

15-826: Multimedia Databases and Data Mining

Lecture #25: Time series mining and forecasting

Christos Faloutsos

Must-Read Material

- Byong-Kee Yi, Nikolaos D. Sidiropoulos, Theodore Johnson, H.V. Jagadish, Christos Faloutsos and Alex Biliris, *Online Data Mining for Co-Evolving Time Sequences*, ICDE, Feb 2000.
- Chungmin Melvin Chen and Nick Roussopoulos, *Adaptive Selectivity Estimation Using Query Feedbacks*, SIGMOD 1994

15-826

(c) C. Faloutsos, 2013

2

Thanks

Deepayan Chakrabarti (CMU)

Spiros Papadimitriou (CMU)

Prof. Byoung-Kee Yi (Pohang U.)

15-826

(c) C. Faloutsos, 2013

3

Outline

- Motivation
- Similarity search – distance functions
- Linear Forecasting
- Bursty traffic - fractals and multifractals
- Non-linear forecasting
- Conclusions

15-826

(c) C. Faloutsos, 2013

4

Problem definition

- Given: one or more sequences
 $x_1, x_2, \dots, x_t, \dots$
 $(y_1, y_2, \dots, y_p, \dots$
 $\dots)$
- Find
 - similar sequences; forecasts
 - patterns; clusters; outliers

15-826

(c) C. Faloutsos, 2013

5

Motivation - Applications

- Financial, sales, economic series
- Medical
 - ECGs +; blood pressure etc monitoring
 - reactions to new drugs
 - elderly care

15-826

(c) C. Faloutsos, 2013

6

 CMU SCS

Motivation - Applications (cont'd)

- ‘Smart house’
 - sensors monitor temperature, humidity, air quality
- video surveillance

15-826

(c) C. Faloutsos, 2013

7

 CMU SCS

Motivation - Applications (cont'd)

- civil/automobile infrastructure
 - bridge vibrations [Oppenheim+02]
 - road conditions / traffic monitoring

15-826

(c) C. Faloutsos, 2013

8

CMU SCS

CMU SCS

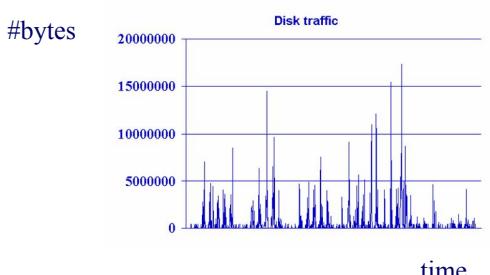
Motivation - Applications (cont'd)

- Computer systems
 - ‘Active Disks’ (buffering, prefetching)
 - web servers (ditto)
 - network traffic monitoring
 - ...

15-826 (c) C. Faloutsos, 2013 10

CMU SCS

Stream Data: Disk accesses



#bytes

Disk traffic

time

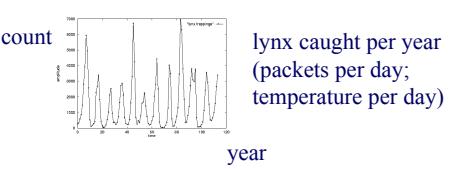
15-826 (c) C. Faloutsos, 2013 11

CMU SCS

Problem #1:

Goal: given a signal (e.g., #packets over time)

Find: patterns, periodicities, and/or compress

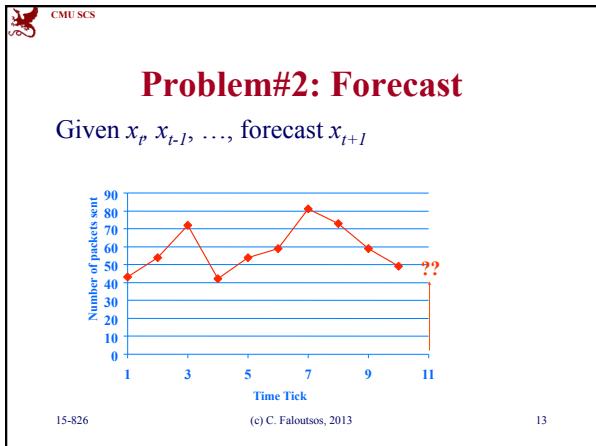


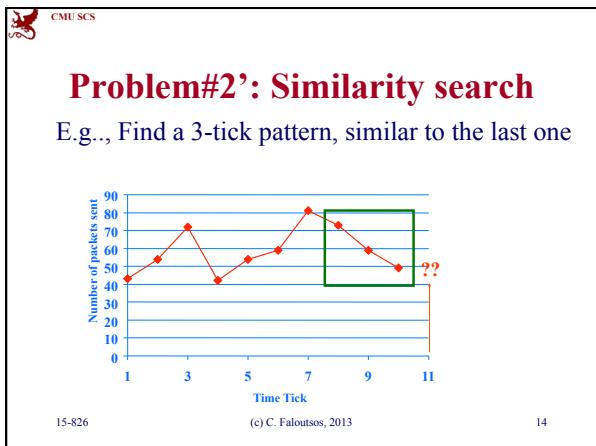
count

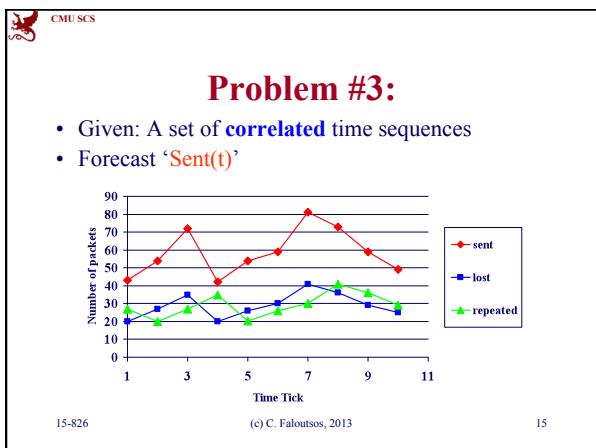
lynx caught per year (packets per day; temperature per day)

year

15-826 (c) C. Faloutsos, 2013 12







Important observations

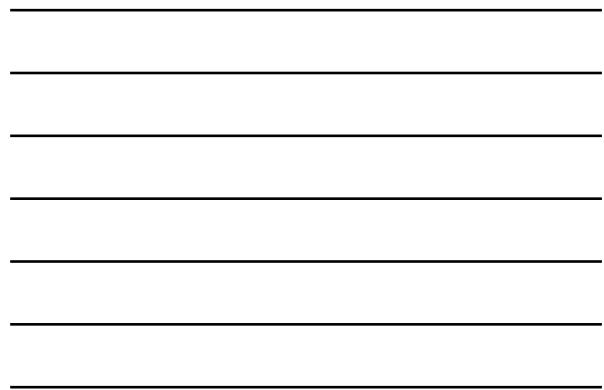
Patterns, rules, forecasting and similarity indexing are closely related:

- To do forecasting, we need
 - to find patterns/rules
 - to find similar settings in the past
- to find outliers, we need to have forecasts
 - (outlier = too far away from our forecast)

15-826

(c) C. Faloutsos, 2013

16



Outline

- Motivation
- Similarity Search and Indexing
- Linear Forecasting
- Bursty traffic - fractals and multifractals
- Non-linear forecasting
- Conclusions

15-826

(c) C. Faloutsos, 2013

17

Outline

- Motivation
- Similarity search and distance functions
 - Euclidean
 - Time-warping
- ...

15-826

(c) C. Faloutsos, 2013

18

 CMU SCS

Importance of distance functions

Subtle, but **absolutely necessary**:

- A ‘must’ for similarity indexing (-> forecasting)
- A ‘must’ for clustering

Two major families

- Euclidean and L_p norms
- Time warping and variations

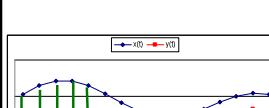
15-826

(c) C. Faloutsos, 2013

19

 CMU SCS

Euclidean and L_p



$$D(\vec{x}, \vec{y}) = \sum_{i=1}^n (x_i - y_i)^2$$

$$L_p(\vec{x}, \vec{y}) = \sum_{i=1}^n |x_i - y_i|^p$$

- L₁: city-block = Manhattan
- L₂ = Euclidean
- L _{∞}

15-826

(c) C. Faloutsos, 2013

20

 CMU SCS

Observation #1

- Time sequence \rightarrow n-d vector

Day-n

Day-2

...

Day-1

15-826

(c) C. Faloutsos, 2013

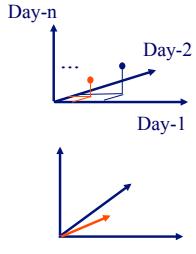
21

CMU SCS

Observation #2

Euclidean distance is closely related to

- cosine similarity
- dot product
- ‘cross-correlation’ function



15-826 (c) C. Faloutsos, 2013 22

CMU SCS

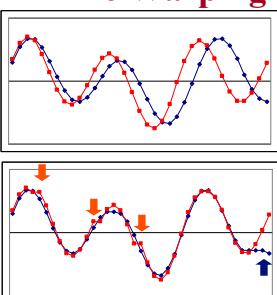
Time Warping

- allow accelerations - decelerations
 - (with or w/o penalty)
- THEN compute the (Euclidean) distance (+ penalty)
- related to the string-editing distance

15-826 (c) C. Faloutsos, 2013 23

CMU SCS

Time Warping



‘stutters’:

15-826 (c) C. Faloutsos, 2013 24

Time warping

Q: how to compute it?

