

Lecture #10: Fractals: M-trees and dim. curse (case studies – Part II)

C. Faloutsos

- Alberto Belussi and Christos Faloutsos,
Estimating the Selectivity of Spatial Queries
Using the 'Correlation' Fractal Dimension
Proc. of VLDB, p. 299-310, 1995

Optional, but **very** useful: Manfred Schroeder
*Fractals, Chaos, Power Laws: Minutes
from an Infinite Paradise* W.H. Freeman
and Company, 1991

 CMU SCS

Outline

Goal: ‘Find **similar / interesting** things’

- Intro to DB
- Indexing - similarity search
- Data Mining

 CMU SCS

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro
 - applications
- text

15-826

Copyright: C. Faloutsos (2013)

5

 CMU SCS

CMU SCS

What else can they solve?

- ✓ separability [KDD'02]
 - forecasting [CIKM'02]
- ✓ dimensionality reduction [SBB'D'00]
 - non-linear axis scaling [KDD'02]
- ✓ disk trace modeling [Wang+'02]
- ➡ selectivity of spatial/multimedia queries [PODS'94, VLDB'95, ICDE'00]
 - ...

15-826 Copyright: C. Faloutsos (2013) 7

CMU SCS

Metric trees - analysis

Optional

- Problem: How many disk accesses, for an M-tree?
- Given:
 - N (# of objects)
 - C (fanout of disk pages)
 - r (radius of range query - BIASED model)

15-826 Copyright: C. Faloutsos (2013) 8

CMU SCS

Metric trees - analysis

Optional

- Problem: How many disk accesses, for an M-tree?
- Given:
 - N (# of objects)
 - C (fanout of disk pages)
 - r (radius of range query - BIASED model)
- NOT ENOUGH - what else do we need?

15-826 Copyright: C. Faloutsos (2013) 9

CMU SCS

Metric trees - analysis

Optional

- A: something about the distribution

15-826 Copyright: C. Faloutsos (2013) 10

CMU SCS

Metric trees - analysis

Optional

- A: something about the distribution

[Ciaccia, Patella, Zezula, PODS98]: assumed that the distance distribution is the same, for every object:

Paolo Ciaccia Marco Patella

15-826 Copyright: C. Faloutsos (2013) 11

CMU SCS

Metric trees - analysis

Optional

- A: something about the distribution

[Ciaccia+, PODS98]: assumed that the distance distribution is the same, for every object:

$F_1(d) = \text{Prob}(\text{an object is within } d \text{ from object } \#1)$

$= F_2(d) = \dots = F(d)$

15-826 Copyright: C. Faloutsos (2013) 12

CMU SCS

Metric trees - analysis

Optional

- A: something about the distribution
- Given our ‘fractal’ tools, we could try them - which one?

15-826 Copyright: C. Faloutsos (2013) 13

CMU SCS

Metric trees - analysis

Optional

- A: something about the distribution
- Given our ‘fractal’ tools, we could try them - which one?
- A: Correlation integral [Traina+, ICDE2000]

