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Must-Read Material 
•  Byong-Kee Yi, Nikolaos D. Sidiropoulos, 

Theodore Johnson, H.V. Jagadish, Christos 
Faloutsos and Alex Biliris, Online Data Mining 
for Co-Evolving Time Sequences, ICDE, Feb 
2000.  

•  Chungmin Melvin Chen and Nick 
Roussopoulos,  Adaptive Selectivity Estimation 
Using Query Feedbacks,  SIGMOD 1994 
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Outline 

•  Motivation 
•  Similarity search – distance functions 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 
•  Non-linear forecasting 
•  Conclusions 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 5 

Problem definition 

•  Given: one or more sequences  
x1 ,  x2 ,  … ,  xt ,  … 
(y1, y2, … , yt, … 
… ) 

•  Find  
–  similar sequences; forecasts 
–  patterns; clusters; outliers 
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Motivation - Applications 
•   Financial, sales, economic series 

•   Medical 
– ECGs +; blood pressure etc monitoring 

– reactions to new drugs 

– elderly care 
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Motivation - Applications 
(cont’d) 

•  ‘Smart house’ 
– sensors monitor temperature, humidity, 

air quality 

•  video surveillance 
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Motivation - Applications 
(cont’d) 

•  civil/automobile infrastructure 
– bridge vibrations [Oppenheim+02] 

–  road conditions / traffic monitoring 
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Motivation - Applications 
(cont’d) 

•  Weather, environment/anti-pollution 
– volcano monitoring 

– air/water pollutant monitoring 
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Motivation - Applications 
(cont’d) 

•   Computer systems 
– ‘Active Disks’ (buffering, prefetching) 

– web servers (ditto) 

– network traffic monitoring 

– ... 
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Stream Data: Disk accesses 

time 

#bytes 
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Problem #1: 

Goal: given a signal (e.g.., #packets over 
time) 

Find: patterns, periodicities, and/or compress 

year 

count lynx caught per year 
(packets per day; 
temperature per day) 
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Problem#2: Forecast 
Given xt, xt-1, …, forecast xt+1 
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Problem#2’: Similarity search 
E.g.., Find a 3-tick pattern, similar to the last one 
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Problem #3: 
•  Given: A set of correlated time sequences 
•  Forecast ‘Sent(t)’ 
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Important observations 

Patterns, rules, forecasting and similarity 
indexing are closely related: 

•  To do forecasting, we need 
–  to find patterns/rules 
–  to find similar settings in the past 

•  to find outliers, we need to have forecasts 
–  (outlier = too far away from our forecast) 
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Outline 

•  Motivation 
•  Similarity Search and Indexing 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 
•  Non-linear forecasting 
•  Conclusions 
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Outline 

•  Motivation 
•  Similarity search and distance functions 

– Euclidean 
– Time-warping 

•  ... 
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Importance of distance 
functions 

Subtle, but absolutely necessary: 
•  A ‘must’ for similarity indexing (-> 

forecasting) 
•  A ‘must’ for clustering 
Two major families 

– Euclidean and Lp norms 
– Time warping and variations 
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Euclidean and Lp 

... 

• L1: city-block = Manhattan 
• L2 = Euclidean 
• L∞  
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Observation #1 

•  Time sequence -> n-d 
vector 

... 

Day-1 

Day-2 

Day-n 
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Observation #2 

Euclidean distance is 
closely related to  
–  cosine similarity 
–  dot product 
–  ‘cross-correlation’ 

function 

... 

Day-1 

Day-2 

Day-n 
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Time Warping 

•  allow accelerations - decelerations 
–  (with or w/o penalty) 

•  THEN compute the (Euclidean) distance (+ 
penalty) 

•  related to the string-editing distance 
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Time Warping 

‘stutters’: 
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Time warping 
Q: how to compute it? 
A: dynamic programming 
      D( i, j ) = cost to match  
prefix of length i of first sequence  x with prefix 

of length j of second sequence y 
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Thus, with no penalty for stutter, for sequences 
 x1, x2, …, xi,;        y1, y2, …, yj 

x-stutter 

y-stutter 

no stutter 

Time warping 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 27 

VERY SIMILAR to the string-editing distance 

x-stutter 

y-stutter 

no stutter 

Time warping 
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Time warping 
•  Complexity: O(M*N) - quadratic on the 

length of the strings 
•  Many variations (penalty for stutters; limit 

on the number/percentage of stutters; …) 
•  popular in voice processing [Rabiner + 

Juang] 
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Other Distance functions 

•  piece-wise linear/flat approx.; compare 
pieces [Keogh+01] [Faloutsos+97] 

•  ‘cepstrum’ (for voice [Rabiner+Juang]) 
–  do DFT; take log of amplitude; do DFT again! 