A: dynamic programming

$D(i, j)$ = cost to match

prefix of length i of first sequence x with prefix
of length j of second sequence y

15-826

(c) C. Faloutsos, 2013

25

Time warping

Thus, with no penalty for stutter, for sequences

$$x_1, x_2, \dots, x_{i,:} \quad y_1, y_2, \dots, y_j$$

$$D(i, j) = \|x[i] - y[j]\| + \min \begin{cases} D(i-1, j-1) & \text{no stutter} \\ D(i, j-1) & \text{x-stutter} \\ D(i-1, j) & \text{y-stutter} \end{cases}$$

15-826

(c) C. Faloutsos, 2013

26

Time warping

VERY SIMILAR to the string-editing distance

$$D(i, j) = \|x[i] - y[j]\| + \min \begin{cases} D(i-1, j-1) & \text{no stutter} \\ D(i, j-1) & \text{x-stutter} \\ D(i-1, j) & \text{y-stutter} \end{cases}$$

15-826

(c) C. Faloutsos, 2013

27

Time warping

- Complexity: $O(M^*N)$ - quadratic on the length of the strings
- Many variations (penalty for stutters; limit on the number/percentage of stutters; ...)
- popular in voice processing [Rabiner + Juang]

15-826

(c) C. Faloutsos, 2013

28

Other Distance functions

- piece-wise linear/flat approx.; compare pieces [Keogh+01] [Faloutsos+97]
- ‘cepstrum’ (for voice [Rabiner+Juang])
 - do DFT; take log of amplitude; do DFT again!
- Allow for small gaps [Agrawal+95]

See tutorial by [Gunopulos + Das, SIGMOD01]

15-826

(c) C. Faloutsos, 2013

29

Other Distance functions

- In [Keogh+, KDD'04]: parameter-free, MDL based

15-826

(c) C. Faloutsos, 2013

30

Conclusions

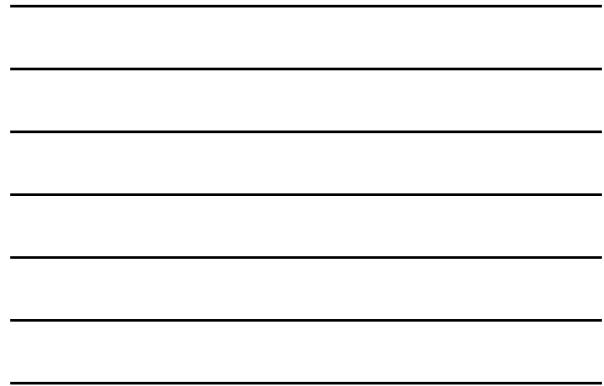
Prevailing distances:

- Euclidean and
- time-warping

15-826

(c) C. Faloutsos, 2013

31



Outline

- Motivation
- Similarity search and distance functions
- Linear Forecasting
- Bursty traffic - fractals and multifractals
- Non-linear forecasting
- Conclusions

15-826

(c) C. Faloutsos, 2013

32

Linear Forecasting

15-826

(c) C. Faloutsos, 2013

33

 CMU SCS

Forecasting

"Prediction is very difficult, especially about the future." - Nils Bohr

[http://www.hfac.uh.edu/MediaFutures/
thoughts.html](http://www.hfac.uh.edu/MediaFutures/thoughts.html)

15-826

(c) C. Faloutsos, 2013

34

 CMU SCS

Outline

- Motivation
- ...
- Linear Forecasting
 - Auto-regression: Least Squares; RLS
 - Co-evolving time sequences
 - Examples
 - Conclusions

 CMU SCS

Reference

[Yi+00] Byoung-Kee Yi et al.: *Online Data Mining for Co-Evolving Time Sequences*, ICDE 2000.
(Describes MUSCLES and Recursive Least Squares)

15-826

(c) C. Faloutsos, 2013

36

CMU SCS

Problem#2: Forecast

- Example: give x_{t-1}, x_{t-2}, \dots , forecast x_t

Number of packets sent

Time Tick

15-826 (c) C. Faloutsos, 2013 37

CMU SCS

Forecasting: Preprocessing

MANUALLY:

remove trends

time

15-826 (c) C. Faloutsos, 2013 38

spot periodicities

time

7 days

CMU SCS

Problem#2: Forecast

- Solution: try to express x_t as a linear function of the past: x_{t-2}, x_{t-3}, \dots (up to a window of w)

Formally:

$$x_t \approx a_1 x_{t-1} + \dots + a_w x_{t-w} + \text{noise}$$

Time Tick

15-826 (c) C. Faloutsos, 2013 39

CMU SCS

(Problem: Back-cast; interpolate)

- Solution - interpolate: try to express x_t as a linear function of the past AND the future: $x_{t+1}, x_{t+2}, \dots, x_{t+w_{future}}, x_{t-1}, \dots, x_{t-w_{past}}$ (up to windows of w_{past}, w_{future})
- EXACTLY the same algo's

15-826 (c) C. Faloutsos, 2013 40

CMU SCS

Linear Regression: idea

patient	weight	height
1	27	43
2	43	54
3	54	72
...	...	
N	25	??

Body height

Body weight

• express what we don't know (= 'dependent variable')
 • as a linear function of what we know (= 'indep. variable(s)')

15-826 (c) C. Faloutsos, 2013 41

CMU SCS

Linear Auto Regression:

Time	Packets Sent(t)
1	43
2	54
3	72
...	...
N	??

15-826 (c) C. Faloutsos, 2013 42

CMU SCS

Linear Auto Regression:

Time	Packets Sent (t-1)	Packets Sent(t)
1	-	43
2	43	54
3	54	72
...
N	25	??

• lag $w=1$
 • Dependent variable = # of packets sent ($S[t]$)
 • Independent variable = # of packets sent ($S[t-1]$)

15-826 (c) C. Faloutsos, 2013 43

CMU SCS

Outline

- Motivation
- ...
- Linear Forecasting
 - Auto-regression: **Least Squares; RLS**
 - Co-evolving time sequences
 - Examples
 - Conclusions

15-826 (c) C. Faloutsos, 2013 44

CMU SCS

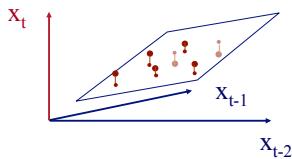
More details:

- Q1: Can it work with window $w>1$?
- A1: YES!

15-826 (c) C. Faloutsos, 2013 45

More details:

- Q1: Can it work with window $w>1$?
- A1: YES! (we'll fit a hyper-plane, then!)



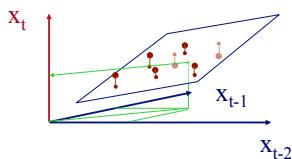
15-826

(c) C. Faloutsos, 2013

46

More details:

- Q1: Can it work with window $w>1$?
- A1: YES! (we'll fit a hyper-plane, then!)



15-826

(c) C. Faloutsos, 2013

47

More details:

- Q1: Can it work with window $w>1$?
- A1: YES! The problem becomes:

$$\mathbf{X}_{[N \times w]} \times \mathbf{a}_{[w \times 1]} = \mathbf{y}_{[N \times 1]}$$

- OVER-CONSTRAINED
 - \mathbf{a} is the vector of the regression coefficients
 - \mathbf{X} has the N values of the w indep. variables
 - \mathbf{y} has the N values of the dependent variable

15-826

(c) C. Faloutsos, 2013

48

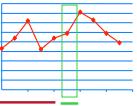
CMU SCS

More details:

- $\mathbf{X}_{[N \times w]} \times \mathbf{a}_{[w \times 1]} = \mathbf{y}_{[N \times 1]}$

Ind-var1 Ind-var-w

time

$$\begin{bmatrix} X_{11}, X_{12}, \dots, X_{1w} \\ X_{21}, X_{22}, \dots, X_{2w} \\ \vdots \\ \vdots \\ X_{N1}, X_{N2}, \dots, X_{Nw} \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_w \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$


15-826 (c) C. Faloutsos, 2013 49

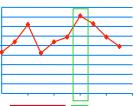
CMU SCS

More details:

- $\mathbf{X}_{[N \times w]} \times \mathbf{a}_{[w \times 1]} = \mathbf{y}_{[N \times 1]}$

Ind-var1 Ind-var-w

time

$$\begin{bmatrix} X_{11}, X_{12}, \dots, X_{1w} \\ X_{21}, X_{22}, \dots, X_{2w} \\ \vdots \\ \vdots \\ X_{N1}, X_{N2}, \dots, X_{Nw} \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_w \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$


15-826 (c) C. Faloutsos, 2013 50

CMU SCS

More details

- Q2: How to estimate $a_1, a_2, \dots, a_w = \mathbf{a}$?
- A2: with Least Squares fit

$$\mathbf{a} = (\mathbf{X}^T \times \mathbf{X})^{-1} \times (\mathbf{X}^T \times \mathbf{y})$$