15-826 Copyright: C. Faloutsos (2013) 14

CMU SCS

Metric trees - analysis

Optional

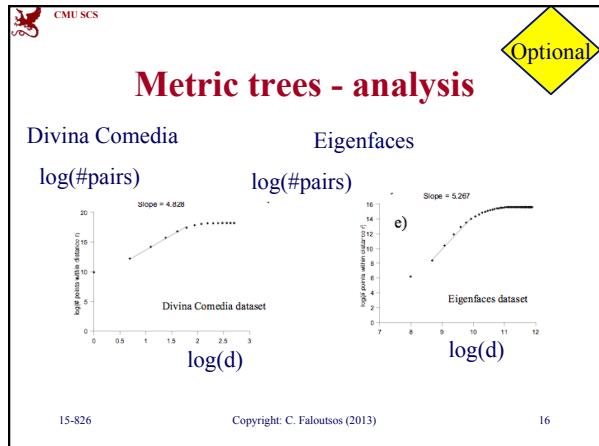
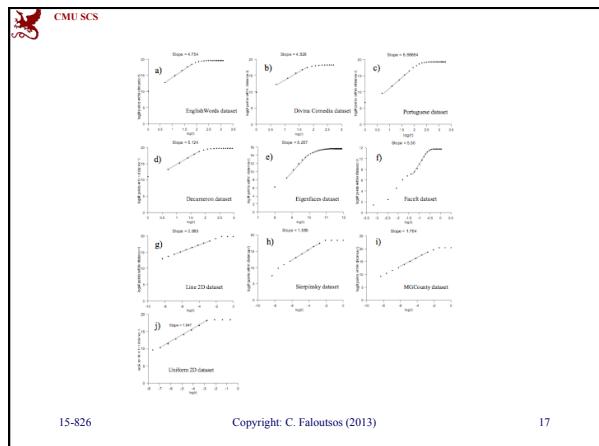
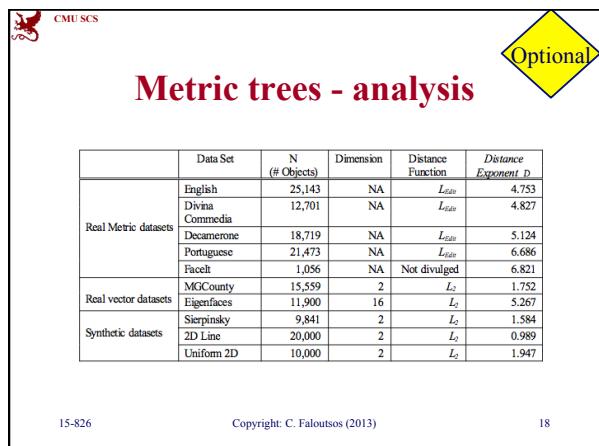
English dictionary Portuguese dictionary

$\log(\#\text{pairs})$ $\log(\#\text{pairs})$

EnglishWords dataset Portuguese dataset

$\log(d)$ $\log(d)$

15-826 Copyright: C. Faloutsos (2013) 15



CMU SCS

Metric trees - analysis

Optional

- So, what is the # of disk accesses, for a node of radius r_d , on a query of radius r_q ?

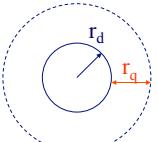
15-826 Copyright: C. Faloutsos (2013) 19

CMU SCS

Metric trees - analysis

Optional

- So, what is the # of disk accesses, for a node of radius r_d , on a query of radius r_q ?
- A: $\sim (r_d + r_q)$



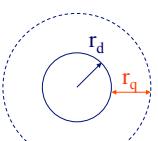
15-826 Copyright: C. Faloutsos (2013) 20

CMU SCS

Metric trees - analysis

Optional

- So, what is the # of disk accesses, for a node of radius r_d , on a query of radius r_q ?
- A: $\sim (r_d + r_q)^D$



15-826 Copyright: C. Faloutsos (2013) 21

CMU SCS

Optional

Accuracy of selectivity formulas

$\log(\#d.a.)$

$\log(rq)$

Copyright: C. Faloutsos (2013)

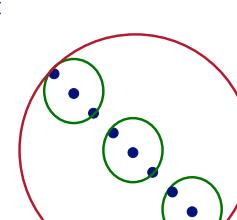
CMU SCS

 CMU SCS

 Optional

Fast estimation of D

- Hint:



15-826

Copyright: C. Faloutsos (2013)

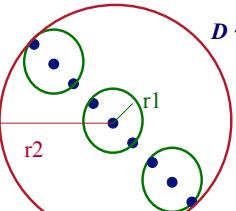
24

CMU SCS

Fast estimation of D

Optional

- Hint:



ratio of radii:
 $r1^D * C = r2^D$
 $D \sim \log(C) / \log(r2/r1)$

15-826 Copyright: C. Faloutsos (2013) 25

CMU SCS

Indexing - Detailed outline

- fractals
 - intro
 - applications
 - ✓ disk accesses for R-trees (range queries)
 - ✓ dimensionality reduction
 - ✓ selectivity in M-trees
 - ➡
 - dim. curse revisited
 - “fat fractals”
 - quad-tree analysis [Gaede+]

15-826 Copyright: C. Faloutsos (2013) 26

CMU SCS

Dimensionality ‘curse’

- Q: What is the problem in high-d?