•  Allow for small gaps [Agrawal+95] 
See tutorial by [Gunopulos + Das, 

SIGMOD01] 
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Other Distance functions 

•  In [Keogh+, KDD’04]: parameter-free, 
MDL based 
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Conclusions 

Prevailing distances:  
– Euclidean and  
–  time-warping 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 32 

Outline 

•  Motivation 
•  Similarity search and distance functions 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 
•  Non-linear forecasting 
•  Conclusions 
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Linear  
Forecasting 
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Forecasting 

"Prediction is very difficult, especially about the 
future." - Nils Bohr 

http://www.hfac.uh.edu/MediaFutures/
thoughts.html 
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Outline 

•  Motivation 
•  ... 
•  Linear Forecasting 

– Auto-regression: Least Squares; RLS 
– Co-evolving time sequences 
– Examples 
– Conclusions 
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Reference 

[Yi+00] Byoung-Kee Yi et al.: Online Data Mining 
for Co-Evolving Time Sequences, ICDE 2000. 
(Describes MUSCLES and Recursive Least 
Squares) 
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Problem#2: Forecast 
•  Example: give xt-1, xt-2, …, forecast xt 
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Forecasting: Preprocessing 
MANUALLY:  
remove trends                    spot periodicities 

time time 

7 days 
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Problem#2: Forecast 
•  Solution: try to express  

xt 
as a linear function of the past: xt-2, xt-2, …,  
(up to a window of w) 

Formally: 

0 10 20 30 40 50 60 70 80 90 

1 3 5 7 9 11 
Time Tick 

?? 
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(Problem: Back-cast; interpolate) 
•  Solution - interpolate: try to express  

xt 
as a linear function of the past AND the future: 

 xt+1, xt+2, … xt+wfuture; xt-1, … xt-wpast 
(up to windows of wpast , wfuture) 

•  EXACTLY the same algo’s 
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Linear Regression: idea 
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Body weight 

•  express what we don’t know (= ‘dependent variable’) 
•  as a linear function of what we know (= ‘indep. variable(s)’) 

Body height 
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Linear Auto Regression: 
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Linear Auto Regression: 
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•  lag w=1 
•  Dependent variable = # of packets sent (S [t]) 
•  Independent variable = # of packets sent (S[t-1]) 

‘lag-plot’ 
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Outline 

•  Motivation 
•  ... 
•  Linear Forecasting 

– Auto-regression: Least Squares; RLS 
– Co-evolving time sequences 
– Examples 
– Conclusions 
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More details: 

•  Q1: Can it work with window w>1? 
•  A1: YES!  

xt-2 

xt 

xt-1 
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More details: 

•  Q1: Can it work with window w>1? 
•  A1: YES! (we’ll fit a hyper-plane, then!) 

xt-2 

xt 

xt-1 
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More details: 

•  Q1: Can it work with window w>1? 
•  A1: YES! (we’ll fit a hyper-plane, then!) 

xt-2 

xt-1 

xt 
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More details: 

•  Q1: Can it work with window w>1? 
•  A1: YES! The problem becomes: 

X[N ×w] × a[w ×1] = y[N ×1] 

•  OVER-CONSTRAINED 
–  a is the vector of the regression coefficients 

–  X has the N values of the w indep. variables 
–  y has the N values of the dependent variable 
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More details: 
• X[N ×w] × a[w ×1] = y[N ×1] 

Ind-var1 Ind-var-w 

time 
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More details: 
• X[N ×w] × a[w ×1] = y[N ×1] 

Ind-var1 Ind-var-w 

time 
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More details 

•  Q2: How to estimate a1, a2, … aw  = a? 
•  A2: with Least Squares fit 

•  (Moore-Penrose pseudo-inverse) 
•  a is the vector that minimizes the RMSE 

from y 
•  <identical math with ‘query feedbacks’> 

 a = ( XT × X )-1 × (XT × y) 
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More details 

•  Q2: How to estimate a1, a2, … aw  = a? 
•  A2: with Least Squares fit 

Identical to earlier formula (proof?) 