- (Moore-Penrose pseudo-inverse)
- \mathbf{a} is the vector that minimizes the RMSE from \mathbf{y}
- <identical math with 'query feedbacks'>

15-826 (c) C. Faloutsos, 2013 51

CMU SCS

More details

- Q2: How to estimate $a_1, a_2, \dots, a_w = \mathbf{a}$?
- A2: with Least Squares fit

$$\mathbf{a} = (\mathbf{X}^T \times \mathbf{X})^{-1} \times (\mathbf{X}^T \times \mathbf{y})$$

Identical to earlier formula (proof?)

$$\mathbf{a} = \mathbf{V} \times \mathbf{\Lambda}^{(-1)} \times \mathbf{U}^T \times \mathbf{y}$$

Where

$$\mathbf{X} = \mathbf{U} \times \mathbf{\Lambda} \times \mathbf{V}^T$$

15-826

(c) C. Faloutsos, 2013

52

CMU SCS

More details

- Straightforward solution:

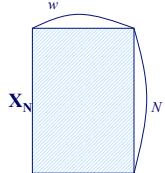
$$\mathbf{a} = (\mathbf{X}^T \times \mathbf{X})^{-1} \times (\mathbf{X}^T \times \mathbf{y})$$

\mathbf{a} : Regression Coeff. Vector
 \mathbf{X} : Sample Matrix

- Observations:
 - Sample matrix \mathbf{X} grows over time
 - needs matrix inversion
 - $\mathbf{O}(N \times w^2)$ computation
 - $\mathbf{O}(N \times w)$ storage

15-826

(c) C. Faloutsos, 2013



53

CMU SCS

Even more details

- Q3: Can we estimate \mathbf{a} incrementally?
- A3: Yes, with the brilliant, classic method of 'Recursive Least Squares' (RLS) (see, e.g., [Yi+00], for details).
- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)

15-826

(c) C. Faloutsos, 2013

54

Even more details

- Q3: Can we estimate \mathbf{a} incrementally?
- A3: Yes, with the brilliant, classic method of ‘Recursive Least Squares’ (RLS) (see, e.g., [Yi+00], for details).
- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)
- A: our matrix has special form: $(\mathbf{X}^T \mathbf{X})$

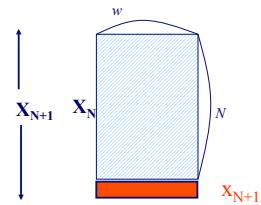
15-826

(c) C. Faloutsos, 2013

55

More details

At the $N+1$ time tick:



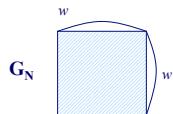
15-826

(c) C. Faloutsos, 2013

56

More details

- Let $\mathbf{G}_N = (\mathbf{X}_N^T \times \mathbf{X}_N)^{-1}$ (‘gain matrix’)
- \mathbf{G}_{N+1} can be computed recursively from \mathbf{G}_N



15-826

(c) C. Faloutsos, 2013

57

EVEN more details:

$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N$$

I x w row vector

$$c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$$

Let's elaborate
(VERY IMPORTANT, VERY VALUABLE!)

15-826

(c) C. Faloutsos, 2013

58

EVEN more details:

$$a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]$$

15-826

(c) C. Faloutsos, 2013

59

EVEN more details:

$$a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]$$

$$[w \times 1] \quad [N+1 \times w] \quad [N+1 \times 1]$$

$$[w \times (N+1)] \quad [w \times (N+1)]$$

15-826

(c) C. Faloutsos, 2013

60

EVEN more details:

$$a = [X_{N+1}^T \times X_{N+1}] \circ [X_{N+1}^T \times y_{N+1}]$$

15-826

(c) C. Faloutsos, 2013

61

EVEN more details:

$$a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]$$

gain matrix, $G_{N+1} \equiv [X_{N+1}^T \times X_{N+1}]^{-1}$ 1 x w row vector

$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N$$

$$c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$$

15-826

(c) C. Faloutsos, 2013

62

EVEN more details:

$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}]^T \times x_{N+1} \times G_N$$

15-826

(c) C. Faloutsos, 2013

63

EVEN more details:

$$\begin{array}{ccccc}
 & 1 \times 1 & & & \\
 & \text{wxw} & \text{wxw} & \text{wxw} & \text{wxw} \\
 & & & \text{wx1} & \\
 & & & & \text{wxw} \\
 G_{N+1} & = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N
 \end{array}$$

SCALAR! $c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$

15-826

(c) C. Faloutsos, 2013

64

Altogether:

$$a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}]$$

$$G_{N+1} \equiv [X_{N+1}^T \times X_{N+1}]^{-1}$$

$$G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N$$

$$c = [1 + x_{N+1} \times G_N \times x_{N+1}^T]$$

15-826

(c) C. Faloutsos, 2013

65

Altogether:

$$G_0 \equiv \delta I \quad \text{IMPORTANT!}$$

where

I : $w \times w$ identity matrix

δ : a large positive number (say, 10^4)

15-826

(c) C. Faloutsos, 2013

66

CMU SCS

Comparison:

- Straightforward Least Squares
 - Needs huge matrix (growing in size) $O(N \times w)$
 - Costly matrix operation $O(N \times w^2)$
- Recursive LS
 - Need much smaller, fixed size matrix $O(w \times w)$
 - Fast, incremental computation $O(1 \times w^2)$
 - **no matrix inversion**

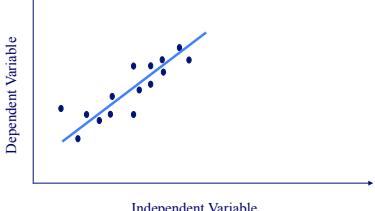
$N = 10^6, w = 1-100$

15-826 (c) C. Faloutsos, 2013 67

CMU SCS

Pictorially:

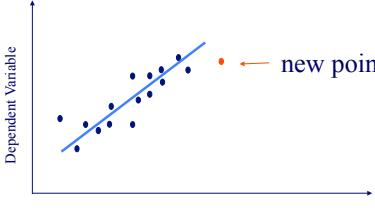
- Given:



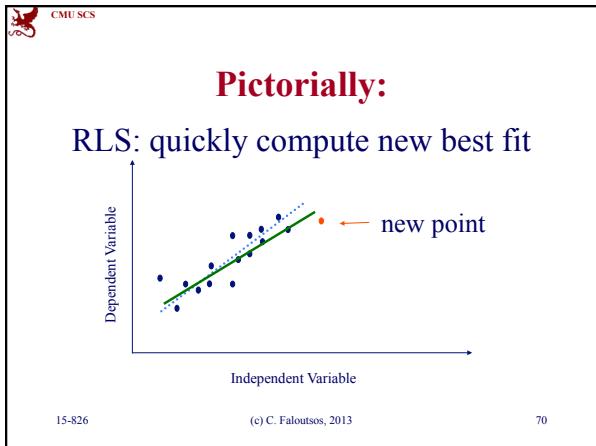
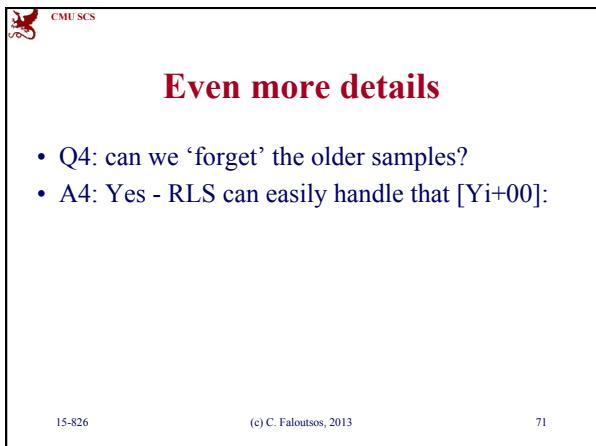
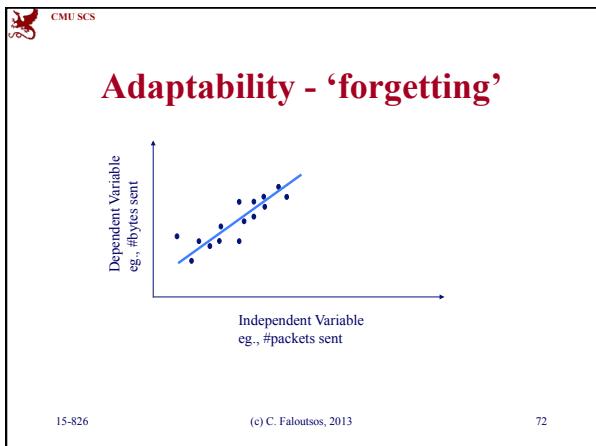
15-826 (c) C. Faloutsos, 2013 68