15-826 Copyright: C. Faloutsos (2013) #27

Dimensionality ‘curse’

- Q: What is the problem in high-d?
- A: indices do not seem to help, for many queries (eg., k-nn)
 - in high-d (& uniform distributions), most points are equidistant \rightarrow k-nn retrieves too many near-neighbors
 - [Yao & Yao, '85]: search effort $\sim O(N^{(1/d)})$

15-826

Copyright: C. Faloutsos (2013)

#28

Dimensionality ‘curse’

- (counter-intuitive, for db mentality)
- Q: What to do, then?

15-826

Copyright: C. Faloutsos (2013)

#29

Dimensionality ‘curse’

- A1: switch to seq. scanning
- A2: dim. reduction
- A3: consider the ‘intrinsic’/fractal dimensionality
- A4: find approximate nn

15-826

Copyright: C. Faloutsos (2013)

#30

- A1: switch to seq. scanning
 - X-trees [Kriegel+, VLDB 96]
 - VA-files [Schek+, VLDB 98], ‘test of time’ award

15-826

Copyright: C. Faloutsos (2013)

#31

- A1: switch to seq. scanning
- A2: dim. reduction
- A3: consider the ‘intrinsic’/fractal dimensionality
- A4: find approximate nn

15-826

Copyright: C. Faloutsos (2013)

#32

a.k.a. feature selection/extraction:

- SVD (optimal, to preserve Euclidean distances)
- random projections
- using the fractal dimension [Traina+ SBB2000]

15-826

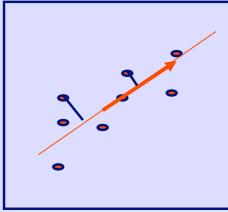
Copyright: C. Faloutsos (2013)

#33

CMU SCS

Singular Value Decomposition (SVD)

- SVD (~LSI ~ KL ~ PCA ~ spectral analysis...)



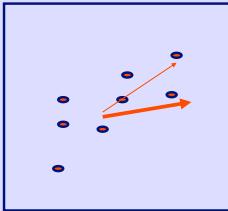
LSI: S. Dumais; M. Berry
 KL: eg, Duda+Hart
 PCA: eg., Jolliffe
 MANY more details: soon

15-826 Copyright: C. Faloutsos (2013) #34

CMU SCS

Random projections

- random projections(Johnson-Lindenstrauss thm [Papadimitriou+ pods98])



15-826 Copyright: C. Faloutsos (2013) #35

CMU SCS

Random projections

- pick ‘enough’ random directions (will be ~orthogonal, in high-d!!)
- distances are preserved probabilistically, within epsilon
- (also, use as a pre-processing step for SVD [Papadimitriou+ PODS98])

15-826 Copyright: C. Faloutsos (2013) #36

Dim. reduction - w/ fractals

- Main idea: drop those attributes that don't affect the intrinsic ('fractal') dimensionality [Traina+, SBD 2000]

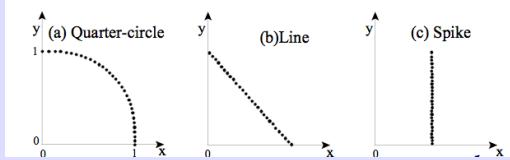
15-826

Copyright: C. Faloutsos (2013)

#37

Dim. reduction - w/ fractals

global FD=1



15-826

Copyright: C. Faloutsos (2013)

#38

Dimensionality 'curse'

- A1: switch to seq. scanning
- A2: dim. reduction
- ➡ A3: consider the 'intrinsic'/fractal dimensionality
- A4: find **approximate nn**

15-826

Copyright: C. Faloutsos (2013)

#39

CMU SCS

 CMU SCS

Dimensionality ‘curse’

- A1: switch to seq. scanning
- A2: dim. reduction
- A3: consider the ‘intrinsic’/fractal dimensionality
- • A4: find approximate nn

15-826

Copyright: C. Faloutsos (2013)

#41

 CMU SCS

Approximate nn

- [Arya + Mount, SODA93], [Patella+ ICDE 2000]
- Idea: find k neighbors, such that the distance of the k -th one is guaranteed to be within ϵ of the actual.

