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Must-read Material

* [Graph minining textbook] Deepayan

Chakrabarti and Christos Faloutsos
Graph Mining: Laws, Tools and Case
Studies, Morgan Claypool, 2012

— Part I (patterns)
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Must-read Material

Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On
Power-Law Relationships of the Internet Topology, SIGCOMM
1999.

R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World
Wide Web Nature, 401, 130-131 (1999).

Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of
complex networks, Reviews of Modern Physics, 74, 47 (2002).
Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over
Time: Densification Laws, Shrinking Diameters and Possible
Explanations, KDD 2005, Chicago, IL, USA
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Must-read Material (cont’d)

* D. Chakrabarti and C. Faloutsos, Graph Mining: Laws,
Generators and Algorithms, in ACM Computing Surveys, 38
(1), 2006
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Main outline

77

* Introduction
¢ Indexing
e Mining
— Graphs — patterns
— Graphs — generators and tools

— Association rules
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Outline
Wi

= . Introduction — Motivation

Problem#1: Patterns in graphs
Problem#2: Scalability

¢ Conclusions
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Graphs - why should we care?

[Martinez '91]

Friendship Network
[Moody '01]

Internet Map
[lumeta.com]
(¢) 2013 C. Faloutsos 7
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Graphs - why should we care?

* IR: bi-partite graphs (doc-terms) b
1

o Tl
o
o 3
Dy ° Ty
* web: hyper-text graph
¢ ... and more:
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Graphs - why should we care?

* ‘viral’ marketing

» web-log (‘blog’) news propagation

 computer network security: email/IP traffic
and anomaly detection
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Outline >

* Introduction — Motivation
=) . Problem#1: Patterns in graphs
— Static graphs
— Weighted graphs
— Time evolving graphs

* Problem#2: Scalability

¢ Conclusions
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Problem #1 - network and graph

mining

‘What does the Internet look like?
What does FaceBook look like?

What is ‘normal’/‘abnormal’?

which patterns/laws hold?
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CarnegieMellon

Problem #1 - network and graph
mining

‘What does the Internet look like?
What does FaceBook look like?

What is ‘normal’/‘abnormal’?

which patterns/laws hold?

— To spot anomalies (rarities), we have to
discover patterns
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Problem #1 - network and graph
mining

* What does the Internet look like?
* What does FaceBook look like?

* What is ‘normal’/‘abnormal’?

+ which patterns/laws hold?

— To spot anomalies (rarities), we have to
discover patterns

° .
— Large datasets reveal patterns/anomalies
that may be invisible otherwise...
15-826 (¢) 2013 C. Faloutsos 13
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Are real graphs random?

» random (Erdos-Renyi)
graph — 100 nodes, avg
degree =2

* before layout

* after layout

» No obvious patterns

(generated with: pajek

o,
htp://vlado. fmf.uni-lj.si/pub/networks/pajek/ ) S

H ey
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Graph mining

 Are real graphs random?
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Laws and patterns

* Are real graphs random?

* A:NO!!
— Diameter
— in- and out- degree distributions
— other (surprising) patterns

* So, let’s look at the data

15-826 (¢) 2013 C. Faloutsos 16

Solution# S.1

» Power law in the degree distribution
[SIGCOMMY99]
internet domains

e _att.com
log(degree)“ /rs; e NTEBE0r O e

e AT
£

ibm.com

 log(rank)
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Solution# S.1

» Power law in the degree distribution
[SIGCOMM99]

internet domains

~ att.com

0410 INTERDE0H 10 Intretouidegrees 27 ~—
XBlS S30E3) 3+ DE28118) ——

log(degree) "‘;

1bm.con& 0.82

.

Llog(rank)

0
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Solution# S.1

* Q: So what?

internet domains

.~ att.com

0410 INTERSE0H 10 et ouidegrees 2 —
Sxpl683085] 31 ( -0 &56118) —

log(degree) ™

ibm.com|

_____ 20.82
) \
e Jog(rank)
- 15-826 (c) 2013 C. Faloutsos 19
Solution# S.1
oF)
+ Q: Sowhat? . f frien
Q = friends O T
+ Al: # of two-step-away pairs:
internet domains
e _att.com
log(degree)-m=irugeonenen ez —
ibm.com
— vm’]og(rank)
15-826 (¢) 2013 C. Faloutsos 20
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G
Solution# S.1

. Q: 9
Q: So what? fends

internet domains

~ att.com

oF)

« Al: # of two-step-away pairs: O(d_|

aussian trap —

max "2) ~ 10M"2

3

~0.8PB ->

0410 INTERDE0H 10 Intretouidegrees 27 ~—
XBlS S30E3) 3+ DE28118) ——

log(degree) "‘;

ibm.com|

.

a data center(!)

