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15-826: Multimedia Databases
and Data Mining

Lecture #25: Time series mining and
forecasting

Christos Faloutsos
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Must-Read Material

* Byong-Kee Yi, Nikolaos D. Sidiropoulos,
Theodore Johnson, H.V. Jagadish, Christos
Faloutsos and Alex Biliris, Online Data Mining
for Co-Evolving Time Sequences, ICDE, Feb
2000.

* Chungmin Melvin Chen and Nick
Roussopoulos, Adaptive Selectivity Estimation
Using Query Feedbacks, SIGMOD 1994
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# * Motivation
+ Similarity search — distance functions
* Linear Forecasting
* Bursty traffic - fractals and multifractals
* Non-linear forecasting
* Conclusions
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Problem definition

. m one or more sequences
X7y Xpy ooy Xgy onn
Gp Yy s Vo oo
)

* Find
— similar sequences; forecasts
— patterns; clusters; outliers
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Motivation - Applications
 Financial, sales, economic series
* Medical
— ECGs +; blood pressure etc monitoring
—reactions to new drugs

—elderly care
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Motivation - Applications
(cont’d)
* ‘Smart house’

— sensors monitor temperature, humidity,
air quality

* video surveillance
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Motivation - Applications
(cont’d)
* civil/automobile infrastructure
—bridge vibrations [Oppenheim+02]
— road conditions / traffic monitoring
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Motivation - Applications
(cont’d)
» Weather, environment/anti-pollution
—volcano monitoring

— air/water pollutant monitoring

H.“‘wl.ll-.l‘vM‘\}\\'l‘\‘;\‘\“
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Motivation - Applications
(cont’d)
* Computer systems
— “Active Disks’ (buffering, prefetching)
—web servers (ditto)

—network traffic monitoring

15-826 (c) C. Faloutsos, 2013 10

Stream Data: Disk accesses

Disk traffic

#bytes

15000000

1

5000000

0
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Problem #1:

Goal: given a signal (e.g.., #packets over
time)

Find: patterns, periodicities, and/or compress

lynx caught per year

(packets per day;
temperature per day)

year
15-826 (¢) C. Faloutsos, 2013 12

15-826



C. Faloutsos

g CMU SCS

Problem#2: Forecast

Givenx, x,, ..

., forecast x,,;

15-826

Time Tick
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Problem#2’: Similarity search

E.g.., Find a 3-tick pattern, similar to the last one

15-826

Time Tick
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Problem #3:

» Given: A set of correlated time sequences
» Forecast ‘Sent(t)’

92
80 »
ER) r's \
% 60 ——sent
20l e ™~
e |V —a =—lost
2 304 NN AN
2% - AN S — ~&—repeated
10
0 . . . . :
1 3 5 7 9 1
Time Tick
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Important observations

Patterns, rules, forecasting and similarity
indexing are closely related:

* To do forecasting, we need
— to find patterns/rules
— to find similar settings in the past

* to find outliers, we need to have forecasts
— (outlier = too far away from our forecast)

15-826 (c) C. Faloutsos, 2013 16
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Outline

* Motivation
q° Similarity Search and Indexing
* Linear Forecasting
* Bursty traffic - fractals and multifractals
* Non-linear forecasting
+ Conclusions
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Outline

* Motivation

q' Similarity search and distance functions
— Euclidean

— Time-warping

15-826 (¢) C. Faloutsos, 2013 18
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Importance of distance
functions

Subtle, but absolutely necessary:

* A ‘must’ for similarity indexing (->
forecasting)

* A ‘must’ for clustering

Two major families
— Euclidean and Lp norms

— Time warping and variations

15-826 (c) C. Faloutsos, 2013 19
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Euclidean and Lp

[RETEE| I S 2
ey L D(x:y)=Z(xi_yi)
B )

\\,{/ Lp(i,j/)= , |x[_y[ |p

*L,: city-block = Manhattan
L, = Euclidean

.Loo
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Observation #1
* Time sequence -> n-d
vector
Day-n
s \\:;;/;Vz
Day-1
15-826 (c) C. Faloutsos, 2013 21
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Observation #2

. . . Day-n
Euclidean distance is
closely related to
— cosine similarity =

Day-2

— dot product Day-1

— ‘cross-correlation’
function

15-826 (c) C. Faloutsos, 2013 22
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Time Warping

* allow accelerations - decelerations
— (with or w/o penalty)

* THEN compute the (Euclidean) distance (+
penalty)

* related to the string-editing distance

15-826 (c) C. Faloutsos, 2013 23
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Time Warping

‘stutters’: g v
AN SIAN.
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Time warping

Q: how to compute it?
A: dynamic programming
D(i,j) = cost to match

prefix of length 7 of first sequence x with prefix
of length j of second sequence y

15-826 (c) C. Faloutsos, 2013 25
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Time warping
Thus, with no penalty for stutter, for sequences

Xpy Xgp ey X ViV oV

D(i-1,j-1) no stutter

D(i, j) = |x[i1- y{ ]|+ min] DG, j 1) x-stutter
D(-1,7) y-stutter
15-826 (c) C. Faloutsos, 2013 26
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Time warping
VERY SIMILAR to the string-editing distance

D(i-1,j-1) no stutter
D(i, j) =|x[i1- ]|+ mind DG, j 1) x-stutter
D(i-1)) y-stutter

15-826 (¢) C. Faloutsos, 2013 27
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Time warping

* Complexity: O(M*N) - quadratic on the
length of the strings

» Many variations (penalty for stutters; limit
on the number/percentage of stutters; ...)

