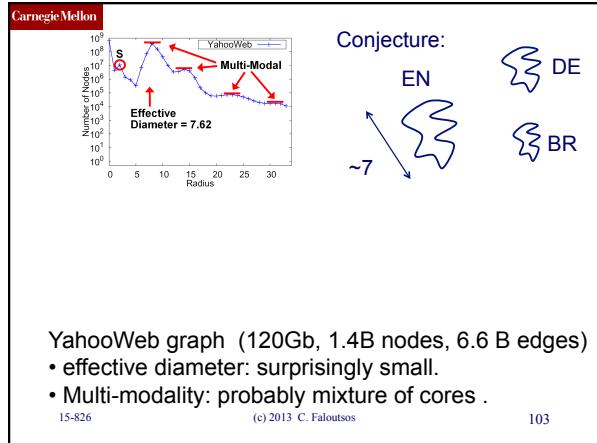
- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $O(N^{**2})$ space and up to $O(N^{**3})$ time – **prohibitive** ($N \sim 1B$)
- Our HADI: linear on E ($\sim 10B$)
 - Near-linear scalability wrt # machines
 - Several optimizations \rightarrow 5x faster

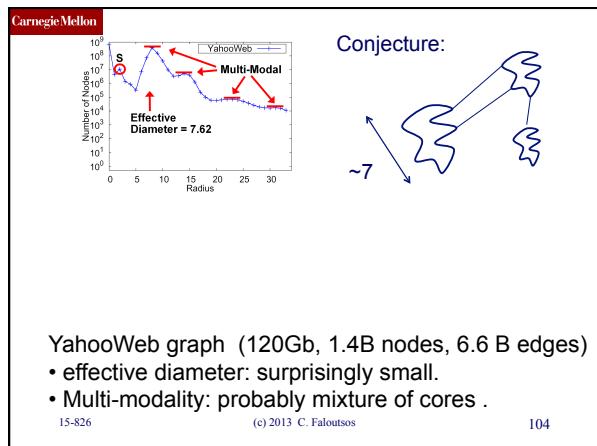
15-826 (c) 2013 C. Faloutsos 94

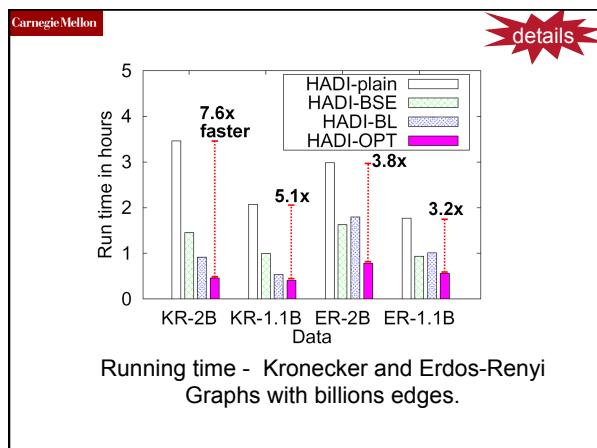












Carnegie Mellon

Outline – Algorithms & results

	Centralized	Hadoop/ PEGASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	HERE
Conn. Comp	old	HERE
Triangles		HERE
Visualization	started	

15-826 (c) 2013 C. Faloutsos 106

Carnegie Mellon

Generalized Iterated Matrix Vector Multiplication (GIMV)

[PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations.](#)
 U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.
 (ICDM) 2009, Miami, Florida, USA.
 Best Application Paper (runner-up).

15-826 (c) 2013 C. Faloutsos 107

Carnegie Mellon

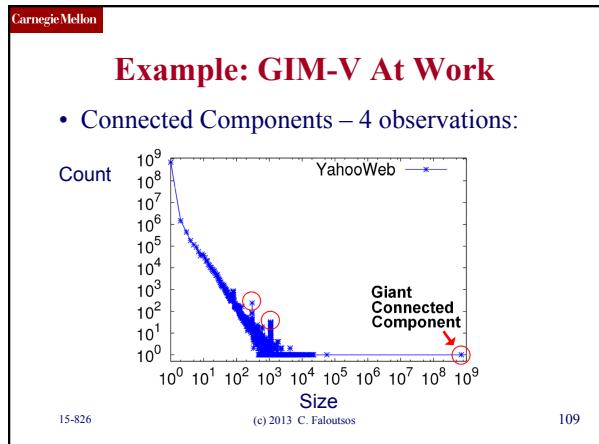
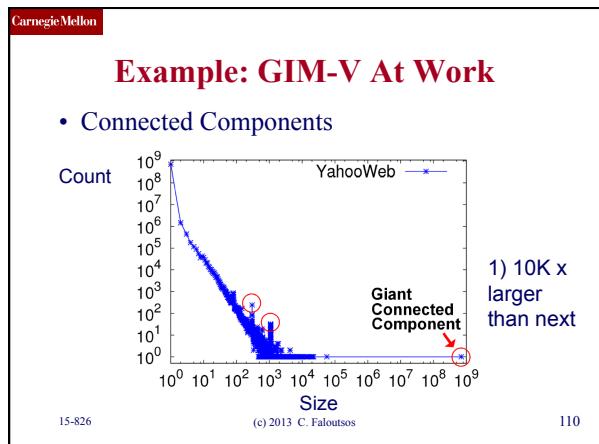
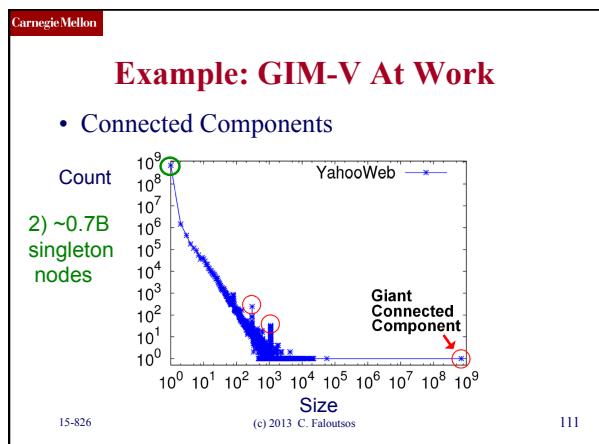
Generalized Iterated Matrix Vector Multiplication (GIMV)