Where  

 a = ( XT × X )-1 × (XT × y) 

 a = V x Λ(-1) x UT × y 

 X = U x Λ x VT 
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More details 
•  Straightforward solution: 

•  Observations: 
–  Sample matrix X grows over time  
–  needs matrix inversion 
–  O(N×w2) computation 
–  O(N×w) storage 

 a = ( XT × X )-1 × (XT × y) 

a  :  Regression Coeff. Vector 
X :  Sample Matrix XN: 

w  

N 
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Even more details 

•  Q3: Can we estimate a incrementally? 
•  A3: Yes, with the brilliant, classic method 

of ‘Recursive Least Squares’ (RLS) (see, 
e.g., [Yi+00], for details). 

•  We can do the matrix inversion, WITHOUT 
inversion! (How is that possible?!) 
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Even more details 

•  Q3: Can we estimate a incrementally? 
•  A3: Yes, with the brilliant, classic method 

of ‘Recursive Least Squares’ (RLS) (see, 
e.g., [Yi+00], for details). 

•  We can do the matrix inversion, WITHOUT 
inversion! (How is that possible?!) 

•  A: our matrix has special form: (XT X) 
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More details 

XN: 

w  

N XN+1 

At the N+1 time tick: 

xN+1 
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More details 

•  Let GN = ( XN
T × XN )-1       (``gain matrix’’) 

•  GN+1 can be computed recursively from GN 

GN 

w  

w 
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EVEN more details: 

1 x w row vector 

Let’s elaborate  
(VERY IMPORTANT, VERY VALUABLE!) 
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EVEN more details: 
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EVEN more details: 

[w x 1] 

[w x (N+1)] 

[(N+1) x w] 

[w x (N+1)] 

[(N+1) x 1] 
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EVEN more details: 

[w x (N+1)] 

[(N+1) x w] 
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EVEN more details: 

1 x w row vector ‘gain 
matrix’ 
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EVEN more details: 
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EVEN more details: 

wxw wxw wxw wx1 
1xw 

wxw 

1x1 

SCALAR! 
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Altogether: 
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Altogether: 

where  
I: w x w identity matrix 
δ: a large positive number (say, 104) 

IMPORTANT! 
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Comparison: 

•  Straightforward Least 
Squares 
–  Needs huge matrix 

(growing in size)      O
(N×w) 

–  Costly matrix 
operation           O
(N×w2) 

•  Recursive LS 
–  Need much smaller, 

fixed size matrix           
O(w×w) 

–  Fast, incremental 
computation          O
(1×w2) 

–  no matrix inversion 

N = 106,     w = 1-100 
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Pictorially: 

•  Given: 

Independent Variable 
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Pictorially: 

Independent Variable 
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new point 
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Pictorially: 

Independent Variable 

D
ep

en
de

nt
 V

ar
ia

bl
e 

RLS: quickly compute new best fit 

new point 
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Even more details 

•  Q4: can we ‘forget’ the older samples? 
•  A4: Yes - RLS can easily handle that [Yi+00]: 
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Adaptability - ‘forgetting’ 

Independent Variable 
eg., #packets sent 
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Adaptability - ‘forgetting’ 

Independent Variable 
eg. #packets sent 
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Trend change 

(R)LS 
with no forgetting 
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Adaptability - ‘forgetting’ 

Independent Variable 

D
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e Trend change 

(R)LS 
with no forgetting 

(R)LS 
with forgetting 

•  RLS: can *trivially* handle ‘forgetting’ 
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How to choose ‘w’? 