* popular in voice processing [Rabiner +
Juang]
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Other Distance functions

* piece-wise linear/flat approx.; compare
pieces [Keogh+01] [Faloutsos+97]

* ‘cepstrum’ (for voice [Rabiner+Juang])
— do DFT; take log of amplitude; do DFT again!
* Allow for small gaps [Agrawal+95]

See tutorial by [Gunopulos + Das,
SIGMODO01]
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Other Distance functions

* In [Keogh+, KDD’04]: parameter-free,
MDL based

15-826 (¢) C. Faloutsos, 2013 30
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Conclusions
Prevailing distances:

— Euclidean and
— time-warping

15-826 (c) C. Faloutsos, 2013 31
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Outline

* Motivation

* Similarity search and distance functions
q' Linear Forecasting

* Bursty traffic - fractals and multifractals

* Non-linear forecasting

+ Conclusions
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Linear
Forecasting
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Forecasting
"Prediction is very difficult, especially about the

future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/
thoughts.htmi
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Outline

* Motivation

* Linear Forecasting
q — Auto-regression: Least Squares; RLS
— Co-evolving time sequences
— Examples
— Conclusions

15-826 (c) C. Faloutsos, 2013 35
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Reference

[Yi+00] Byoung-Kee Yi et al.: Online Data Mining
for Co-Evolving Time Sequences, ICDE 2000.
(Describes MUSCLES and Recursive Least
Squares)
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Problem#2: Forecast

» Example: give x, , x,,, ..., forecast x,

Time Tick

15-826 (c) C. Faloutsos, 2013 37
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Forecasting: Preprocessing

MANUALLY:

remove trends spot periodicities
7 days

: L

. I I

% L |

12 03 4 5 6 7 8 9 10

time time
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Problem#2: Forecast

» Solution: try to express
x(

as a linear function of the past: x,_,, x,,, ...,
(up to a window of w)

Formally:

9
§
Ty A ATt + - ..+ QuTi_w + N0OisE gE g’” ??
3
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(Problem: Back-cast; interpolate)

* Solution - interpolate: try to express
xt
as a linear function of the past AND the future:
Xev 1 Xpe25 -+« Xevwgurure; Xe-15 -+ Xewpast
(up to windows of W, Wyre)

* EXACTLY the same algo’s

P T e oy

1 3 5 7 9 11
Time Tick
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Linear Regression: idea

. 85

patient| weight  height Body height
1 77 3
2 43 54
3 54 7
e -

Body weight

® express what we don’t know (= ‘dependent variable’)
« as a linear function of what we know (= ‘indep. variable(s)’)

15-826 (c) C. Faloutsos, 2013 41
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Linear Auto Regression:

Time Packets

Sent(t)
1 43
2 54
3 72
15-826 (c) C. Faloutsos, 2013 42
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Linear Auto Regression:

85
80
75
70
65
60
55

Time | Packets  Packets
Sent (1-1)  Sent(1)

B /43

2 43 54

3 8-

‘lag-plot’

50

45
N Q‘/ ki 40

Number of packets sent (t)

15 25 35 45

Number of packets sent (t-1)

* lag w=1
* Dependent variable = # of packets sent (S [t])
« Independent variable = # of packets sent (S[t-1])

15-826 (c) C. Faloutsos, 2013 43
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Outline

* Motivation

* Linear Forecasting

q — Auto-regression: Least Squares; RLS
— Co-evolving time sequences

— Examples

— Conclusions
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More details:

* Q1: Can it work with window w>1?
* Al: YES!

X

15-826 (¢) C. Faloutsos, 2013 45
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More details:

* QI: Can it work with window w>1?
* Al: YES! (we’ll fit a hyper-plane, then!)

X2

15-826 (c) C. Faloutsos, 2013

CMU SCS

More details:

* Ql: Can it work with window w>1?
* Al: YES! (we’ll fit a hyper-plane, then!)

15-826 (c) C. Faloutsos, 2013
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More details:

* Q1: Can it work with window w>1?
* Al: YES! The problem becomes:

XN xw] X Ay 1] T YINx1]
« OVER-CONSTRAINED

— a is the vector of the regression coefficients

— X has the N values of the w indep. variables
— y has the N values of the dependent variable

15-826 (¢) C. Faloutsos, 2013
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More details:

° X[N XW] X a[w x1] = y[N x1] —_—=
Ind-varl Ind-var-w
e

I
time XX, X, B
Xy, Xopseis Xy, a, Y2
: a, :
x|. =1.

Xut»Xnnoeoon X Y

> Nw
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More details:

¢ X[N xW] x a[w x1] = YIN x1] -
Ind-varl Ind-var-w
v

¥

Xy X X YN

N22**°> Nw
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More details

* Q2: How to estimate a,, a,, ... a, =a?