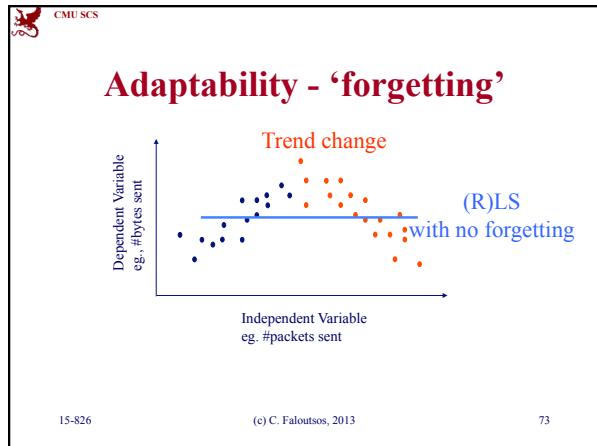
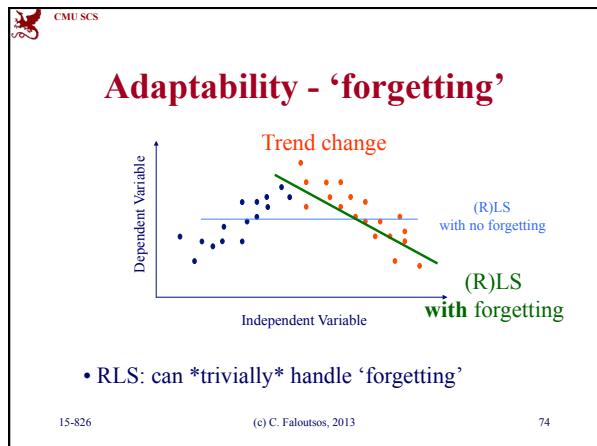
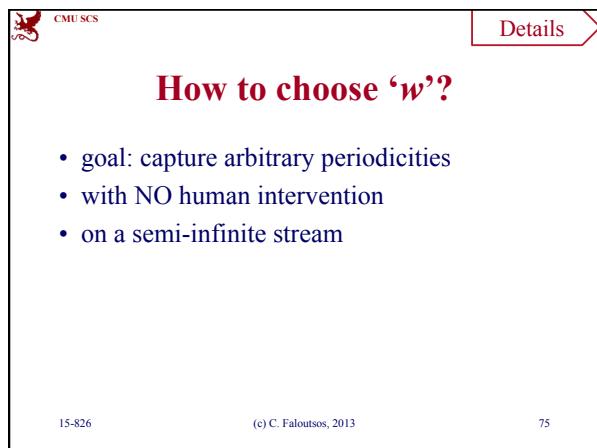
CMU SCS

Pictorially:



15-826 (c) C. Faloutsos, 2013 69





 CMU SCS

Details

Reference

[Papadimitriou+ vldb2003] Spiros
Papadimitriou, Anthony Brockwell and
Christos Faloutsos *Adaptive, Hands-Off
Stream Mining* VLDB 2003, Berlin,
Germany, Sept. 2003

15-826

(c) C. Faloutsos, 2013

76

CMU SCS

Details

Answer:

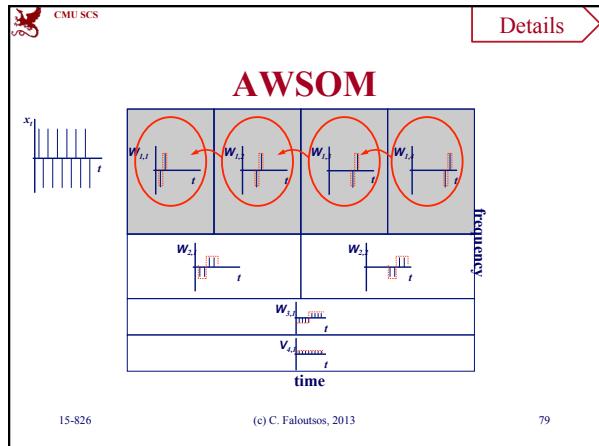
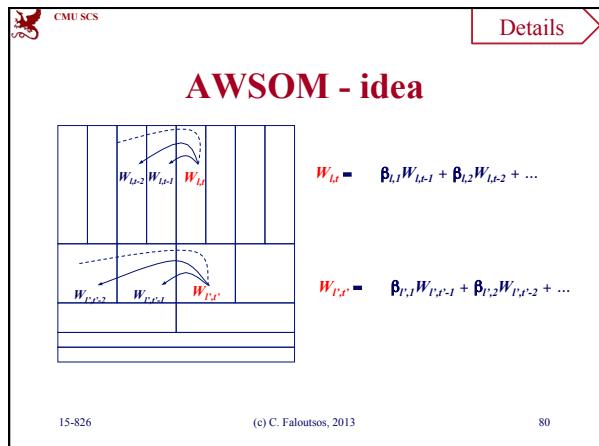
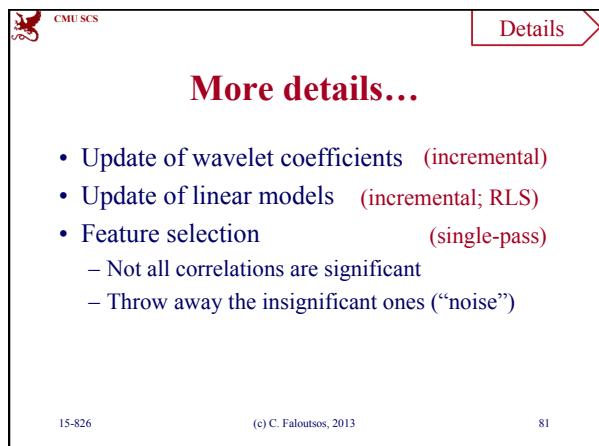
- ‘AWSOM’ (Arbitrary Window Stream fOrecasting Method) [Papadimitriou+, vldb2003]
- idea: do AR on each wavelet level
- in detail:

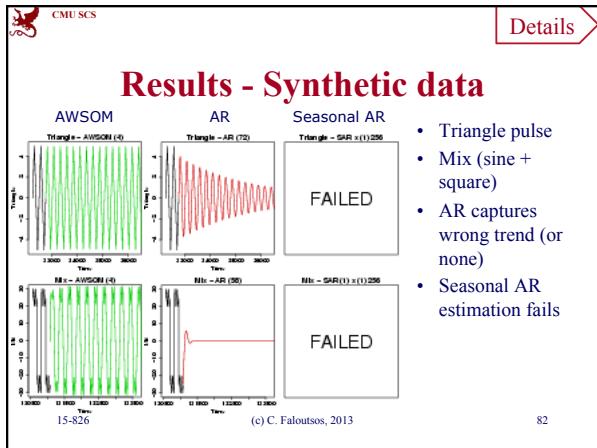
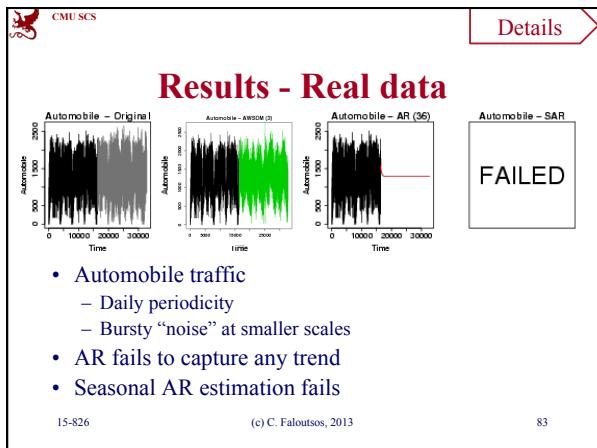
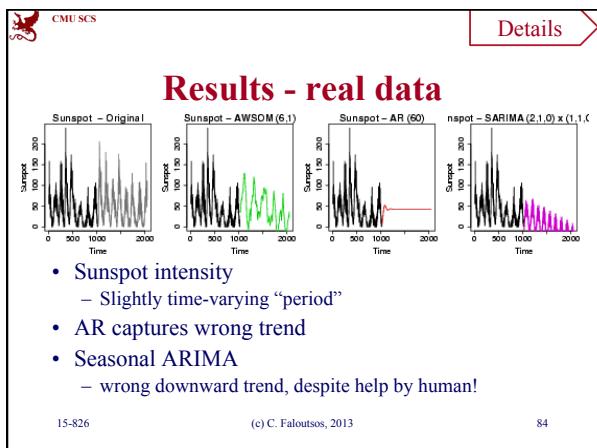
15-826

(c) C. Faloutsos, 2013

77

Diagram illustrating the AWSOM algorithm. The input matrix X_t is shown as a 4x4 grid with red highlights. Four weight vectors $W_{i,t}$ are shown for $i=1, 2, 3, 4$. Below, a 2x2 matrix $W_{2,t}$ is shown as a sum of two vectors, with a red arrow indicating the addition. The resulting vector is then multiplied by a matrix $V_{i,t}$ to produce the output vector $v_{i,t}$.