0

(¢)2013 C. Faloutsos
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Gaussian trap —
Solution# S.1

* Q: So what?

15-826 (¢) 2013 C. Faloutsos 22

Solution# S.2: Eigen Exponent £

Eigenvalue
100

P3Omgon +
expl4.3031) *x*(-047734) ——

Exponent = slope

E=-048

May 2001

Ax=AX )

1 10 100
Rank of decreasing eigenvalue

» A2: power law in the eigenvalues of the adjacency

matrix
15-826 (¢) 2013 C. Faloutsos 23
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Solution# S.2: Eigen Exponent £

Eigenvalue
100

P3.Oregon’
exp(4.3031) x*(-047734) ——

Exponent = slope

E=-048

May 2001

1 10 100

Rank of decreasing eigenvalue

* [Mihail, Papadimitriou *02]: slope is /2 of rank

exponent
15-826 (¢) 2013 C. Faloutsos 24
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But:

How about graphs from other domains?

15-826 (¢) 2013 C. Faloutsos 25
More power laws:
* web hit counts [w/ A. Montgomery]
o
Web Site Traffic
Count |
(log scale) | -,
i \zipf °
“ebay” o
° users X
j sites
N,mrur‘('rsms\msl?esmwe(in_degree (log scale)
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epinions.com

e who-trusts-whom

count [Richardson +
U Domingos, KDD
e 2001]
_ 100 %
&
100
* 2000-peopl
3 trusts- -people user
‘ = _T peop
1 10 100 1000 10000
Out-degree
(out) degree
15-826 (¢) 2013 C. Faloutsos
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And numerous more

* # of sexual contacts
* Income [Pareto] —’80-20 distribution’
* Duration of downloads [Bestavros+]

* Duration of UNIX jobs (‘mice and
elephants’)

* Size of files of a user

* ‘Black swans’

15-826 (¢)2013 C. Faloutsos 28
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Outline
Y 4

* Introduction — Motivation
e Problem#1: Patterns in graphs
— Static graphs
« degree, diameter, eigen,
# * Triangles
— Weighted graphs
— Time evolving graphs

15-826 (c) 2013 C. Faloutsos 29
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Solution# S.3: Triangle ‘Laws’

* Real social networks have a lot of triangles

15-826 (¢) 2013 C. Faloutsos 30
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Solution# S.3: Triangle ‘Laws’

 Real social networks have a lot of triangles
— Friends of friends are friends

* Any patterns?

15-826 (¢) 2013 C. Faloutsos 31

Triangle Law: #S.3
[Tsourakakis ICDM 2008]

Epinioni N X-axis: # of participating
k- triangles
] = Y: count (~ pdf)
1582610 1" Faloutsos 32

CarnegieMellon

Triangle Law: #S.3
[Tsourakakis ICDM 2008]

-
HEP-TH y% \ ASN

Epiniong, \ X-axis: # of participating
“é,h triangles

Y: count (~ pdf)

w0 - TS
15-826 10 1" Faloutsos 33
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Triangle Law: #S.4
[Tsourakakis ICDM 2008]

DTPL DTPL

X-axis: degree
Y-axis: mean # triangles
n friends -> ~n'® triangles|

15-826 Degeee <) =+ C.Faloutsos 34
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

15-826 (¢) 2013 C. Faloutsos 35
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!
#triangles = 1/6 Sum (A;)
(and, because of skewness (S2) ,
we only need the top few eigenvalues!

15-826 (¢) 2013 C. Faloutsos 36
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Triangle Law: Computations

[Tsourakakis ICDM 2008]
Wikipedia graph 2006-Nov-o4
~ 3,IM nodes ~ 37M edges

o
3

(1021x, 97.4%)
%8
~ ¥,
I (1277%, 94.7%)
~ enl Tl
X 9% e |
el T !
S
I ~
] .
< (1329x, 92.8%) %
92 {

@ 1050 1100 1150 1200 1250 1300 1350
Speedup

1000x+ speed-up, >90% accuracy

15-826 (¢) 2013 C. Faloutsos 37

CarnegieMellon

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

15-826 (¢) 2013 C. Faloutsos 38
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Triangle counting for large graphs?