•  goal: capture arbitrary periodicities 
•  with NO human intervention 
•  on a semi-infinite stream 

Details 
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Reference 

[Papadimitriou+ vldb2003] Spiros 
Papadimitriou, Anthony Brockwell and 
Christos Faloutsos Adaptive, Hands-Off 
Stream Mining VLDB 2003, Berlin, 
Germany, Sept. 2003 

Details 
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Answer: 

•  ‘AWSOM’ (Arbitrary Window Stream 
fOrecasting Method) [Papadimitriou+, 
vldb2003] 

•  idea: do AR on each wavelet level 
•  in detail: 

Details 
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AWSOM 
xt 

t 
t 

W1,1 

t 

W1,2 
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W1,3 
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W1,4 

t 

W2,1 
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W2,2 
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W3,1 
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V4,1 

time 

frequency = 

Details 



C. Faloutsos 15-826 

CMU 27 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 79 

AWSOM 
xt 

t 
t 

W1,1 

t 

W1,2 

t 

W1,3 

t 

W1,4 

t 

W2,1 

t 

W2,2 

t 
W3,1 

t 
V4,1 

time 

frequency 

Details 
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AWSOM - idea 

Wl,t Wl,t-1 Wl,t-2 
Wl,t =       βl,1Wl,t-1 + βl,2Wl,t-2 + …  

Wl’,t’-1 Wl’,t’-2 
Wl’,t’ 

Wl’,t’ =       βl’,1Wl’,t’-1 + βl’,2Wl’,t’-2 + …  

Details 
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More details… 

•  Update of wavelet coefficients 
•  Update of linear models 
•  Feature selection 

– Not all correlations are significant 
– Throw away the insignificant ones (“noise”) 

(incremental) 

(incremental; RLS) 

(single-pass) 

Details 
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Results - Synthetic data 
•  Triangle pulse 
•  Mix (sine + 

square) 
•  AR captures 

wrong trend (or 
none) 

•  Seasonal AR 
estimation fails 

AWSOM AR Seasonal AR 

Details 
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Results - Real data 

•  Automobile traffic 
–  Daily periodicity 
–  Bursty “noise” at smaller scales 

•  AR fails to capture any trend 
•  Seasonal AR estimation fails 

Details 
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Results - real data 

•  Sunspot intensity 
–  Slightly time-varying “period” 

•  AR captures wrong trend 
•  Seasonal ARIMA 

–  wrong downward trend, despite help by human! 

Details 
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Complexity 

•  Model update 
 Space:  O(lgN + mk2) ≈ O(lgN) 
 Time:   O(k2) ≈ O(1)    

•  Where 
– N: number of points (so far) 
–  k: number of regression coefficients; fixed 
– m: number of linear models; O(lgN) 

Details 
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Outline 

•  Motivation 
•  ... 
•  Linear Forecasting 

– Auto-regression: Least Squares; RLS 
– Co-evolving time sequences 
– Examples 
– Conclusions 
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Co-Evolving Time Sequences 
•  Given: A set of correlated time sequences 
•  Forecast ‘Repeated(t)’ 

?? 
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Solution: 

Q: what should we do?  
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Solution: 

Least Squares, with 
•  Dep. Variable: Repeated(t)  
•  Indep. Variables: Sent(t-1) … Sent(t-w); 

Lost(t-1) …Lost(t-w); Repeated(t-1), ... 
•  (named: ‘MUSCLES’ [Yi+00]) 
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Forecasting  - Outline 

•  Auto-regression 
•  Least Squares; recursive least squares 
•  Co-evolving time sequences 
•  Examples 
•  Conclusions 
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Examples - Experiments 
•  Datasets 

– Modem pool traffic (14 modems, 1500 time-
ticks; #packets per time unit) 

– AT&T WorldNet internet usage (several data 
streams; 980 time-ticks) 

•  Measures of success 
– Accuracy : Root Mean Square Error (RMSE) 
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Accuracy - “Modem” 

MUSCLES outperforms AR & “yesterday” 
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Accuracy - “Internet” 

MUSCLES consistently outperforms AR & “yesterday” 
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Linear forecasting - Outline 

•  Auto-regression 
•  Least Squares; recursive least squares 
•  Co-evolving time sequences 
•  Examples 
•  Conclusions 
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Conclusions - Practitioner’s 
guide 

•  AR(IMA) methodology: prevailing method 
for linear forecasting 

•  Brilliant method of Recursive Least Squares 
for fast, incremental estimation. 