» A2: with Least Squares fit
a=(X"xX)'x X"xy)

* (Moore-Penrose pseudo-inverse)

* a is the vector that minimizes the RMSE
fromy

* <identical math with ‘query feedbacks’>

15-826 (¢) C. Faloutsos, 2013 51
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/ More details \

* Q2: How to estimate a,, a,, ... a, =a?

* A2: with Least Squares fit
a=(X"xX)'xX"xy)

Identical to earlier formula (proof?)

a=VxAxUTxy

Where

X=UxAx V' /

15-826 (c) C. Faloutsos, 2013 52
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More details

« Straightforward solution: w
a=(X"xX)"'x(X"xy)

a : Regression Coeff. Vector X
X : Sample Matrix

 Observations:
— Sample matrix X grows over time
— needs matrix inversion
— O(Nxw?) computation
— O(Nxw) storage

15-826 (c) C. Faloutsos, 2013 53
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Even more details

* Q3: Can we estimate a incrementally?

» A3: Yes, with the brilliant, classic method
of ‘Recursive Least Squares’ (RLS) (see,
e.g., [Yi+00], for details).

* We can do the matrix inversion, WITHOUT
inversion! (How is that possible?!)

15-826 (¢) C. Faloutsos, 2013 54
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Even more details

* Q3: Can we estimate a incrementally?

* A3: Yes, with the brilliant, classic method
of ‘Recursive Least Squares’ (RLS) (see,
e.g., [Yi+00], for details).

* We can do the matrix inversion, WITHOUT
inversion! (How is that possible?!)

* A: our matrix has special form: (XT X)

15-826 (c) C. Faloutsos, 2013 55
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More details

w

At the N+/ time tick:
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More details

« Let G, =( X,/ xXy)" (" gain matrix’’)
* G, can be computed recursively from G,

w

15-826 (¢) C. Faloutsos, 2013 57
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EVEN more details:

\

T
c=[l+x,,, xGyxxy,, |

Let’s elaborate
(VERY IMPORTANT, VERY VALUABLE!)

Gy, =Gy —[cI"x[G, ><)‘NHT]XXNH xGy

1 X w row vector

15-826 (c) C. Faloutsos, 2013
EVEN more details:
T -1 T
a=[Xy, xXy,I"x[Xy, XYyl

15-826 (c) C. Faloutsos, 2013
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EVEN more details:

a= [XN+IT XXN+1]_IX[XN+1T ><yN+1:|

[w x (N+1)] [w x (N+1)]

15-826 (¢) C. Faloutsos, 2013

[wx 1] [(N+1) x w] [N+ x 1]

CMU

15-826
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EVEN more details:

a=[XN+lTXXN+1 <[X]\/+1T><J/N+1]

[(N+1) x w]
[wx (N+1)]

15-826 (c) C. Faloutsos, 2013 61

% CMU SCS
EVEN more details:

T

a=[Xy, XXN+1]_] X[XN+1T X Yyl

‘gain 1 x w row vector

matrix’

Gya= [XN+1T X XN+1]_1
Gy, =Gy - [C]il x[Gy x xN+1T]x XyaxGy

T
c=[l+xy,, xGyxxy,, |

15-826 (c) C. Faloutsos, 2013 62
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EVEN more details:

-1 T
Gy =Gy =[c] x[Gyxxy,, Ixxy, xGy

T
c=[l+xy,,xGyxxy,, |

15-826 (¢) C. Faloutsos, 2013 63
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EVEN more details:

1x1
Ixw

WXW WXW wxw  Wxl wAW

GN+1 = GN - [c]_l x [GN x xN+1T]x Xy X GN

SCALAR! — r
c=[1+x,,,xGyxxy,, ]

15-826 (c) C. Faloutsos, 2013 64
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Altogether:

T

a=[Xy, XXN+1]_] X[XN+1T X Yyl

Gya= [XN+1T X XN+1]_1

Gy, =Gy - [C]il x[Gy x xN+1T]x XyaxGy

T
c=[1+xy,XGyxxy, ]

15-826 (c) C. Faloutsos, 2013 65
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Altogether:

G,=61 IMPORTANT!

where
I: w x w identity matrix
d: a large positive number (say, 10%)

15-826 (¢) C. Faloutsos, 2013 66

15-826

22



C. Faloutsos

CMU

g CMU SCS

Comparison:
* Straightforward Least < Recursive LS
Squares — Need much smaller,
— Needs huge matrix fixed size matrix
(growing in size) O O(wxw)
(Nxw) — Fast, incremental
— Costly matrix computation o
operation o (1xw?)
(Nxw?) — no matrix inversion
N=10° w=1-100
15-826 (c) C. Faloutsos, 2013 67
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Pictorially:

* Given:

Dependent Variable

Independent Variable

15-826 (c) C. Faloutsos, 2013 68
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Pictorially:

* — new point

Dependent Variable

Independent Variable

15-826 (¢) C. Faloutsos, 2013 69
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Pictorially:
RLS: quickly compute new best fit

o -

2 ¢ «—— new point
s

>

=

5}

=

£

5

o

)

a

Independent Variable
15-826 (¢) C. Faloutsos, 2013 70

Even more details

* Q4: can we ‘forget’ the older samples?
* A4: Yes - RLS can easily handle that [Yi+00]:

15-826 (c) C. Faloutsos, 2013 71
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Adaptability - ‘forgetting’

)

=)