CMU SCS

Details

Complexity

- Model update

Space: $O(\lg N + mk^2) \approx O(\lg N)$

Time: $O(k^2) \approx O(1)$

- Where

– N : number of points (so far)

– k : number of regression coefficients; fixed

– m : number of linear models; $O(\lg N)$

15-826

(c) C. Faloutsos, 2013

85

 CMU SCS

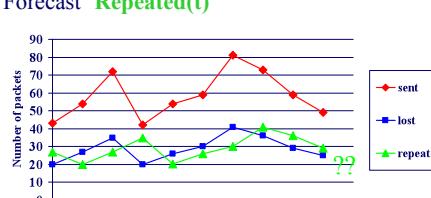
Outline

- Motivation
- ...
- Linear Forecasting
 - Auto-regression: Least Squares; RLS
 - Co-evolving time sequences
 - Examples
 - Conclusions

 CMU SCS

Co-Evolving Time Sequences

- Given: A set of **correlated** time sequences
- Forecast '**Repeated(t)**'



Number of packets

Time Tick

Time Tick	sent	lost	repeated
1	40	25	20
2	55	30	25
3	70	35	30
4	45	25	20
5	55	25	20
6	58	30	25
7	75	45	35
8	68	35	30
9	58	30	25
10	50	25	25
11	45	25	25

Legend:

- sent (Red Diamond)
- lost (Blue Square)
- repeated (Green Triangle)

???

15-826

(c) C. Faloutsos, 2013

87

Solution:

Q: what should we do?

15-826

(c) C. Faloutsos, 2013

88

Solution:

Least Squares, with

- Dep. Variable: Repeated(t)
- Indep. Variables: Sent(t-1) ... Sent(t-w); Lost(t-1) ... Lost(t-w); Repeated(t-1), ...
- (named: ‘MUSCLES’ [Yi+00])

15-826

(c) C. Faloutsos, 2013

89

Forecasting - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
- Conclusions

15-826

(c) C. Faloutsos, 2013

90

CMU SCS

Examples - Experiments

- Datasets
 - Modem pool traffic (14 modems, 1500 time-ticks; #packets per time unit)
 - AT&T WorldNet internet usage (several data streams; 980 time-ticks)
- Measures of success
 - Accuracy : Root Mean Square Error (RMSE)

15-826 (c) C. Faloutsos, 2013 91

CMU SCS

Accuracy - “Modem”

Modem	AR	'yesterday'	MUSCLES
1	1.8	1.5	1.2
2	0.2	0.1	0.1
3	1.5	1.2	1.0
4	2.5	2.2	1.8
5	1.5	1.2	1.0
6	2.5	2.2	1.8
7	3.0	2.8	2.5
8	1.5	1.2	1.0
9	2.0	1.8	1.5
10	1.5	1.2	1.0
11	2.0	1.8	1.5
12	1.5	1.2	1.0
13	1.8	1.5	1.2
14	3.5	3.2	2.8

MUSCLES outperforms AR & “yesterday”

15-826 (c) C. Faloutsos, 2013 92

CMU SCS

Accuracy - “Internet”

Stream	AR	'yesterday'	MUSCLES
1	0.7	0.6	0.5
2	0.8	0.7	0.6
3	0.7	0.6	0.5
4	0.8	0.7	0.6
5	0.7	0.6	0.5
6	0.8	0.7	0.6
7	0.8	0.7	0.6
8	0.7	0.6	0.5
9	0.8	0.7	0.6
10	0.5	0.4	0.3
11	0.4	0.3	0.2
12	0.5	0.4	0.3
13	1.3	1.2	1.0
14	1.3	1.2	1.0
15	1.3	1.2	1.0

MUSCLES consistently outperforms AR & “yesterday”

15-826 (c) C. Faloutsos, 2013 93

CMU SCS

Linear forecasting - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
- Conclusions

15-826 (c) C. Faloutsos, 2013 94

CMU SCS

Conclusions - Practitioner's guide

- AR(IMA) methodology: prevailing method for linear forecasting
- Brilliant method of Recursive Least Squares for fast, incremental estimation.
- See [Box-Jenkins]
- (AWSOM: no human intervention)

15-826 (c) C. Faloutsos, 2013 95

CMU SCS

Resources: software and urls

- free-ware: 'R' for stat. analysis
(clone of Splus)
<http://cran.r-project.org/>
- python script for RLS
<http://www.cs.cmu.edu/~christos/SRC/rls-all.tar>

15-826 (c) C. Faloutsos, 2013 96

Books

- George E.P. Box and Gwilym M. Jenkins and Gregory C. Reinsel, *Time Series Analysis: Forecasting and Control*, Prentice Hall, 1994 (the classic book on ARIMA, 3rd ed.)
- Brockwell, P. J. and R. A. Davis (1987). *Time Series: Theory and Methods*. New York, Springer Verlag.

15-826

(c) C. Faloutsos, 2013

97

Additional Reading

- [Papadimitriou+ vldb2003] Spiros Papadimitriou, Anthony Brockwell and Christos Faloutsos *Adaptive, Hands-Off Stream Mining* VLDB 2003, Berlin, Germany, Sept. 2003
- [Yi+00] Byoung-Kee Yi et al.: *Online Data Mining for Co-Evolving Time Sequences*, ICDE 2000. (Describes MUSCLES and Recursive Least Squares)

15-826

(c) C. Faloutsos, 2013

98

Outline

- Motivation
- Similarity search and distance functions
- Linear Forecasting
- ➡ Bursty traffic - fractals and multifractals
- Non-linear forecasting
- Conclusions

15-826

(c) C. Faloutsos, 2013

99

SKIP, if you have done HW2, Q3:
Foils use D1 ('information fractal dimension'),
While HW2-Q3 uses D2 ('correlation' f.d.)

Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals
 - Problem
 - Main idea (80/20, Hurst exponent)
 - Results

CMU SCS

HW2-Q3

Reference:

[Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai Hang Chang, Spiros Papadimitriou and Christos Faloutsos, *Data Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic*, ICDE 2002, San Jose, CA, 2/26/2002 - 3/1/2002.

Full thesis: CMU-CS-05-185
Performance Modeling of Storage Devices using Machine Learning Mengzhi Wang, Ph.D. Thesis
[Abstract](#), [.ps.gz](#), [.pdf](#)

15-826 (c) C. Faloutsos, 2013 103

CMU SCS

HW2-Q3

Recall: Problem #1:

Goal: given a signal (eg., #bytes over time)
 Find: patterns, periodicities, and/or compress

#bytes

Bytes per 30'
 (packets per day;
 earthquakes per year)

time

15-826 (c) C. Faloutsos, 2013 104

CMU SCS

HW2-Q3

Problem #1

- model bursty traffic
- generate realistic traces
- (Poisson does not work)

bytes

Poisson

time

15-826 (c) C. Faloutsos, 2013 105

CMU SCS

HW2-Q3

Motivation

- predict queue length distributions (e.g., to give probabilistic guarantees)
- “learn” traffic, for buffering, prefetching, ‘active disks’, web servers

15-826 (c) C. Faloutsos, 2013 106

CMU SCS

HW2-Q3

Q: any ‘pattern’?

- Not Poisson
- spike; silence; more spikes; more silence...
- any rules?

bytes

time

number of bytes read

15-826 (c) C. Faloutsos, 2013 107

CMU SCS

HW2-Q3

Solution: self-similarity

bytes

time

time

number of bytes read

15-826 (c) C. Faloutsos, 2013 108

CMU SCS

HW2-Q3

But:

- Q1: How to generate realistic traces;
extrapolate; give guarantees?
- Q2: How to estimate the model parameters?

15-826

(c) C. Faloutsos, 2013

109

CMU SCS

HW2-Q3

Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals
 - Problem
 - Main idea (80/20, Hurst exponent)
 - Results

CMU SCS

HW2-Q3

Approach

- Q1: How to generate a sequence, that is
 - bursty
 - self-similar
 - and has similar queue length distributions

15-826

(c) C. Faloutsos, 2013

111

CMU SCS

HW2-Q3

Approach

- A: ‘binomial multifractal’ [Wang+02]
- $\sim 80-20$ ‘law’:
 - 80% of bytes/queries etc on first half
 - repeat recursively
- b : bias factor (eg., 80%)

15-826 (c) C. Faloutsos, 2013 112

CMU SCS

HW2-Q3

Binary multifractals

20 \triangle 80

15-8 113

CMU SCS

HW2-Q3

Binary multifractals

20 \triangle 80

15-8 114

CMU SCS

HW2-Q3

Parameter estimation

- Q2: How to estimate the bias factor b ?