•  See [Box-Jenkins] 
•  (AWSOM: no human intervention) 
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Resources: software and urls 

•  free-ware: ‘R’ for stat. analysis  
(clone of Splus) 
 http://cran.r-project.org/ 

•  python script for RLS 
http://www.cs.cmu.edu/~christos/SRC/rls-all.tar 
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Books 

•  George E.P. Box and Gwilym M. Jenkins and 
Gregory C. Reinsel, Time Series Analysis: 
Forecasting and Control, Prentice Hall, 1994 (the 
classic book on ARIMA, 3rd ed.) 

•  Brockwell, P. J. and R. A. Davis (1987). Time 
Series: Theory and Methods. New York, Springer 
Verlag. 
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Additional Reading 

•  [Papadimitriou+ vldb2003] Spiros Papadimitriou, 
Anthony Brockwell and Christos Faloutsos 
Adaptive, Hands-Off Stream Mining VLDB 2003, 
Berlin, Germany, Sept. 2003 

•  [Yi+00] Byoung-Kee Yi et al.: Online Data 
Mining for Co-Evolving Time Sequences, ICDE 
2000. (Describes MUSCLES and Recursive Least 
Squares) 
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Outline 

•  Motivation 
•  Similarity search and distance functions 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 
•  Non-linear forecasting 
•  Conclusions 
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Bursty Traffic 
& Multifractals 
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SKIP, if you have done HW2, Q3: 
Foils use D1 (‘information fractal dimension’), 
While HW2-Q3 uses D2 (‘correlation’ f.d.) 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 102 

Outline 

•  Motivation 
•  ... 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 

– Problem 
– Main idea (80/20, Hurst exponent) 
– Results 

HW2-Q3 
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Reference: 

[Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai 
Hang Chang, Spiros Papadimitriou and Christos 
Faloutsos, Data Mining Meets Performance 
Evaluation: Fast Algorithms for Modeling Bursty 
Traffic, ICDE 2002, San Jose, CA, 2/26/2002 - 
3/1/2002. 

Full thesis: CMU-CS-05-185 
Performance Modeling of Storage Devices using 
Machine Learning Mengzhi Wang, Ph.D. Thesis 
Abstract, .ps.gz, .pdf  
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Recall: Problem #1: 

Goal: given a signal (eg., #bytes over time) 
Find: patterns, periodicities, and/or compress 

time 

#bytes Bytes per 30’ 
(packets per day; 
earthquakes per year) 

HW2-Q3 
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Problem #1 

•  model bursty traffic  
•  generate realistic traces 
•  (Poisson does not work) 

time 

# bytes 

Poisson 

HW2-Q3 
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Motivation 

•  predict queue length distributions (e.g., to 
give probabilistic guarantees) 

•  “learn” traffic, for buffering, prefetching, 
‘active disks’, web servers 
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Q: any ‘pattern’? 

time 

# bytes 
•  Not Poisson 
•  spike; silence; more 

spikes; more silence… 
•  any rules? 

HW2-Q3 
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Solution: self-similarity 

# bytes 

time time 

# bytes 

HW2-Q3 
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But: 

•  Q1: How to generate realistic traces; 
extrapolate; give guarantees?  

•  Q2: How to estimate the model parameters? 

HW2-Q3 
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Outline 

•  Motivation 
•  ... 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 

– Problem 
– Main idea (80/20, Hurst exponent) 
– Results 
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Approach 

•  Q1: How to generate a sequence, that is 
–  bursty 
–  self-similar 
–  and has similar queue length distributions 

HW2-Q3 



C. Faloutsos 15-826 

CMU 38 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 112 

Approach 

•  A: ‘binomial multifractal’ [Wang+02] 
•  ~ 80-20 ‘law’: 

–  80% of bytes/queries etc on first half 
–  repeat recursively 

•  b: bias factor (eg., 80%) 