=,

=

= &

> 2

= 2

g2

22

g%

[

=3
Independent Variable
eg., #packets sent

15-826 (¢) C. Faloutsos, 2013 72

15-826

24



C. Faloutsos

CMU

g CMU SCS
Adaptability - ‘forgetting’

Trend change

o
2
s . o e
5% LA
X Y (R)LS
5 & vt Ayt .
B . -
EE| e a0, . « *with no forgetting
27
3] . LI
Independent Variable
eg. #packets sent
15-826 (¢) C. Faloutsos, 2013 73
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Adaptability - ‘forgetting’

Trend change

=2 .
El
s
Z (R)LS
) with no forgetting
& .
g
9
9
a
(R)LS

with forgetting

Independent Variable

* RLS: can *trivially* handle ‘forgetting’

15-826 (c) C. Faloutsos, 2013 74

% CMU SCS Details

How to choose ‘w’?

* goal: capture arbitrary periodicities
» with NO human intervention
* on a semi-infinite stream

15-826 (¢) C. Faloutsos, 2013 75
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Reference

[Papadimitriou+ vldb2003] Spiros
Papadimitriou, Anthony Brockwell and
Christos Faloutsos Adaptive, Hands-Off
Stream Mining VLDB 2003, Berlin,
Germany, Sept. 2003

15-826 (c) C. Faloutsos, 2013

g cMUsCes Details

Answer:

* ‘AWSOM’ (Arbitrary Window Stream
fOrecasting Method) [Papadimitriou+,
vldb2003]

* idea: do AR on each wavelet level

* in detail:

15-826 (c) C. Faloutsos, 2013

% e Details

AJUONDITJ

W,
’

Vv,

t

time
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AWSOM

)
t
=]
+4
w, w, ' ]
£
¢ t (L <
WJ,
t
V., %
t
time
15-826 (¢) C. Faloutsos, 2013 79

CMUSCS .
% Details
.
AWSOM - idea
SN
Wiia|Wied| W, W= BuiWier + BoWier + -
LN
’V:-.:/ Weer | Woe Weem BraWeea + BraWees + -
15-826 (c) C. Faloutsos, 2013 80

% CMU SCS Details

More details...

+ Update of wavelet coefficients (incremental)
» Update of linear models (incremental; RLS)
* Feature selection (single-pass)
— Not all correlations are significant
— Throw away the insignificant ones (“noise”

15-826 (¢) C. Faloutsos, 2013 81
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AR

Triarghe 2R

Seasonal AR
Trang - R x(1)2%

Tt
Tt

A

|ttt
: WJ ;ltw‘;ll:,'!fglxwt‘tl'r"

T

T~

FAILED

. i we-samam
THHOH :
n ‘ e 18 FAILED

VOLTRERENL : J _

T T
15-826 (c) C. Faloutsos, 2013

Details

Results - Synthetic data

¢ Triangle pulse

Mix (sine +
square)

AR captures
wrong trend (or
none)

Seasonal AR
estimation fails

% CMU SCS

Automobile — Original Automatile - AWSOM (3)
]
B

120 2m0
120 2m0

Automekile

g

Automotule
Automekile

H

0 =0
o =0

Results - Real data

Details

Automobile - SAR

FAILED

0 10000 20000 30000 o me [ nme | mw 0 10000 20000 30000
Time Time Time

* Automobile traffic

— Daily periodicity

— Bursty “noise” at smaller scales
* AR fails to capture any trend
» Seasonal AR estimation fails

15-826 (c) C. Faloutsos, 2013
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Details

Results - real data

* Sunspot intensity

— Slightly time-varying “period”
+ AR captures wrong trend
» Seasonal ARIMA

Sunspot - Original unspot - AWSOM (6.1 Sunspot- AR (60)  nspot — SARIMA (2.1,0) x (1.1,

o o o

a8 ] ]

8 8 8

gz gs h gs
i

R R {th R
LAY

o v . il o

T o wm ' mm 6 Sowm ow 8 Sows T mm 6 6w | am
Time Tirne Time Tirne

CMU

— wrong downward trend, despite help by human!

15-826 (¢) C. Faloutsos, 2013 84
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Complexity

* Model update

Space: O(lgN + mk?) = O(IgN)
Time: Ok?)=0(1)

* Where

— N: number of points (so far)
— k: number of regression coefficients; fixed
— m:number of linear models; O(IgN)

15-826 (c) C. Faloutsos, 2013 85

Details

% CMU SCS

Outline

Motivation

=

Linear Forecasting

— Auto-regression: Least Squares; RLS
— Co-evolving time sequences

— Examples

— Conclusions

15-826 (c) C. Faloutsos, 2013 86
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Co-Evolving Time Sequences

Given: A set of correlated time sequences
Forecast ‘Repeated(t)’

80 »
ER) » \
% 60 ——sent
20l e ™~
e |V — = lost
£ 30 1 A A PN
S S AP i |+ repeated
Z 20 #—h— o

10

0 ‘

1 3 5 7 9 1
Time Tick
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Solution:

Q: what should we do?

15-826 (c) C. Faloutsos, 2013 88

% CMU SCS
Solution:

Least Squares, with

* Dep. Variable: Repeated(t)

¢ Indep. Variables: Sent(t-1) ... Sent(t-w);
Lost(t-1) ...Lost(t-w); Repeated(t-1), ...