15-826 (c) C. Faloutsos, 2013 115

CMU SCS

HW2-Q3

Parameter estimation

- Q2: How to estimate the bias factor b ?
- A: MANY ways [Crovella+96]
 - Hurst exponent
 - variance plot
 - even DFT amplitude spectrum! ('periodogram')
 - More robust: 'entropy plot' [Wang+02]

15-826 (c) C. Faloutsos, 2013 116

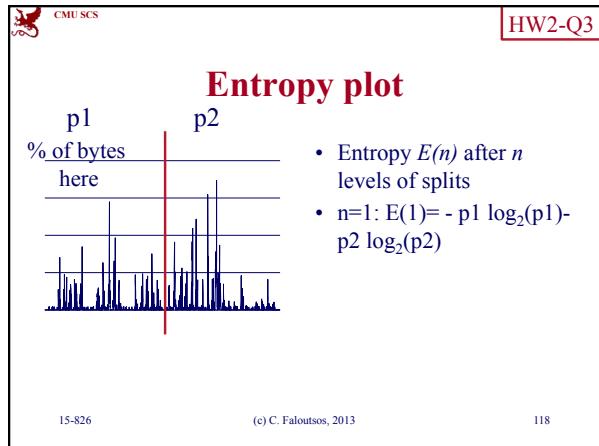
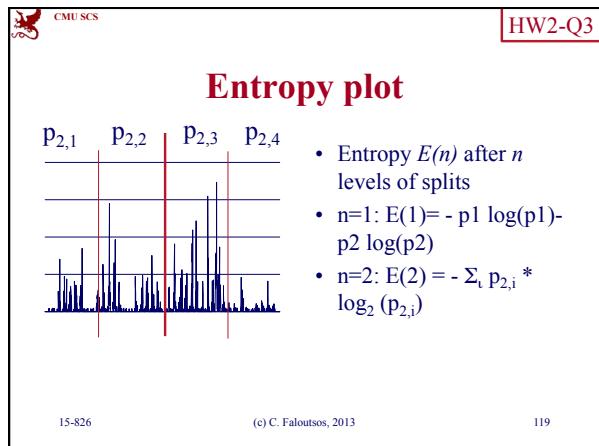
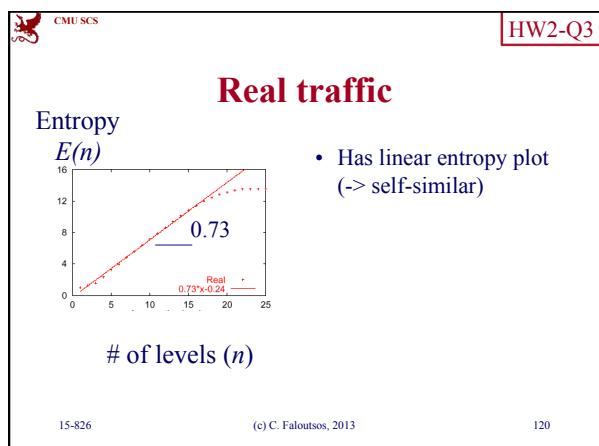
CMU SCS

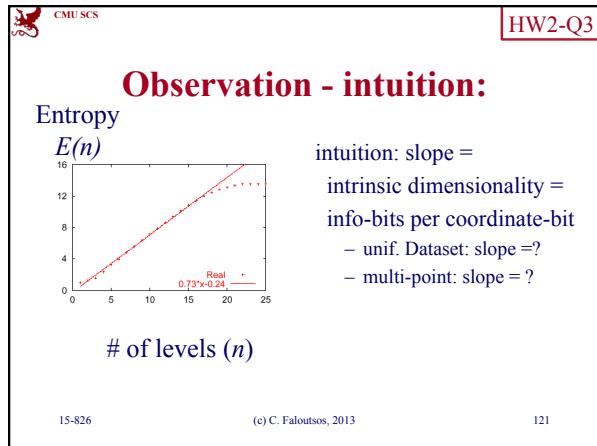
HW2-Q3

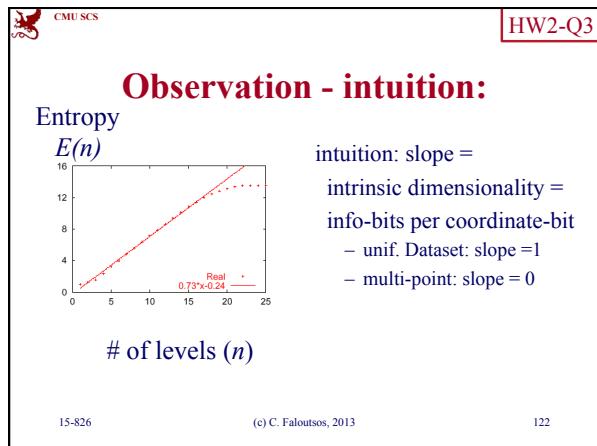
Entropy plot

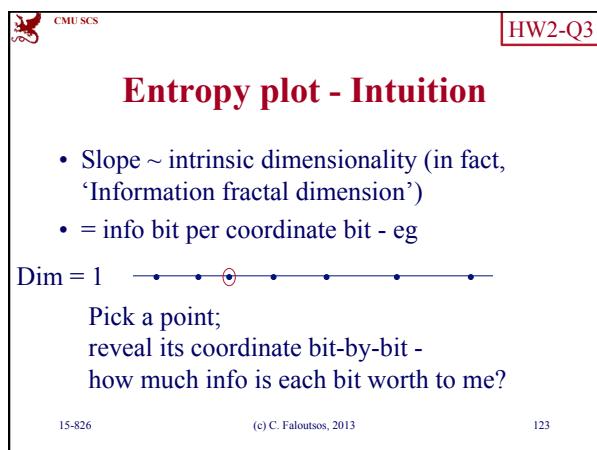
- Rationale:
 - burstiness: inverse of uniformity
 - entropy measures uniformity of a distribution
 - find entropy at several granularities, to see whether/how our distribution is close to uniform.

15-826 (c) C. Faloutsos, 2013 117







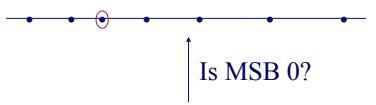


CMU SCS HW2-Q3

Entropy plot

- Slope \sim intrinsic dimensionality (in fact, 'Information fractal dimension')
- = info bit per coordinate bit - eg

Dim = 1



Is MSB 0?
'info' value = $E(1)$: 1 bit

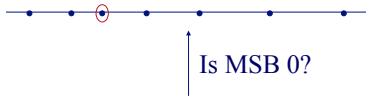
15-826 (c) C. Faloutsos, 2013 124

CMU SCS HW2-Q3

Entropy plot

- Slope \sim intrinsic dimensionality (in fact, 'Information fractal dimension')
- = info bit per coordinate bit - eg

Dim = 1



Is MSB 0?
↑ Is next MSB =0?

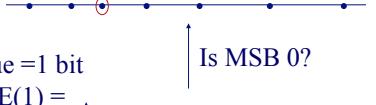
15-826 (c) C. Faloutsos, 2013 125

CMU SCS HW2-Q3

Entropy plot

- Slope \sim intrinsic dimensionality (in fact, 'Information fractal dimension')
- = info bit per coordinate bit - eg

Dim = 1



Info value = 1 bit Is MSB 0?
 $= E(2) - E(1) =$ ↑ Is next MSB =0?
 slope!

15-826 (c) C. Faloutsos, 2013 126

CMU SCS HW2-Q3

Entropy plot

- Repeat, for all points at same position:

Dim=0

15-826 (c) C. Faloutsos, 2013 127

CMU SCS HW2-Q3

Entropy plot

- Repeat, for all points at same position:
- we need 0 bits of info, to determine position
- \rightarrow slope = 0 = intrinsic dimensionality

Dim=0

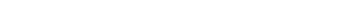
15-826 (c) C. Faloutsos, 2013 128

CMU SCS HW2-Q3

Entropy plot

- Real (and 80-20) datasets can be in-between: bursts, gaps, smaller bursts, smaller gaps, at every scale

Dim = 1



Dim=0

0<Dim<1

15-826 (c) C. Faloutsos, 2013 129

CMU SCS

HW2-Q3

(Fractals, again)

- What set of points could have behavior between point and line?

15-826

(c) C. Faloutsos, 2013

130

CMU SCS

HW2-Q3

Cantor dust

- Eliminate the middle third
- Recursively!

15-826

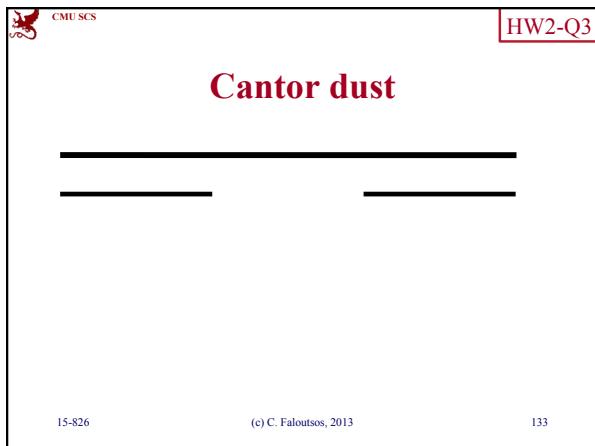
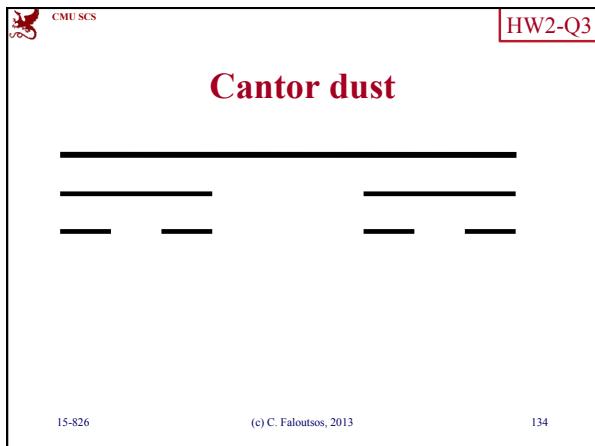
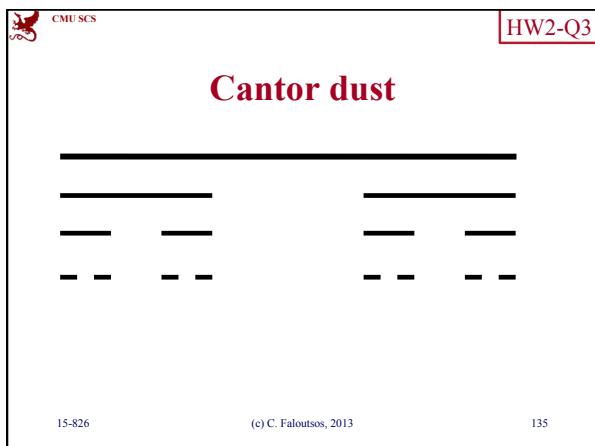
(c) C. Faloutsos, 2013