10
w Chanty-@"@(

%107 7;( Water cB)elx)rack
ul ama

§106 Advertiser @(

5 i\jlloclz:nain

& 10° | Sarah

g £

= Pall)r:

3 4

Z 10 @
= Hillary Twitt

103 Clinton witter +
10* 10° 10° 107

Degree

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

15-826 (¢) 2013 C. Faloutsos 39
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Any other ‘laws’?
Yes!
15-826 (¢) 2013 C. Faloutsos 40
Any other ‘laws’?
Yes!
* Small diameter (~ constant!) —
— six degrees of separation / ‘Kevin Bacon’
— small worlds [Watts and Strogatz]
15-826 (c) 2013 C. Faloutsos 41
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Any other ‘laws’?

* Bow-tie, for the web [Kumar+ ‘99]
* IN, SCC, OUT, ‘tendrils’
* disconnected components

15-826 (¢) 2013 C. Faloutsos
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Any other ‘laws’?

* power-laws in communities (bi-partite cores)
[Kumar+, ‘99]

Log(count)

*
xniz 2:3 core

15-826

(m:n core)
Log(m)

(¢)2013 C. Faloutsos 43
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Any other ‘laws’?

o “Jellyfish” for Internet [Tauro+ *01]
* core: ~clique
* ~5 concentric layers

* many 1-degree nodes

(¢) 2013 C. Faloutsos 44
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EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin

Sridharan, Sridhar Machiraju and Christos
Faloutsos: EigenSpokes: Surprising
Patterns and Scalable Community Chipping
in Large Graphs, PAKDD 2010,
Hyderabad, India, 21-24 June 2010.

detecf‘°““

(¢)2013 C. Faloutsos 45
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EigenSpokes

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UxU"
OC—
15-826 (c) 2013 C. Faloutsos 46
e
EigenSpokes

¢ Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UxU"T
[ —
N
Uy U;
15-826 (¢) 2013 C. Faloutsos 47
CarnegieMellon %
EigenSpokes

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UxU"

[

Uy U;

15-826 (¢) 2013 C. Faloutsos
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EigenSpokes = E I

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UxU"
o oo
%o
I I °
N
Uy Uy
15-826 (c) 2013 C. Faloutsos 49

e
EigenSpokes

¢ Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UxU"
o — )/{
N
Uy Uj
15-826 (¢) 2013 C. Faloutsos 50
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EigenSpokes
P
« EE plot: 2" Principal
component
* Scatter plot of u2 ,
scores of ul vs u2 IR
* One would expect %
— Many points @
origin
— A few scattered
ul
~randomly
1st Principal
component
15-826 (c) 2013 C. Faloutsos 51
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EigenSpokes

* EE plot:

s Scatter plot of u2 A
scores of ul vs u2 P

* One would expect
— Many points @
origin
-A ered

ul

15-826 () 2013 C. Faloutsos 52
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EigenSpokes - pervasiveness

e Present in mobile social graph

= across time and space

e Patent citation graph  “ v S

- | 2 r S | L. <|
y o "o . e ),
K o i) ) - o r
‘Hu 01 :a‘ﬂ 62 - 22
VS U!! VT
15-826 (c) 2013 C. Faloutsos 53
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EigenSpokes - explanation
§
Near-cliques, or near- -
bipartite-cores, loosely
connected
15-826 (¢) 2013 C. Faloutsos 54
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EigenSpokes - explanation

Near-cliques, or near- =P
bipartite-cores, loosely
connected

15-826 (¢) 2013 C. Faloutsos

EigenSpokes - explanation
®
Near-cliques, or near- =
bipartite-cores, loosely
connected
N
15-826 (c) 2013 C. Faloutsos 56
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EigenSpokes - explanation

D

Near-cliques, or near-
bipartite-cores, loosely
connected

So what?