Dimensionality ‘curse’

- A1: switch to seq. scanning
- A2: dim. reduction
- ➡ • A3: consider the ‘intrinsic’/fractal dimensionality
- A4: find approximate nn

15-826

Copyright: C. Faloutsos (2013)

#43

Dim. curse revisited

- (Q: how serious is the dim. curse, e.g.):
- Q: what is the search effort for k-nn?
– given N points, in E dimensions, in an R-tree, with k-nn queries ('biased' model)

[Pagel, Korn + ICDE 2000]

15-826

Copyright: C. Faloutsos (2013)

44

Overview of proofs

- assume that your points are uniformly distributed in a d -dimensional manifold (= hyper-plane)
- derive the formulas
- substitute d for the fractal dimension

15-826

Copyright: C. Faloutsos (2013)

45

CMU SCS

Reminder: Hausdorff Dimension (D_0)

- r = side length (each dimension)
- $B(r) = \# \text{ boxes containing points} \propto r^{D_0}$

$$r = 1/2 \quad B = 2$$

$$r = 1/4 \quad B = 4$$

$$r = 1/8 \quad B = 8$$

$$\log r = -1$$

$$\log B = 1$$

$$\log r = -2$$

$$\log B = 2$$

$$\log r = -3$$

$$\log B = 3$$

15-826

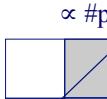
Copyright: C. Faloutsos (2013)

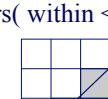
46

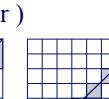
CMU SCS

Reminder: Correlation Dimension (D_2)

- $S(r) = \sum p_i^2$ (squared % pts in box) $\propto r^{D_2}$
 $\propto \# \text{pairs(within } \leq r)$


 $r = 1/2 \quad S = 1/2$
 $\log r = -1$
 $\log S = -1$


 $r = 1/4 \quad S = 1/4$
 $\log r = -2$
 $\log S = -2$


 $r = 1/8 \quad S = 1/8$
 $\log r = -3$
 $\log S = -3$

Copyright: C. Faloutsos (2013)

CMU SCS

proof

Observation #1

- How to determine avg MBR side l ?
 - $N = \# \text{pts}$, $C = \text{MBR capacity}$

Hausdorff dimension: $B(r) \propto r^{D_0}$

$B(l) = N/C = l^{-D_0} \Rightarrow l = (N/C)^{1/D_0}$

CMU SCS

proof

Observation #2

- k -NN query $\rightarrow \epsilon$ -range query
 - For k pts, what radius ϵ do we expect?

Correlation dimension: $S(r) \propto r^{D_2}$

$$S(\epsilon) = \frac{k}{N-1} = (2\epsilon)^{D_2}$$

15-826

Copyright: C. Faloutsos (2013)

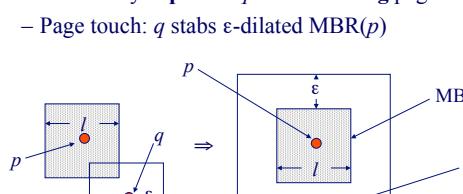
49

CMU SCS

Observation #3

• Estimate avg # query-sensitive anchors:

- How many **expected** q will touch **avg** page?
- Page touch: q stabs ϵ -dilated MBR(p)



Copyright: C. Faloutsos (2013)

 CMU SCS

Asymptotic Formula

$$P_{all}^{L_\infty}(k) \approx \sum_{j=0}^h \left\{ \frac{1}{C^{h-j}} + \left[1 + \left(\frac{k}{C^{h-j}} \right)^{1/D} \right]^D \right\}$$