131

CMU SCS

HW2-Q3

Cantor dust



CMU SCS

HW2-Q3

Cantor dust

Dimensionality?
(no length; infinite # points!)
Answer: $\log_2 / \log_3 = 0.6$

15-826

(c) C. Faloutsos, 2013

136

CMU SCS

HW2-Q3

Some more entropy plots:

- Poisson vs real

The figure consists of two plots. The left plot shows the number of requests (y-axis, 0 to 3000) over time in seconds (x-axis, 0 to 3000). It compares 'real' data (red line) with 'poisson' data (blue line). The 'real' data shows several sharp peaks, notably around 100, 1000, 2000, and 2800 seconds. The right plot shows Entropy value (y-axis, 0 to 20) versus Aggregation level n (x-axis, 0 to 25). It compares three data series: 'Real' (red line), 'Poisson' (blue line), and 'Poisson' with a slope of 0.73 (purple line). The 'Real' line has a steeper slope than the 'Poisson' lines. A legend in the plot area identifies the lines: 'Real', 'Poisson', and '0.73'.

Poisson: slope = ~ 1 \rightarrow uniformly distributed

15-826

(c) C. Faloutsos, 2013

137

CMU SCS

HW2-Q3

b-model

$E(n)$

n	E(n)
0	0
2	1.39
4	2.20
6	2.92
8	3.56
10	4.11

- b-model traffic gives perfectly linear plot
- Lemma: its slope is $slope = -b \log_2 b - (1-b) \log_2 (1-b)$
- Fitting: do entropy plot; get slope; solve for b

15-826

(c) C. Faloutsos, 2013

138

CMU SCS

HW2-Q3

Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals
 - Problem
 - Main idea (80/20, Hurst exponent)
 - Experiments - Results

15-826 (c) C. Faloutsos, 2013 139

CMU SCS

HW2-Q3

Experimental setup

- Disk traces (from HP [Wilkes 93])
- web traces from LBL
[http://repository.cs.vt.edu/
lbl-conn-7.tar.Z](http://repository.cs.vt.edu/lbl-conn-7.tar.Z)

15-826 (c) C. Faloutsos, 2013 140

CMU SCS

HW2-Q3

Model validation

- Linear entropy plots

(a) Disk Traces (b) Web Traces

Bias factors b : 0.6-0.8
smallest b / smoothest: nntp traffic

15-826 (c) C. Faloutsos, 2013 141

CMU SCS

HW2-Q3

Web traffic - results

- LBL, NCDF of queue lengths (log-log scales)

Prob($>l$)

(a) lbl-all (b) lbl-nntp (c) lbl-smtp (d) lbl-ftp

How to give guarantees? (queue length l)

15-826 (c) C. Faloutsos, 2013 142

CMU SCS

HW2-Q3

Web traffic - results

- LBL, NCDF of queue lengths (log-log scales)

Prob($>l$)

20% of the requests will see queue lengths < 100

(queue length l)

15-826 (c) C. Faloutsos, 2013 143

CMU SCS

Conclusions

- Multifractals (80/20, 'b-model', Multiplicative Wavelet Model (MWM) for analysis and synthesis of bursty traffic

15-826 (c) C. Faloutsos, 2013 144

 CMU SCS

Books

- Fractals: Manfred Schroeder: *Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise* W.H. Freeman and Company, 1991 (Probably the BEST book on fractals!)

15-826

(c) C. Faloutsos, 2013

145

 CMU SCS

Further reading:

- Crovella, M. and A. Bestavros (1996). Self-Similarity in World Wide Web Traffic, Evidence and Possible Causes. *Sigmetrics*.
- [ieeeTN94] W. E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, *On the Self-Similar Nature of Ethernet Traffic*, IEEE Transactions on Networking, 2, 1, pp 1-15, Feb. 1994.

15-826

(c) C. Faloutsos, 2013

146

 CMU SCS

Further reading

- [Riedi+99] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, *A Multifractal Wavelet Model with Application to Network Traffic*, IEEE Special Issue on Information Theory, 45. (April 1999), 992-1018.
- [Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai Hang Chang, Spiros Papadimitriou and Christos Faloutsos, *Data Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic*, ICDE 2002, San Jose, CA, 2/26/2002 - 3/1/2002.

Entropy plots

15-826

(c) C. Faloutsos, 2013

147

Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals
- Non-linear forecasting
- Conclusions

15-826

(c) C. Faloutsos, 2013

148

Chaos and non-linear forecasting

15-826

(c) C. Faloutsos, 2013

149

Reference:

[Deepay Chakrabarti and Christos Faloutsos
*F4: Large-Scale Automated Forecasting
using Fractals* CIKM 2002, Washington
DC, Nov. 2002.]

15-826

(c) C. Faloutsos, 2013

150

CMU SCS

Detailed Outline

- Non-linear forecasting
 - Problem
 - Idea
 - How-to
 - Experiments
 - Conclusions

15-826 (c) C. Faloutsos, 2013 151

CMU SCS

Recall: Problem #1

Given a time series $\{x_t\}$, predict its future course, that is, x_{t+1}, x_{t+2}, \dots

15-826 (c) C. Faloutsos, 2013 152

CMU SCS

Datasets

Logistic Parabola:
 $x_t = ax_{t-1}(1-x_{t-1}) + \text{noise}$
 Models population of flies [R. May/1976]

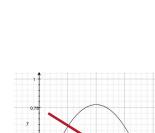
Lag-plot
 ARIMA: fails

15-826 (c) C. Faloutsos, 2013 153

 CMU SCS

How to forecast?

- ARIMA - but: linearity assumption


 A scatter plot on a grid showing the relationship between consecutive data points. The x-axis is labeled 't' and the y-axis is labeled 't-1'. The data points form a parabolic shape, starting at approximately (0, 0.7), peaking at (1, 0.9), and ending at (2, 0.5). A straight red line is drawn through the points (0, 0.7), (1, 0.9), and (2, 0.5), representing a linear fit to the data. The plot area is bounded by a grid with major lines at 0.1 intervals on both axes.

Lag-plot
ARIMA: fails

15-826

(c) C. Faloutsos, 2013

154

 CMU SCS

How to forecast?

- ARIMA - but: linearity assumption
- ANSWER: ‘Delayed Coordinate Embedding’ = Lag Plots [Sauer92]
~ nearest-neighbor search, for past incidents

15-826

(c) C. Faloutsos, 2013

155

CMU SCS

General Intuition (Lag Plot)

**Lag = 1,
k = 4 NN**

Interpolate these...

To get the final prediction

4-NN

New Point

Questions:

- Q1: How to choose lag L ?
- Q2: How to choose k (the # of NN)?
- Q3: How to interpolate?
- Q4: why should this work at all?

15-826

(c) C. Faloutsos, 2013

157

Q1: Choosing lag L

- Manually (16, in award winning system by [Sauer94])

15-826

(c) C. Faloutsos 2013

158

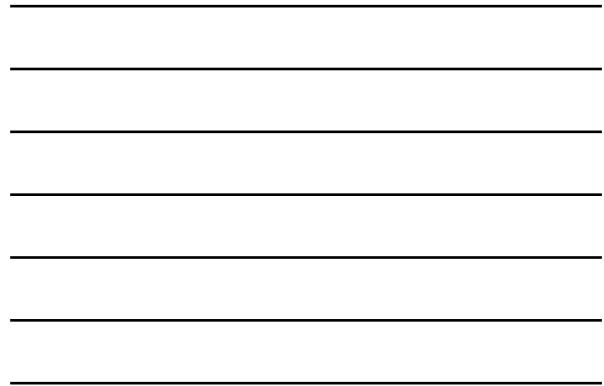
Q2: Choosing number of neighbors k

- Manually (typically $\sim 1\text{-}10$)

15.926

© S. E. L. 2012

150



Q3: How to interpolate?

How do we interpolate between the k nearest neighbors?

A3.1: Average

A3.2: Weighted average (weights drop with distance - how?)

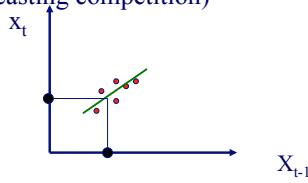
15-826

(c) C. Faloutsos, 2013

160

Q3: How to interpolate?

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)



15-826

(c) C. Faloutsos, 2013

161

Q4: Any theory behind it?

A4: YES!