* (named: ‘MUSCLES’ [Yi+00])

15-826 (c) C. Faloutsos, 2013 89
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Forecasting - Outline

* Auto-regression
» Least Squares; recursive least squares
» Co-evolving time sequences

- Examples

» Conclusions
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* Datasets

15-826

* Measures of success
— Accuracy : Root Mean Square Error (RMSE)

(¢) C. Faloutsos, 2013

Examples - Experiments

— Modem pool traffic (14 modems, 1500 time-
ticks; #packets per time unit)
— AT&T WorldNet internet usage (several data
streams; 980 time-ticks)

91

% CMU SCS

4

35

3

25

RMSE 2

15-826

15
1
05
o

12 34 56 7 8 910111213 14

Modems

MUSCLES outperforms &«

(c) C. Faloutsos, 2013

Accuracy - “Modem”

mAR
Dyesterday
mMUSCLES
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Accuracy - “Internet”

14

12

1

RMSE
06

0.4

0.2

BAR

DOyesterday

BMUSCLES

12 3 45 6 7 8 91011 1213 14 15

Streams

MUSCLES consistently outperforms

15-826

(¢) C. Faloutsos, 2013
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Linear forecasting - Qutline

* Auto-regression
* Least Squares; recursive least squares
» Co-evolving time sequences
» Examples
®). Conclusions

15-826 (c) C. Faloutsos, 2013 94

Conclusions - Practitioner’s
guide
* AR(IMA) methodology: prevailing method
for linear forecasting

* Brilliant method of Recursive Least Squares
for fast, incremental estimation.

* See [Box-Jenkins]
* (AWSOM: no human intervention)

15-826 (c) C. Faloutsos, 2013 95

g CMU SCS

Resources: software and urls

* free-ware: ‘R’ for stat. analysis
(clone of Splus)
http://cran.r-project.org/

* python script for RLS
http://www.cs.cmu.edu/~christos/SRC/rls-all.tar
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Books

* George E.P. Box and Gwilym M. Jenkins and
Gregory C. Reinsel, Time Series Analysis:
Forecasting and Control, Prentice Hall, 1994 (the
classic book on ARIMA, 3rd ed.)

* Brockwell, P. J. and R. A. Davis (1987). Time
Series: Theory and Methods. New York, Springer
Verlag.
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% CMU SCS

Additional Reading

 [Papadimitriou+ vldb2003] Spiros Papadimitriou,
Anthony Brockwell and Christos Faloutsos
Adaptive, Hands-Off Stream Mining VLDB 2003,
Berlin, Germany, Sept. 2003

* [Yi+00] Byoung-Kee Yi et al.: Online Data
Mining for Co-Evolving Time Sequences, ICDE
2000. (Describes MUSCLES and Recursive Least
Squares)
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Outline

* Motivation
+ Similarity search and distance functions
* Linear Forecasting

#- Bursty traffic - fractals and multifractals
* Non-linear forecasting
* Conclusions
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Bursty Traffic
& Multifractals
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% CMU SCS

SKIP, if you have done HW2, Q3:

Foils use D1 (“information fractal dimension’),

While HW2-Q3 uses D2 (‘correlation’ f.d.)

15-826 (c) C. Faloutsos, 2013 101

g CMU SCS HWZ-Q3

Outline

* Motivation
* Linear Forecasting

* Bursty traffic - fractals and multifractals
— Problem
— Main idea (80/20, Hurst exponent)
— Results
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Reference:

[Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai
Hang Chang, Spiros Papadimitriou and Christos
Faloutsos, Data Mining Meets Performance
Evaluation: Fast Algorithms for Modeling Bursty
Traffic, ICDE 2002, San Jose, CA, 2/26/2002 -

3/1/2002.

Full thesis: CMU-CS-05-185
Performance Modeling of Storage Devices using
Machine Learning Mengzhi Wang, Ph.D. Thesis
Abstract, .ps.gz, .pdf

(¢) C. Faloutsos, 2013
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Recall: Problem #1:

Goal: given a signal (eg., #bytes over time)
Find: patterns, periodicities, and/or compress

Bytes per 30°
(packets per day;
. LhL ul  earthquakes per year)

#bytes

time
(c) C. Faloutsos, 2013

15-826

CMU

g CMU SCS HWZ-Q3

Problem #1
» model bursty traffic
* generate realistic traces
) # bytes
* (Poisson does not work) .

350406

Poisson —;
o

15-826
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EA HW2-Q3

Motivation

» predict queue length distributions (e.g., to
give probabilistic guarantees)

* “learn” traffic, for buffering, prefetching,
‘active disks’, web servers

15-826 (c) C. Faloutsos, 2013 106

% CMUSCS HWZ—Q3
Q: any ‘pattern’?

* Not Poisson

X . # bytes
« spike; silence; more
spikes; more silence... .
 any rules? H
§ 352406 m”‘ L
P LAl
time
15-826 (c) C. Faloutsos, 2013 107

g CMU SCS HWZ-Q3

Solution: self-similarity

# bytes # bytes

R L

450 500
tima, in Jorh siots

time time

15-826 (¢) C. Faloutsos, 2013 108
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But:

* Q1: How to generate realistic traces;
extrapolate; give guarantees?