= Extract nodes with high
scores

= high connectivity

= Good “communities”

g
15-826 (¢) 2013 C. Faloutsos
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Bipartite Communities!

patents from {2 -
same inventor(s)

‘cut-and-paste’

bibliography!
magnified bipartite community
u detecﬂon"
useful for fra
15-826 (¢) 2013 C. Faloutsos 58
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Bipartite Communities!

victims
useful for fra
(¢) 2013 C. Faloutsos 59
CarnegieMellon
Outline

¢ Introduction — Motivation

* Problemf#1: Patterns in graphs
— Static graphs
« degree, diameter, eigen,
« Triangles

— Weighted graphs
- — Time evolving graphs
* Problem#2: Scalability
* Conclusions

15-826 (¢) 2013 C. Faloutsos 60
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Observations on weighted
graphs?

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected
Components: Patterns and a Generator.
SIG-KDD 2008

15-826 () 2013 C. Faloutsos 61
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Observation W.1: Fortification

Q: How do the weights
of nodes relate to degree?

15-826 (¢) 2013 C. Faloutsos 62
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Observation W.1: Fortification

More donors,
more $ ?

y Reagan
o

5
= Clinton
(<] o

15-826 (¢) 2013 C. Faloutsos 63

21



Faloutsos

CarnegieMellon

Observation W.1: fortification:
Snapshot Power Law
* Weight: super-linear on in-degree
» exponent ‘iw’: 1.01 <iw < 1.26

Orgs-Candidates

More donors, e
| e~ e.g. John Kerry,

even more $ i 7 $10M received,
$10 In-weights i l . from 1K donors
($) !l 1 Il i3

1

<o =
$5
o 4 Edges (# donors)
15-826 (¢) 2013 C. Faloutsos 64
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Outline

¢ Introduction — Motivation
Problem#1: Patterns in graphs
— Static graphs

— Weighted graphs

) — Time evolving graphs
Problem#2: Scalability

¢ Conclusions

15-826 (c) 2013 C. Faloutsos 65
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Problem: Time evolution

¢ with Jure Leskovec (CMU ->
Stanford) -

* and Jon Kleinberg (Cornell —
sabb. @ CMU)

15-826 (¢) 2013 C. Faloutsos 66
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T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

— diameter ~ O(log N) f}? g:)j
— diameter ~ O(log log N) Py

» What is happening in real data?

15-826 (¢) 2013 C. Faloutsos 67
T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints

at slowly groydne diameter:

— diameter ~ @:)7

— diameter ~ O og N)

>

* What is happening in real data?
e Diameter shrinks over time
15-826 (c) 2013 C. Faloutsos 68
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T.1 Diameter — “Patents”

. s diameter
» Patent citation o houat mubgraph
network 30 -~~Post '85 subgraph, no past
525
* 25 yearsof data %
S 20
E
. E-]
@1999 i
— 2.9 M nodes
—16.5 M edges 0
1%75 1980 1985 1990 1995 2000
time [years]
15-826 (¢) 2013 C. Faloutsos 69
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T.2 Temporal Evolution of the
Graphs

* N(t) ... nodes at time t

* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

* Q: what is your guess for
E(t+1) =? 2 * E(t)

15-826 () 2013 C. Faloutsos 70
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T.2 Temporal Evolution of the
Graphs

* N(t) ... nodes at time t

* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

* Q: what is your guess for
E(t+1) E(t)

* A: over-doubled!

— But obeying the " "Densification Power Law’”
15-826 (c) 2013 C. Faloutsos 71
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T.2 Densification — Patent

Citations
+ Citations among '
patents granted E(®) 100
* @ 1999 8107
— 2.9 M nodes é 1.66
—16.5 M edges gmc
* Eachyearisa P _
datapoint ,
1075 0 7
° Number of nodes N(t) 10
15-826 (¢) 2013 C. Faloutsos 72
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Outline ,
7

 Introduction — Motivation

Problem#1: Patterns in graphs
— Static graphs

— Weighted graphs

-) — Time evolving graphs
Problem#2: Scalability

¢ Conclusions

15-826 (¢)2013 C. Faloutsos 73
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More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected

Components: Patterns and a Generator.
SIG-KDD 2008

15-826 (¢) 2013 C. Faloutsos 74
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[ Gelling Point |

* Most real graphs display a gelling point
« After gelling point, they exhibit typical behavior. This is
marked by a spike in diameter.

Diameter 7 Pj Lx
-

Time

15-826 (¢) 2013 C. Faloutsos 75
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Observation T.3: NLCC behavior

Q: How do NLCC'’s emerge and join with
the GCC?

("NLCC’’ = non-largest conn. components)
—Do they continue to grow in size?
— or do they shrink?