HW2-Q3 
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Binary multifractals 
20 80 

HW2-Q3 
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Binary multifractals 
20 80 

HW2-Q3 
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Parameter estimation 

•  Q2: How to estimate the bias factor b? 
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Parameter estimation 

•  Q2: How to estimate the bias factor b? 
•  A: MANY ways [Crovella+96] 

– Hurst exponent 
–  variance plot 
–  even DFT amplitude spectrum! (‘periodogram’) 
– More robust: ‘entropy plot’ [Wang+02] 
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Entropy plot 

•  Rationale: 
–   burstiness: inverse of uniformity 
–  entropy measures uniformity of a distribution 
–  find entropy at several granularities, to see 

whether/how our distribution is close to 
uniform. 

HW2-Q3 
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Entropy plot 

•  Entropy E(n) after n 
levels of splits 

•  n=1: E(1)= - p1 log2(p1)- 
p2 log2(p2) 

p1 p2 
% of bytes 

 here 
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Entropy plot 

•  Entropy E(n) after n 
levels of splits 

•  n=1: E(1)= - p1 log(p1)- 
p2 log(p2) 

•  n=2: E(2) = - Σι p2,i * 
log2 (p2,i) 

p2,1 p2,2 p2,3 p2,4 
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Real traffic 

•  Has linear entropy plot 
(-> self-similar) 

# of levels (n) 

Entropy 
E(n) 

0.73 

HW2-Q3 
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Observation - intuition: 

intuition: slope =  
  intrinsic dimensionality = 
  info-bits per coordinate-bit 

–  unif. Dataset: slope =? 
–  multi-point: slope = ? 

# of levels (n) 

Entropy 
E(n) 
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Observation - intuition: 

intuition: slope =  
  intrinsic dimensionality = 
  info-bits per coordinate-bit 

–  unif. Dataset: slope =1 
–  multi-point: slope = 0 

# of levels (n) 

Entropy 
E(n) 
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Entropy plot - Intuition 

•  Slope ~ intrinsic dimensionality (in fact, 
‘Information fractal dimension’) 

•  = info bit per coordinate bit - eg 

Dim = 1 
Pick a point;  
reveal its coordinate bit-by-bit - 
how much info is each bit worth to me? 

HW2-Q3 
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Entropy plot 

•  Slope ~ intrinsic dimensionality (in fact, 
‘Information fractal dimension’) 

•  = info bit per coordinate bit - eg 

Dim = 1 

Is MSB 0? 

‘info’ value = E(1): 1 bit 
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Entropy plot 

•  Slope ~ intrinsic dimensionality (in fact, 
‘Information fractal dimension’) 

•  = info bit per coordinate bit - eg 

Dim = 1 

Is MSB 0? 

Is next MSB =0? 
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Entropy plot 

•  Slope ~ intrinsic dimensionality (in fact, 
‘Information fractal dimension’) 

•  = info bit per coordinate bit - eg 

Dim = 1 

Is MSB 0? 

Is next MSB =0? 

Info value =1 bit 
= E(2) - E(1) = 
slope! 

HW2-Q3 
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Entropy plot 

•  Repeat, for all points at same position: 

Dim=0 
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Entropy plot 

•  Repeat, for all points at same position: 
•  we need 0 bits of info, to determine position 
•  -> slope = 0 = intrinsic dimensionality 

Dim=0 
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Entropy plot 

•  Real (and 80-20) datasets can be in-
between: bursts, gaps, smaller bursts, 
smaller gaps, at every scale 

Dim = 1 

Dim=0 
0<Dim<1 

HW2-Q3 
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(Fractals, again) 

•  What set of points could have behavior 
between point and line? 
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Cantor dust 

•  Eliminate the middle third 
•  Recursively! 
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Cantor dust 

HW2-Q3 
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Cantor dust 
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Cantor dust 
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Cantor dust 

HW2-Q3 
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Dimensionality? 
(no length; infinite # points!) 
Answer: log2 / log3 = 0.6 

Cantor dust 
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Some more entropy plots: 

•  Poisson vs real 

Poisson: slope = ~1 -> uniformly distributed 

1 0.73 
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b-model 

•  b-model traffic gives perfectly 
linear plot 

•  Lemma: its slope is 
slope = -b log2b - (1-b) log2 (1-b) 