* Q2: How to estimate the model parameters?

15-826 (c) C. Faloutsos, 2013 109

% CMU SCS HWZ—Q3
Outline

* Motivation
* Linear Forecasting

* Bursty traffic - fractals and multifractals

— Problem
q — Main idea (80/20, Hurst exponent)
— Results
15-826 (c) C. Faloutsos, 2013 110

Vg CMUSCs HW2-Q3
Approach

* QI: How to generate a sequence, that is
— bursty
— self-similar
— and has similar queue length distributions

15-826 (¢) C. Faloutsos, 2013 111
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Approach

* A: ‘binomial multifractal’ [Wang+02]
e ~80-20 ‘law’:

— 80% of bytes/queries etc on first half

— repeat recursively
* b: bias factor (eg., 80%)

% CMU SCS HWZ—Q3

15-

Binary multifractals

20 /\80

60000
ime t

£ 13

g CMU SCS HWZ-Q3

Binary multifractals
20 /\ 80
/\ | /\
|

200

100

il HJJHJ

0 30000 6000 90000
timet
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Parameter estimation

* Q2: How to estimate the bias factor 5?

15-826 (c) C. Faloutsos, 2013 115

% CMU SCS HWZ—Q3

Parameter estimation

* Q2: How to estimate the bias factor b?
* A: MANY ways [Crovella+96]
— Hurst exponent
— variance plot
— even DFT amplitude spectrum! (‘periodogram”)
— More robust: ‘entropy plot’ [Wang+02]

15-826 (c) C. Faloutsos, 2013 116

Vg CMUSCs HW2-Q3
Entropy plot

 Rationale:
— burstiness: inverse of uniformity
— entropy measures uniformity of a distribution

— find entropy at several granularities, to see
whether/how our distribution is close to
uniform.

15-826 (¢) C. Faloutsos, 2013 17
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Entropy plot
pl p2
%_of bytes » Entropy E(n) after n
here levels of splits
* n=1: E(1)=- pl log,(p1)-
] 1 p2 log,(p2)
| ‘
l“ l“.“ nh Hll
15-826 (c) C. Faloutsos, 2013 118
% CMUSCS HWZ—Q3
Entropy plot
Poi P2o | P23 Pog

 Entropy E(n) after n

levels of splits

* n=1: E(1)=- pl log(pl)-

| p2 log(p2)

l
| - n=2:B(2)=-%,p,, *
WL P2

log, (pz,i)

15-826
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g MU SCS HWZ'Q3
Real traffic
Entropy
€ (n) * Has linear entropy plot
‘‘‘‘‘ (-> self-similar)
12 7}/‘
8 /;()73

/ Real -
> 073024, ——

15-826

5 10 15 20 25

# of levels (n)
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Observation - intuition:

HW2-Q3

15-826

Entropy
E (n) intuition: slope =
N /’ e intrinsic dimensionality =
. 7 info-bits per coordinate-bit
. e — unif. Dataset: slope =?
/ ozl - — multi-point: slope = ?
0 0 5 10 15 20 25
# of levels (n)

(¢) C. Faloutsos, 2013 121
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% CMUSCS HWZ—Q3
Observation - intuition:
Entropy
@( n) intuition: slope =
» A intrinsic dimensionality =
. e info-bits per coordinate-bit
. e — unif. Dataset: slope =1
L ’ orel — multi-point: slope = 0
# of levels (n)
15-826 (c) C. Faloutsos, 2013 122

B HW2-Q3
Entropy plot - Intuition

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’)

» =1info bit per coordinate bit - eg

Dim=1 —— &~

Pick a point;
reveal its coordinate bit-by-bit -
how much info is each bit worth to me?

15-826 (¢) C. Faloutsos, 2013 123
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Entropy plot

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’)

» =info bit per coordinate bit - eg

Dimn=1 ———6—~——

Is MSB 0?

15-826 (c) C. Faloutsos, 2013

EA HW2-Q3

‘info’ value = E(1): 1 bit

124

Entropy plot

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension”)

+ = info bit per coordinate bit - eg

Dim=1 — &~
Is MSB 0?

I Is next MSB =0?

15-826 (c) C. Faloutsos, 2013
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Entropy plot

* Slope ~ intrinsic dimensionality (in fact,
‘Information fractal dimension’)

» =1info bit per coordinate bit - eg

Dlm =1 - A\ - - -
Info value =1 bit Is MSB 0?
=EQ)-E()=
slope! I Is next MSB =0?

15-826 (¢) C. Faloutsos, 2013
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Entropy plot

* Repeat, for all points at same position:

Dim=0 —

15-826 (c) C. Faloutsos, 2013 127

% CMUSCS HWZ—Q3
Entropy plot
» Repeat, for all points at same position:

» we need 0 bits of info, to determine position

* ->slope = 0 = intrinsic dimensionality

Dim=0 -

15-826 (c) C. Faloutsos, 2013 128

Vg CMUSCs HW2-Q3
Entropy plot

* Real (and 80-20) datasets can be in-
between: bursts, gaps, smaller bursts,
smaller gaps, at every scale

Dim=1 > -
Dim=0
0<Dim<lI - -

15-826 (¢) C. Faloutsos, 2013 129
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(Fractals, again)

» What set of points could have behavior
between point and line?