15-826

(c) C. Faloutsos, 2013

162

 CMU SCS

Theoretical foundation

- Based on the ‘Takens theorem’ [Takens81]
- which says that long enough delay vectors **can do prediction**, even if there are unobserved variables in the dynamical system (= diff. equations)

CMU SCS

Skip

Theoretical foundation

Example: Lotka-Volterra equations

$$dH/dt = r H - a H \cdot P$$

$$dP/dt = b H \cdot P - m P$$

P

H is count of prey (e.g., hare)

P is count of predators (e.g., lynx)

Suppose only $P(t)$ is observed ($t=1, 2, \dots$).

15-826

(c) C. Faloutsos, 2013

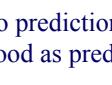
164

CMU SCS

Skip

Theoretical foundation

- But the delay vector space is a faithful reconstruction of the internal system state
- So prediction in **delay vector space** is as good as prediction in **state space**

P  H

P(t) P(t-1)

(c) C. Faloutsos, 2013

165

 CMU SCS

Detailed Outline

- Non-linear forecasting
 - Problem
 - Idea
 - How-to
 - Experiments
 - Conclusions

15-826

(c) C. Faloutsos, 2013

166

 CMU SCS

Datasets

time

Logistic Parabola:

$$x_t = ax_{t-1}(1-x_{t-1}) + \text{noise}$$

Models population of flies [R. May/1976]

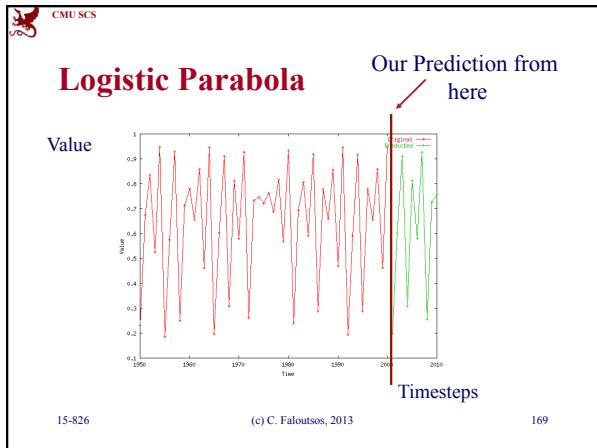
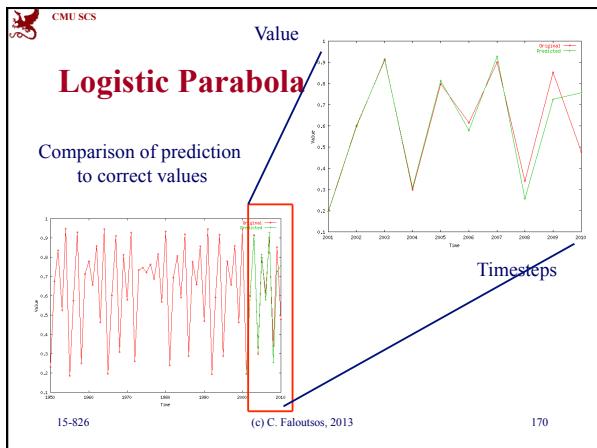
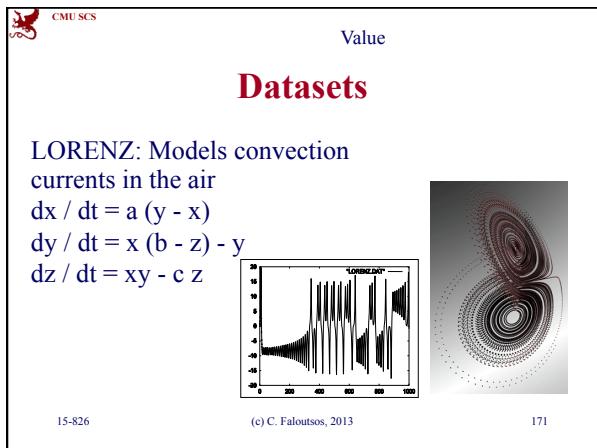
Lag-plot

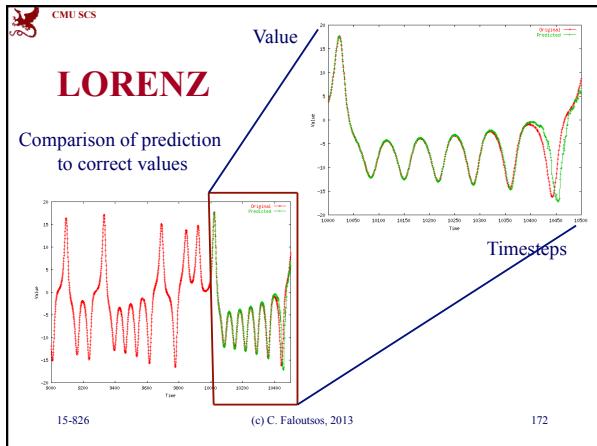
15-826

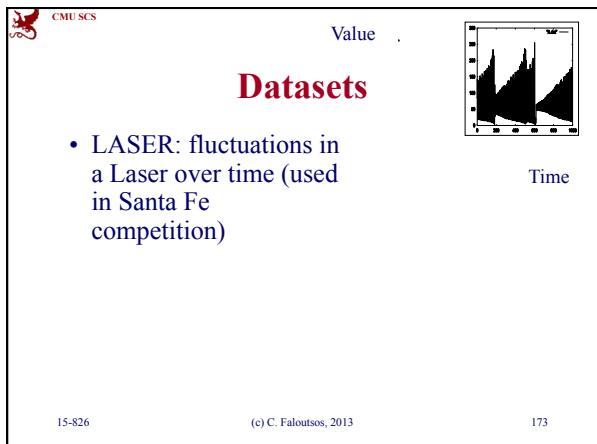
(c) C. Faloutsos, 2013

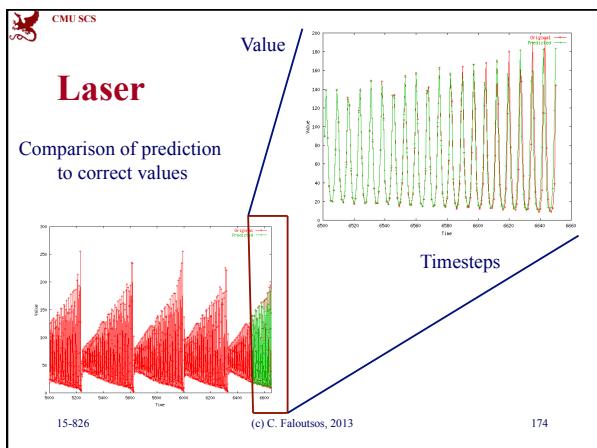
167

 CMU SCS









Conclusions

- Lag plots for non-linear forecasting (Takens' theorem)
- suitable for 'chaotic' signals

15-826

(c) C. Faloutsos, 2013

175

References

- Deepay Chakrabarti and Christos Faloutsos *F4: Large-Scale Automated Forecasting using Fractals* CIKM 2002, Washington DC, Nov. 2002.
- Sauer, T. (1994). *Time series prediction using delay coordinate embedding.* (in book by Weigend and Gershenfeld, below) Addison-Wesley.
- Takens, F. (1981). *Detecting strange attractors in fluid turbulence.* Dynamical Systems and Turbulence. Berlin: Springer-Verlag.

15-826

(c) C. Faloutsos, 2013

176

References

- Weigend, A. S. and N. A. Gerschenfeld (1994). *Time Series Prediction: Forecasting the Future and Understanding the Past*, Addison Wesley. (Excellent collection of papers on chaotic/non-linear forecasting, describing the algorithms behind the winners of the Santa Fe competition.)

15-826

(c) C. Faloutsos, 2013

177

Overall conclusions

- Similarity search: **Euclidean/time-warping; feature extraction and SAMs**

15-826

(c) C. Faloutsos, 2013

178

Overall conclusions

- Similarity search: **Euclidean**/time-warping; **feature extraction** and **SAMs**
- Signal processing: **DWT** is a powerful tool

15-826

(c) C. Faloutsos, 2013

179

Overall conclusions

- Similarity search: **Euclidean**/time-warping; **feature extraction** and **SAMs**
- Signal processing: **DWT** is a powerful tool
- Linear Forecasting: **AR** (Box-Jenkins) methodology; **AWSOM**

15-826

(c) C. Faloutsos, 2013

180

Overall conclusions

- Similarity search: **Euclidean**/time-warping; **feature extraction** and **SAMs**
- Signal processing: **DWT** is a powerful tool
- Linear Forecasting: **AR** (Box-Jenkins) methodology; **AWSOM**
- Bursty traffic: **multifractals** (80-20 ‘law’)

15-826

(c) C. Faloutsos, 2013

181

Overall conclusions

- Similarity search: **Euclidean**/time-warping; **feature extraction** and **SAMs**
- Signal processing: **DWT** is a powerful tool
- Linear Forecasting: **AR** (Box-Jenkins) methodology; **AWSOM**
- Bursty traffic: **multifractals** (80-20 ‘law’)
- Non-linear forecasting: **lag-plots** (Takens)

15-826

(c) C. Faloutsos, 2013

182