— or stabilize? O o)
o
o)

15-826 (¢)2013 C. Faloutsos 76

Observation T.3: NLCC behavior

Q: How do NLCC'’s emerge and join with
the GCC?

("'NLCC”’ = non-largest conn. components)
—Do they continue to grow in size?

— or do they shrink?

— or stabilize? e
®o
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Observation T.3: NLCC behavior

Q: How do NLCC'’s emerge and join with
the GCC?

("'NLCC”’ = non-largest conn. components)
YES —Do they continue to grow in size?
YES — or do they shrink?
YES — or stabilize?

15-826 (¢) 2013 C. Faloutsos 78

26



Faloutsos

CarnegieMellon

Observation T.3: NLCC behavior

* After the gelling point, the GCC takes off, but
NLCC’s remain ~constant (actually, oscillate).

CC size
§
Time-stamp
15-826 (¢) 2013 C. Faloutsos 79
Timing for Blogs

+ with Mary McGlohon (CMU->Google)
* Jure Leskovec (CMU->Stanford)

* Natalie Glance (now at Google)

» Mat Hurst (now at MSR)

[SDM’07]

15-826 (c) 2013 C. Faloutsos 80
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T.4 : popularity over time

#in links \

1
1 2 3 lag: days after post

Post popularity drops-oft — exponentially? @t B

@t + Iag

15-826 (¢) 2013 C. Faloutsos 81
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T.4 : popularity over time
#in links
(log)
- : days after post
& (log)

Post popularity drops-off — expon@ally?
POWER LAW!
Exponent?

15-826 (¢) 2013 C. Faloutsos 82

CarnegieMellon

T.4 : popularity over time

#in links )
(log) |
. days after post
N (log)
Post popularity drops-off — expo@ally?
POWER LAW!

Exponent? -1.6
* close to -1.5: Barabasi’s stack model

« and like the zero-crossings of a random walk ™
15-826 (¢) 2013 C. Faloutsos 83
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-1.5 slope \

J. G. Oliveira & A.-L. Barabasi Human Dynamics: The
Correspondence Patterns of Darwin and Einstein.
Nature 437, 1251 (2005) . [PDE]

sovud vvond 3 vvd v 308 E vowed v ved s vuel s
102 10° 100 1°
Response time t (days) Response time t (days)
! Figure 1| The correspondence patterns of Darwin and Einstein. 84
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T.5: duration of phonecalls

Surprising Patterns for the Call
Duration Distribution of Mobile
Phone Users

‘s' { Pedro O. S. Vaz de Melo, Leman

Akoglu, Christos Faloutsos, Antonio
A. F. Loureiro

PKDD 2010
15-826 (¢)2013 C. Faloutsos 85
Probably, power law (?)
10
o
o
o
i) ??
o
0 %
count 10 °
oo
o
o
o
2
10
10° 10 107 10°
Duration (s)
15-826 (¢) 2013 C. Faloutsos 86
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No Power Law!
10
count 10° -
* data
TLAC
log-normal
| |-—-exponential
10 : 0 £ 1 2 * 3
10 10 10 10
Duration (s)
15-826 (c) 2013 C. Faloutsos 87
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‘TLaC: Lazy Contractor’

* The longer a task (phonecall) has taken,
* The even longer it will take

Odds ratio= 10

Casualties(<x):

Survivors(>=x) 10
¢ data
—TLAC

10
~——log-normal
== power law 104/ —exponential
10° 100 102 10°
duration (s)
15-826 (¢)2013 C. Faloutsos 58
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Data Description

= Data from a private mobile operator of a large
city
= 4 months of data
= 3.1 million users
= more than 1 billion phone records

= Over 96% of ‘talkative’ users obeyed a TLAC
distribution (‘talkative’: >30 calls)

15-826 (c) 2013 C. Faloutsos 89

CarnegieMellon

Outliers:

call duration (5 secs)

15-826 (¢) 2013 C. Faloutsos 90
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Outline ,
7

* Introduction — Motivation
* Problem#]1: Patterns in graphs
m) * Problem#2: Scalability -PEGASUS

¢ Conclusions

15-826 (¢)2013 C. Faloutsos
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Scalability

* Google: > 450,000 processors in clusters of ~2000

processors each [Barroso, Dean, Hdlzle, “Web Search for
a Planet: The Google Cluster Architecture” IEEE Micro

2003]
* Yahoo: 5Pb of data [Fayyad, KDD’07]
* Problem: machine failures, on a daily basis
* How to parallelize data mining tasks, then?