15-826 (c) C. Faloutsos, 2013

HW2-Q3

130
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Cantor dust

 Eliminate the middle third
» Recursively!

15-826 (c) C. Faloutsos, 2013

HW2-Q3
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Cantor dust

HW2-Q3

15-826 (¢) C. Faloutsos, 2013
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Cantor dust

HW2-Q3

15-826
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Cantor dust

HW2-Q3

15-826

(c) C. Faloutsos, 2013
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Cantor dust

HW2-Q3

15-826

(¢) C. Faloutsos, 2013
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Cantor dust

Dimensionality?

(no length; infinite # points!)
Answer: log2 /log3 = 0.6

15-826 (c) C. Faloutsos, 2013 136
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Some more entropy plots:

* Poisson vs real

3000

2000

#of requests

1000

e [ LU Lo

0 1000 2000 3000
Time (in seconds)

Entropy value

Poisson: slope = ~1 -> uniformly distributed
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g CMU SCS HWZ-Q3
b-model

E * b-model traffic gives perfectly
) linear plot
o — * Lemma: its slope is
. 7 slope = -b log,b - (1-b) log, (1-b)
7 s
s e « Fitting: do entropy plot; get
P
) 7 slope; solve for b
n
15-826 (c) C. Faloutsos, 2013 138
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Outline

* Motivation

* Linear Forecasting
* Bursty traffic - fractals and multifractals
— Problem
— Main idea (80/20, Hurst exponent)
# — Experiments - Results

15-826 (c) C. Faloutsos, 2013 139

% CMU SCS HWZ—Q3

Experimental setup
* Disk traces (from HP [Wilkes 93])
* web traces from LBL

http://repository.cs.vt.edu/
Ibl-conn-7.tar.Z

15-826 (c) C. Faloutsos, 2013 140

g CMU SCS HWZ-Q3

Model validation
* Linear entropy plots
(a) Disk Traces (b) Web Traces

o o
15 2 1

\
|

10
aguregation lovel

Bias factors b: 0.6-0.8
smallest b / smoothest: nntp traffic
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e
- -

b o \

i \

Web traffic - results

* LBL, NCDF of queue lengths (log-log scales)

Prob( >/)

Queue length distribution
(a) Ibl-all (b) Ibl-nntp (c) Ibl-smtp

How to give guarantees? (queue length /)

(d) Ibl-ftp

15-826 (c) C. Faloutsos, 2013 142
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Web traffic - results

* LBL, NCDF of queue lengths (log-log scales)

Prob( >/)
X 20% of the requests
g oo will see
oo queue lengths <100
& 0.0001
fete 1 %o 10000 1e+05 fes0e
queue length (in Kb)
(queue length /)
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g CMU SCS
Conclusions

* Multifractals (80/20, ‘b-model’,
Multiplicative Wavelet Model (MWM)) for
analysis and synthesis of bursty traffic
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Books

¢ Fractals: Manfred Schroeder: Fractals, Chaos,
Power Laws: Minutes from an Infinite Paradise
W.H. Freeman and Company, 1991 (Probably the
BEST book on fractals!)
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% CMU SCS

Further reading:

* Crovella, M. and A. Bestavros (1996). Self-
Similarity in World Wide Web Traffic, Evidence
and Possible Causes. Sigmetrics.

* [ieeeTN94] W. E. Leland, M.S. Taqqu, W.
Willinger, D.V. Wilson, On the Self-Similar
Nature of Ethernet Traffic, IEEE Transactions on
Networking, 2, 1, pp 1-15, Feb. 1994.

15-826 (c) C. Faloutsos, 2013 146
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Further reading

* [Riedi+99] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R.
G. Baraniuk, 4 Multifractal Wavelet Model with
Application to Network Traffic, IEEE Special Issue on
Information Theory, 45. (April 1999), 992-1018.
[Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai Hang
Chang, Spiros Papadimitriou and Christos Faloutsos, Data
Mining Meets Performance Evaluation: Fast Algorithms
for Modeling Bursty Traffic, ICDE 2002, San Jose, CA,
2/26/2002 - 3/1/2002.

Entropy plots
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QOutline

* Motivation

* Linear Forecasting

* Bursty traffic - fractals and multifractals
» Non-linear forecasting

* Conclusions
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% CMU SCS

Chaos and

non-linear
forecasting
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g CMU SCS

Reference:

[ Deepay Chakrabarti and Christos Faloutsos
F4: Large-Scale Automated Forecasting
using Fractals CIKM 2002, Washington
DC, Nov. 2002.]
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Detailed Outline

» Non-linear forecasting
— Problem
— Idea
— How-to
— Experiments

— Conclusions

15-826 (c) C. Faloutsos, 2013
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Recall: Problem #1

Value

X, = ax,;(1-x, ;) + noise
Models population of flies [R. May/1976]

Lag-plot
ARIMA: fails

15-826 (¢) C. Faloutsos, 2013

eeeeeeee * Time
Given a time series {x,}, predict its future
course, that is, X\, X2
15-826 (c) C. Faloutsos, 2013 152
g CMU SCS
¥
Datasets
Logistic Parabola: time

153
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How to forecast?