•  Fitting: do entropy plot; get 
slope; solve for b 

E(n) 

n 

HW2-Q3 
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Outline 

•  Motivation 
•  ... 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 

– Problem 
– Main idea (80/20, Hurst exponent) 
– Experiments - Results 
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Experimental setup 

•  Disk traces (from HP [Wilkes 93]) 
•  web traces from LBL 

http://repository.cs.vt.edu/ 
lbl-conn-7.tar.Z 
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Model validation 

•  Linear entropy plots 

Bias factors b: 0.6-0.8   
smallest b / smoothest: nntp traffic 

HW2-Q3 



C. Faloutsos 15-826 

CMU 48 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 142 

Web traffic - results 

•  LBL, NCDF of queue lengths (log-log scales) 

(queue length l) 

Prob( >l) 

How to give guarantees? 
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Web traffic - results 

•  LBL, NCDF of queue lengths (log-log scales) 

(queue length l) 

Prob( >l) 
20% of the requests 
will see  
queue lengths <100  
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Conclusions 

•  Multifractals (80/20, ‘b-model’, 
Multiplicative Wavelet Model (MWM)) for 
analysis and synthesis of  bursty traffic 
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Books 

•  Fractals: Manfred Schroeder: Fractals, Chaos, 
Power Laws: Minutes from an Infinite Paradise 
W.H. Freeman and Company, 1991 (Probably the 
BEST book on fractals!) 
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Further reading: 

•  Crovella, M. and A. Bestavros (1996). Self-
Similarity in World Wide Web Traffic, Evidence 
and Possible Causes. Sigmetrics. 

•  [ieeeTN94] W. E. Leland, M.S. Taqqu,  W. 
Willinger, D.V. Wilson,  On the Self-Similar 
Nature of Ethernet Traffic, IEEE Transactions on 
Networking, 2, 1, pp 1-15, Feb. 1994. 
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Further reading 
•  [Riedi+99] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. 

G. Baraniuk, A Multifractal Wavelet Model with 
Application to Network Traffic, IEEE Special Issue on 
Information Theory, 45. (April 1999), 992-1018.  

•  [Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai Hang 
Chang, Spiros Papadimitriou and Christos Faloutsos, Data 
Mining Meets Performance Evaluation: Fast Algorithms 
for Modeling Bursty Traffic, ICDE 2002, San Jose, CA, 
2/26/2002 - 3/1/2002. En

tro
py

 p
lo

ts
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Outline 

•  Motivation 
•  ... 
•  Linear Forecasting 
•  Bursty traffic - fractals and multifractals 
•  Non-linear forecasting 
•  Conclusions 
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Chaos and  
non-linear 
forecasting 
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Reference: 

[ Deepay Chakrabarti and Christos Faloutsos 
F4: Large-Scale Automated Forecasting 
using Fractals CIKM 2002, Washington 
DC, Nov. 2002.] 
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Detailed Outline 

•  Non-linear forecasting 
– Problem 
–  Idea 
– How-to 
– Experiments 
– Conclusions 
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Recall: Problem #1 

Given a time series {xt}, predict its future 
course, that is, xt+1, xt+2, ... 

Time 

Value 
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Datasets 

Logistic Parabola: 
   xt = axt-1(1-xt-1) + noise  
   Models population of flies [R. May/1976] 

time 

 x(
t) 

Lag-plot 
ARIMA: fails 
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How to forecast? 

•  ARIMA - but: linearity assumption 

Lag-plot 
ARIMA: fails 
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How to forecast? 

•  ARIMA - but: linearity assumption 

•  ANSWER: ‘Delayed Coordinate 
Embedding’ =  Lag Plots [Sauer92] 

    ~ nearest-neighbor search, for past 
incidents 
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General Intuition (Lag Plot) 

xt-1 

4-NN 
New Point 

Interpolate 
these… 

To get the final 
prediction 

Lag = 1, 
k = 4 NN 
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Questions: 

•  Q1: How to choose lag L? 
•  Q2: How to choose k (the # of  NN)? 
•  Q3: How to interpolate? 
•  Q4: why should this work at all? 
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Q1: Choosing lag L 

•  Manually (16, in award winning system by 
[Sauer94]) 
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Q2: Choosing number of 
neighbors k 

•  Manually (typically ~ 1-10) 
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Q3: How to interpolate? 