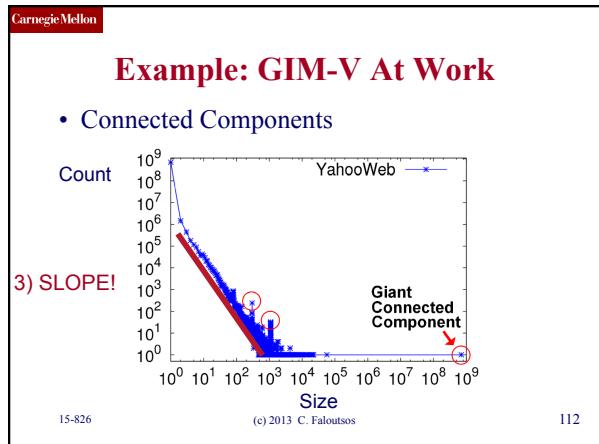
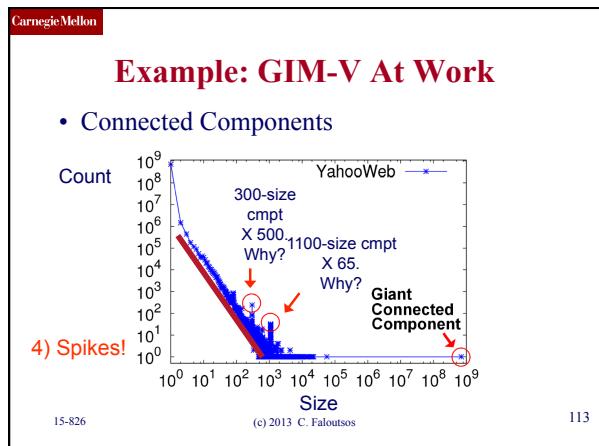
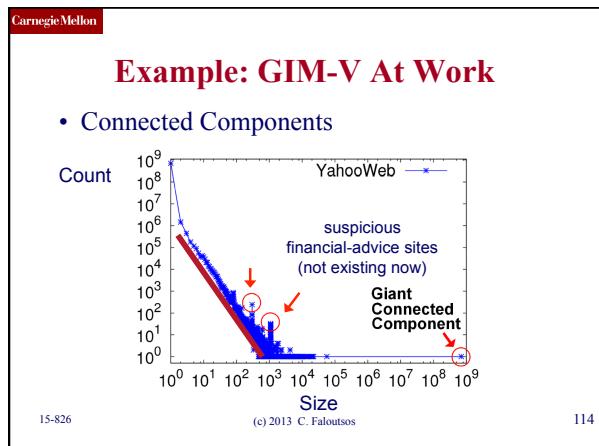
details

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Matrix – vector Multiplication (iterated)

15-826 (c) 2013 C. Faloutsos 108





Carnegie Mellon

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

15-826 (c) 2013 C. Faloutsos 115

Carnegie Mellon

Outline

- Introduction – Motivation
- Problem#1: Patterns in graphs
- DELETE
- Problem#2: Scalability
- ➡ • Conclusions

15-826 (c) 2013 C. Faloutsos 116

Carnegie Mellon

OVERALL CONCLUSIONS – low level:

- Several new **patterns** (fortification, shrinking diameter, triangle-laws, conn. components, etc)
- New **tools**:
 - anomaly detection (OddBall), belief propagation, immunization
- **Scalability**: PEGASUS / hadoop

15-826 (c) 2013 C. Faloutsos 117

Carnegie Mellon

OVERALL CONCLUSIONS – high level

- **BIG DATA:** Large datasets reveal patterns/ outliers that are invisible otherwise

15-826 (c) 2013 C. Faloutsos 118

Carnegie Mellon

References

- Leman Akoglu, Christos Faloutsos: *RTG: A Recursive Realistic Graph Generator Using Random Typing*. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: *Graph mining: Laws, generators, and algorithms*. ACM Comput. Surv. 38(1): (2006)

15-826 (c) 2013 C. Faloutsos 119

Carnegie Mellon

References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: *Epidemic thresholds in real networks*. ACM Trans. Inf. Syst. Secur. 10(4): (2008)

15-826 (c) 2013 C. Faloutsos 120

Carnegie Mellon

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos *Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations*, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: *Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication*. PKDD 2005: 133-145

Carnegie Mellon

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. *Less is More: Compact Matrix Decomposition for Large Sparse Graphs*, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, *GraphScope: Parameter-free Mining of Large Time-evolving Graphs* ACM SIGKDD Conference, San Jose, CA, August 2007

Carnegie Mellon

References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: *Beyond streams and graphs: dynamic tensor analysis*. KDD 2006: 374-383

15-826

(c) 2013 C. Faloutsos

123

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, *Fast Random Walk with Restart and Its Applications*, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, *Center-Piece Subgraphs: Problem Definition and Fast Solutions*, KDD 2006, Philadelphia, PA

Carnegie Mellon

References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

15-826

(c) 2013 C. Faloutsos

125

Carnegie Mellon		<h1>(Project info)</h1>			
WWW.CS.CMU.EDU/~pegasus					
	Chau, Polo		Koutra, Danae		Prakash, Aditya
	Kang, U		McGlohon, Mary		Tong, Hanghang