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15-826: Multimedia Databases and 
Data Mining  

Lecture #26: Graph mining - patterns 
Christos Faloutsos 

CMU SCS 

Must-read Material 
•  [Graph minining textbook] Deepayan 

Chakrabarti and Christos Faloutsos 
Graph Mining: Laws, Tools and Case 
Studies, Morgan Claypool, 2012 
– Part I (patterns) 
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Must-read Material 
•  Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On 

Power-Law Relationships of the Internet Topology, SIGCOMM 
1999.  

•  R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World 
Wide Web Nature, 401, 130-131 (1999).  

•  Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of 
complex networks, Reviews of Modern Physics, 74, 47 (2002).   

•  Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over 
Time: Densification Laws, Shrinking Diameters and Possible 
Explanations, KDD 2005, Chicago, IL, USA 
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Must-read Material (cont’d) 

•  D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, 
Generators and Algorithms, in ACM Computing Surveys, 38
(1), 2006 
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Main outline 
•  Introduction 
•  Indexing 
•  Mining 

– Graphs – patterns 
– Graphs – generators and tools 
– Association rules 
– … 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Scalability 
•  Conclusions 

15-826 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Friendship Network 
[Moody ’01] 

15-826 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

15-826 
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Graphs - why should we care? 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

15-826 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 

15-826 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

15-826 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

15-826 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

15-826 
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Are real graphs random? 

•  random (Erdos-Renyi) 
graph – 100 nodes, avg 
degree = 2 

•  before layout 
•  after layout 
•  No obvious patterns 

(generated with: pajek 
http://vlado.fmf.uni-lj.si/pub/networks/pajek/ ) 
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Graph mining 
•  Are real graphs random? 

15-826 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

15-826 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

15-826 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 
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Solution# S.1 
•  Q: So what? 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

= friends of friends (F.O.F.) 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

~0.8PB -> 
a data center(!) 

DCO @ CMU 

Gaussian trap 

= friends of friends (F.O.F.) 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

15-826 

~0.8PB -> 
a data center(!) 

Such patterns -> 

New algorith
ms 

Gaussian trap 

CMU SCS 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

15-826 

A x = λ x 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

15-826 
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But: 
How about graphs from other domains? 

15-826 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

15-826 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

15-826 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
15-826 (c) 2013  C. Faloutsos 28 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  Triangles 

– Weighted graphs 
– Time evolving graphs 

15-826 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

15-826 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

15-826 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of  participating 
triangles 
Y: count (~ pdf) 

15-826 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions 

15-826 

X-axis: # of  participating 
triangles 
Y: count (~ pdf) 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

15-826 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

15-826 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! 

details 

15-826 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

15-826 

CMU SCS 

Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

38 15-826 38 (c) 2013  C. Faloutsos 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Any other ‘laws’? 
Yes! 

15-826 (c) 2013  C. Faloutsos 
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Any other ‘laws’? 
Yes! 
•  Small diameter (~ constant!) – 

–  six degrees of separation / ‘Kevin Bacon’ 
–  small worlds [Watts and Strogatz] 

15-826 (c) 2013  C. Faloutsos 
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Any other ‘laws’? 

•  Bow-tie, for the web [Kumar+ ‘99] 
•  IN, SCC, OUT, ‘tendrils’ 
•  disconnected components 

15-826 (c) 2013  C. Faloutsos 
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Any other ‘laws’? 

•  power-laws in communities (bi-partite cores) 
[Kumar+, ‘99] 

2:3 core 
(m:n core) 

Log(m) 

Log(count) 

n:1 

n:2 n:3 

15-826 (c) 2013  C. Faloutsos 
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Any other ‘laws’? 

•  “Jellyfish” for Internet [Tauro+ ’01] 
•  core: ~clique 
•  ~5 concentric layers 
•  many 1-degree nodes 

15-826 (c) 2013  C. Faloutsos 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

(c) 2013  C. Faloutsos 45 15-826 

Useful for fraud detection! 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

49 (c) 2013  C. Faloutsos 15-826 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

50 (c) 2013  C. Faloutsos 15-826 

N 

N 

details 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

(c) 2013  C. Faloutsos 51 

u1 

u2 

15-826 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 
90o 

15-826 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 

53 (c) 2013  C. Faloutsos 15-826 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

54 (c) 2013  C. Faloutsos 15-826 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 

57 (c) 2013  C. Faloutsos 15-826 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

`cut-and-paste’ 
bibliography! 