* A: map/reduce — hadoop (open-source clone)
http://hadoop.apache.org/

15-826

(c) 2013 C. Faloutsos
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Outline — Algorithms & results

Centralized Hadoop/
PEGASUS

Degree Distr. old old
Pagerank old old

= | Diameter/ANF old HERE
Conn. Comp old HERE
Triangles done HERE
Visualization started

15-826

(¢)2013 C. Faloutsos
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HADI for diameter estimationm

* Radius Plots for Mining Tera-byte Scale
Graphs U Kang, Charalampos Tsourakakis,
Ana Paula Appel, Christos Faloutsos, Jure
Leskovec, SDM’10

* Naively: diameter needs O(N**2) space and
up to O(N**3) time — prohibitive (N~1B)

* Our HADI: linear on E (~10B)

— Near-linear scalability wrt # machines
— Several optimizations -> 5x faster
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YahooWeb graph (120Gb, odes, 6.6 B edges)
« Largest publicly available graph ever studied.
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YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« Largest publicly available graph ever studied.
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YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
7 degrees of separation (!)
*Diameter: shrunk
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YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« effective diameter: surprisingly small.
* Multi-modality (?!)
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= Multi-Modal

Effective
Diameter = 7.62
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YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« effective diameter: surprisingly small.
 Multi-modality: probably mixture of cores .
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YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« effective diameter: surprisingly small.
* Multi-modality: probably mixture of cores .
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YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
« effective diameter: surprisingly small.
 Multi-modality: probably mixture of cores .
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QOutline — Algorithms & results

Centralized Hadoop/
PEGASUS

Degree Distr. old old
Pagerank old old
Diameter/ANF old HERE

=) |Conn. Comp old HERE
Triangles HERE
Visualization started
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Generalized Iterated Matrix
Vector Multiplication (GIMYV)

PEGASUS: A Peta-Scale Graph Mining
System - Implementation and Observations.
U Kang, Charalampos E. Tsourakakis,

and Christos Faloutsos.

(ICDM) 2009, Miami, Florida, USA.

Best Application Paper (runner-up).
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Generalized Iterated Matri)%s
Vector Multiplication (GIMYV)

» PageRank
* proximity (RWR) Matrix — vector
» Diameter Multiplication

« Connected components [~ (iterated)
* (eigenvectors,

+ Belief Prop.

. ..) -
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Example: GIM-V At Work
» Connected Components — 4 observations:
10°
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Example: GIM-V At Work
» Connected Components
10°
Count 108 YahooWeb —*—
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108
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Example: GIM-V At Work

* Connected Components

9,
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Example: GIM-V At Work

» Connected Components
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Example: GIM-V At Work
» Connected Components
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Example: GIM-V At Wor
» Connected Components
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GIM-V At Work
» Connected Components over Time
e LinkedIn: 7.5M nodes and 58M edges

10° 10°
e 2008 % he 2004 %
% Unstable | stope=
219, ] Stope 210 2.75
210° 4/ Giant 310 Giant
S Connected | 8,2 Gonnected
10° Component 1 Component’

10

100 b e )

10° 10" 102 10° 10* 10° 10° 107
Size

Stable tail slope

10°
2005 —*— 2006 —*— . .
10° Slope = 10° Slope =
I I after the gelling point
Y £
310 310
3 3 Giant
©10? Connected & © 10? Gonnected
| Component | omponent
10 i 10
10° b 3y 10°
10° 10" 10? 10° 10* 10° 10°107 10° 10" 10% 107 10* 10° 10° 70"
Size Size
15-826 (¢) 2013 C. Faloutsos 115

Outline

¢ Introduction — Motivation

Problem#1: Patterns in graphs
« DELETE
* Problem#2: Scalability

=) - Conclusions
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OVERALL CONCLUSIONS -
low level:

* Several new patterns (fortification,
shrinking diameter, triangle-laws, conn.
components, etc)

* New tools:

— anomaly detection (OddBall), belief
propagation, immunization

¢ Scalability: PEGASUS / hadoop
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OVERALL CONCLUSIONS —
high level

* BIG DATA: Large datasets reveal patterns/
outliers that are invisible otherwise
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