How do we interpolate between the 
    k nearest neighbors? 

A3.1: Average 

A3.2: Weighted average (weights drop 
with distance - how?) 
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Q3: How to interpolate? 

A3.3: Using SVD - seems to perform best 
([Sauer94] - first place in the Santa Fe 
forecasting competition) 

Xt-1 

xt 
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Q4: Any theory behind it? 

A4: YES! 
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Theoretical foundation 

•  Based on the ‘Takens theorem’  [Takens81] 
•  which says that long enough delay vectors 

can do prediction, even if there are 
unobserved variables in the dynamical 
system (= diff. equations) 
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Theoretical foundation 

Example: Lotka-Volterra equations 

 dH/dt = r H – a H*P  
 dP/dt = b H*P – m P 

H is count of prey (e.g., hare) 
P is count of predators (e.g., lynx) 

Suppose only P(t) is observed (t=1, 2, …).  
H 

P 

Skip 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 165 

Theoretical foundation 

•  But the delay vector space is a faithful 
reconstruction of the internal system state 

•  So prediction in delay vector space is as 
good as prediction in state space 

Skip 

H 

P 

P(t-1) 

P(t) 
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Detailed Outline 

•  Non-linear forecasting 
– Problem 
–  Idea 
– How-to 
– Experiments 
– Conclusions 

CMU SCS 

15-826 (c) C. Faloutsos, 2013 167 

Datasets 

Logistic Parabola: 
   xt = axt-1(1-xt-1) + noise  
   Models population of flies [R. May/1976] 

time 

 x(
t) 

Lag-plot 
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Datasets 

Logistic Parabola: 
   xt = axt-1(1-xt-1) + noise  
   Models population of flies [R. May/1976] 

time 

 x(
t) 

Lag-plot 
ARIMA: fails 
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Logistic Parabola 

Timesteps 

Value 

Our Prediction from 
here 
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Logistic Parabola 

Timesteps 

Value 

Comparison of prediction 
to correct values 
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Datasets 

LORENZ: Models convection 
currents in the air 
dx / dt = a (y - x)  
dy / dt = x (b - z) - y  
dz / dt = xy - c z 

Value 
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LORENZ 

Timesteps 

Value 

Comparison of prediction 
to correct values 
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Datasets 

Time 

Value 

•  LASER: fluctuations in 
a Laser over time (used 
in Santa Fe 
competition) 
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Laser 

Timesteps 

Value 

Comparison of prediction 
to correct values 
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Conclusions 

•  Lag plots for non-linear forecasting 
(Takens’ theorem) 

•  suitable for ‘chaotic’ signals 
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Overall conclusions 

•  Similarity search: Euclidean/time-warping; 
feature extraction and SAMs 
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Overall conclusions 

•  Similarity search: Euclidean/time-warping; 
feature extraction and SAMs 

•  Signal processing: DWT is a powerful tool 
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Overall conclusions 

•  Similarity search: Euclidean/time-warping; 
feature extraction and SAMs 

•  Signal processing: DWT is a powerful tool 
•  Linear Forecasting: AR (Box-Jenkins) 

methodology; AWSOM 
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Overall conclusions 

•  Similarity search: Euclidean/time-warping; 
feature extraction and SAMs 

•  Signal processing: DWT is a powerful tool 
•  Linear Forecasting: AR (Box-Jenkins) 

methodology; AWSOM 
•  Bursty traffic: multifractals (80-20 ‘law’) 
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Overall conclusions 

•  Similarity search: Euclidean/time-warping; 
feature extraction and SAMs 

•  Signal processing: DWT is a powerful tool 
•  Linear Forecasting: AR (Box-Jenkins) 

methodology; AWSOM 
•  Bursty traffic: multifractals (80-20 ‘law’) 
•  Non-linear forecasting: lag-plots (Takens) 