* ARIMA - but: linearity assumption

Lag-plot
ARIMA: fails

15-826 (c) C. Faloutsos, 2013 154

% CMU SCS

How to forecast?

* ARIMA - but: linearity assumption

* ANSWER: ‘Delayed Coordinate
Embedding’ = Lag Plots [Sauer92]

~ nearest-neighbor search, for past
incidents

15-826 (c) C. Faloutsos, 2013 155

g CMU SCS

General Intuition (Lag Plot)

Lag=1,
i k=4 NN
Interpolate n +
these... N 4
+
++
To get the final +
prediction +
X1
4-NN )
New Point
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Questions:

* Q1: How to choose lag L?

* Q2: How to choose & (the # of NN)?
* Q3: How to interpolate?

* Q4: why should this work at all?

15-826 (c) C. Faloutsos, 2013 157
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Q1: Choosing lag L

» Manually (16, in award winning system by
[Sauer94])

15-826 (c) C. Faloutsos, 2013 158

g CMU SCS
Q2: Choosing number of
neighbors &
* Manually (typically ~ 1-10)
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Q3: How to interpolate?

How do we interpolate between the
k nearest neighbors?

A3.1: Average
A3.2: Weighted average (weights drop

with distance - how?)

15-826 (c) C. Faloutsos, 2013 160

% CMU SCS
Q3: How to interpolate?

A3.3: Using SVD - seems to perform best
([Sauer94] - first place in the Santa Fe

forecasting competition)
Xl

o

Xt- 1
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Q4: Any theory behind it?

A4: YES!
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Theoretical foundation

» Based on the ‘Takens theorem’ [Takens81]

 which says that long enough delay vectors
can do prediction, even if there are
unobserved variables in the dynamical
system (= diff. equations)

15-826 (c) C. Faloutsos, 2013 163

% CMU SCS
.. i1, Theoretical foundation

dH/dt=rH —a H*P P =
dP/dt=b H*P—m P J v
\
H is count of prey (e.g., hare) = %
P is count of predators (e.g., lynx) 0

Suppose only P(t) is observed (t=1, 2, ...).

15-826 (c) C. Faloutsos, 2013 164

g CMU SCS Skip

Theoretical foundation

* But the delay vector space is a faithful
reconstruction of the internal system state

* So prediction in delay vector space is as
good as prediction in state space

P P(t)
P -
‘I l i \/ /‘/‘ = \\
. IR
= N
15-826 H (c) C. Faloutsos, 2013 P(t- 1 ) 165
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Detailed Outline

» Non-linear forecasting
— Problem
— Idea
— How-to
— Experiments
— Conclusions
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x(t)

Datasets

Logistic Parabola:
X, = ax,(1-x,;) + noise
Models population of flies [R. May/1976]

Lag-plot

(c) C. Faloutsos, 2013
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x(t)

Datasets

Logistic Parabola:
X, = ax,;(1-x, ;) + noise
Models population of flies [R. May/1976]

Lag-plot
ARIMA: fails
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Losisti Our Prediction from
ogistic Parabola / here
Value :g{ﬁ yﬁ ﬁ ﬁ‘ywlﬂ'ﬁfff
WAl
il ‘V M/‘ \M/ | s‘/\/ \/V’\f \v/ | ‘/\J |
SRRl

Comparison of prediction

"M HH,\N\ w n‘ ;} H i

to correct values

/‘ »\ ' M ‘ ﬁ‘ B
’ i | V‘H "\
" H‘ ‘V \f V “ \’

\
i
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Value

Datasets

LORENZ: Models convection
currents in the air
dx/dt=a(y-x)
dy/dt=x(b-z)-y
dz/dt=xy-cz

171
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LORENZ

Comparison of prediction
to correct values
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u%g e Value N
Datasets - l '
« LASER: fluctuations in
a Laser over time (used Time
in Santa Fe
competition)
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Value [/ .

£ 5

Laser

Comparison of prediction
to correct values

1 oy ,:y,f(:
il M\IM H“
\J”JJ“H’JJJUKJULU
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Conclusions
 Lag plots for non-linear forecasting

(Takens’ theorem)

* suitable for ‘chaotic’ signals
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Overall conclusions

+ Similarity search: Euclidean/time-warping;
feature extraction and SAMs
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Overall conclusions
+ Similarity search: Euclidean/time-warping;

feature extraction and SAMs
* Signal processing: DWT is a powerful tool
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g CMU SCS

Overall conclusions

* Similarity search: Euclidean/time-warping;
feature extraction and SAMs
* Signal processing: DWT is a powerful tool

* Linear Forecasting: AR (Box-Jenkins)
methodology; AWSOM
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Overall conclusions

+ Similarity search: Euclidean/time-warping;
feature extraction and SAMs
* Signal processing: DWT is a powerful tool

* Linear Forecasting: AR (Box-Jenkins)
methodology; AWSOM

 Bursty traffic: multifractals (80-20 ‘law’)
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Overall conclusions

* Similarity search: Euclidean/time-warping;
feature extraction and SAMs

* Signal processing: DWT is a powerful tool

* Linear Forecasting: AR (Box-Jenkins)
methodology; AWSOM

* Bursty traffic: multifractals (80-20 ‘law’)
» Non-linear forecasting: lag-plots (Takens)
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