58 (c) 2013  C. Faloutsos 15-826 

Useful for fraud detection! 
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Bipartite Communities! 

IP – port scanners 

victims 

59 (c) 2013  C. Faloutsos 

Useful for fraud detection! 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  Triangles 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 
15-826 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

15-826 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

15-826 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

15-826 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 
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Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

15-826 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 

15-826 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

15-826 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

15-826 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

15-826 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

15-826 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

15-826 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
15-826 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

15-826 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Scalability 
•  Conclusions 

15-826 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

15-826 
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[ Gelling Point ] 

•  Most real graphs display a gelling point 
•  After gelling point, they exhibit typical behavior.  This is 

marked by a spike in diameter. 

Time 

Diameter 

IMDB 
t=1914 

15-826 (c) 2013  C. Faloutsos 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

15-826 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

15-826 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
15-826 
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Timing for Blogs 

•  with Mary McGlohon (CMU->Google) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

15-826 

CMU SCS 

(c) 2013  C. Faloutsos 81 

T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

15-826 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

15-826 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

15-826 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  
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T.5: duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
15-826 (c) 2013  C. Faloutsos 85 
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Probably, power law (?) 

15-826 (c) 2013  C. Faloutsos 86 

?? 

CMU SCS 

No Power Law! 

15-826 (c) 2013  C. Faloutsos 87 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

15-826 (c) 2013  C. Faloutsos 88 

Odds ratio= 

Casualties(<x): 
Survivors(>=x) 

== power law 

CMU SCS 

89 

Data Description 

  Data from a private mobile operator of a large 
city 
  4 months of data 
  3.1 million users 
  more than 1 billion phone records 

  Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls) 

15-826 (c) 2013  C. Faloutsos 
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Outliers: 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Scalability -PEGASUS 
•  Conclusions 

15-826 

CMU SCS 
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Scalability 
•   Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 
a Planet: The Google Cluster Architecture” IEEE Micro 
2003] 

•  Yahoo: 5Pb of data [Fayyad, KDD’07] 
•  Problem: machine failures, on a daily basis 
•  How to parallelize data mining tasks, then? 
•  A: map/reduce – hadoop (open-source clone)  

http://hadoop.apache.org/ 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles done HERE 

Visualization started 

Outline – Algorithms & results 

15-826 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 
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???? 

19+ [Barabasi+] 
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Radius 

Count 

15-826 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 
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Radius 

Count 

15-826 

?? 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 
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Radius 

Count 

15-826 

14 (dir.) 
~7 (undir.) 

CMU SCS 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 
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Radius 

Count 

15-826 

14 (dir.) 
~7 (undir.) 

CMU SCS 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 
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Radius 

Count 

15-826 

~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

15-826 

CMU SCS 

Radius Plot of GCC of YahooWeb. 

101 (c) 2013  C. Faloutsos 15-826 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

15-826 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

15-826 

EN 

~7 

Conjecture: 
DE 

BR 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

15-826 

~7 

Conjecture: 

CMU SCS 

Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles HERE 

Visualization started 

Outline – Algorithms & results 

15-826 

CMU SCS 
Generalized Iterated Matrix 

Vector Multiplication (GIMV) 
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PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

15-826 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 
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•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

15-826 

details 
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Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(c) 2013  C. Faloutsos 15-826 

1) 10K x  
larger 
than next 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
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2) ~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

(c) 2013  C. Faloutsos 15-826 

3) SLOPE! 
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113 

Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

(c) 2013  C. Faloutsos 15-826 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

(c) 2013  C. Faloutsos 15-826 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

(c) 2013  C. Faloutsos 15-826 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  DELETE 
•  Problem#2: Scalability 
•  Conclusions 

15-826 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (fortification, 
shrinking diameter, triangle-laws, conn. 
components, etc) 

•  New tools: 
–  anomaly detection (OddBall), belief 

propagation, immunization 

•  Scalability: PEGASUS / hadoop 

15-826 
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OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: Large datasets reveal patterns/
outliers that are invisible otherwise 

15-826 
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