- NO mention of the embedding dimensionality!!
- Still have dim. curse, but on f.d. D

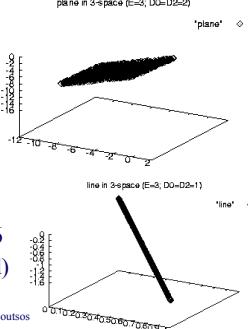
15-826

Copyright: C. Faloutsos (2013)

52

Synthetic Data

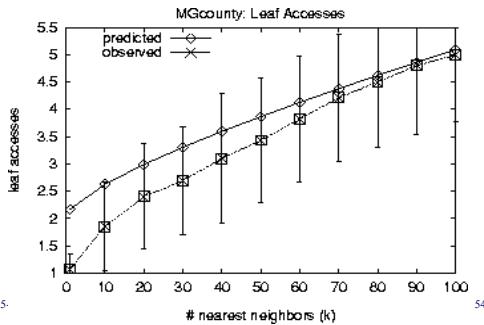
- plane
 - $D_0 = D_2 = 2$
 - embedded in E -space
 - $N = 100K$
- manifold
 - $E = 8$
 - $D_0 = D_2$ varies from 1-6
 - line, plane, etc. (in 8-d)



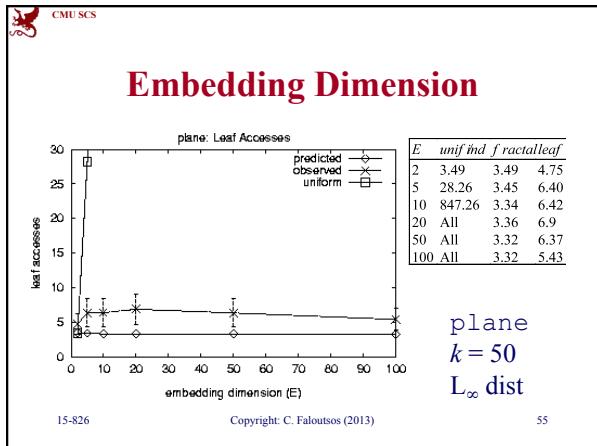
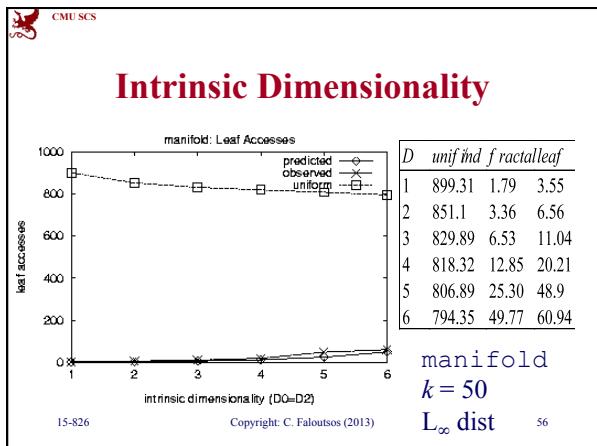
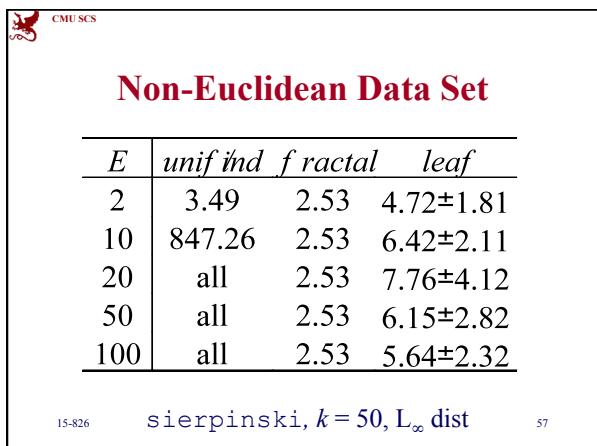
15-826

Copyright: C. Faloutsos

Accuracy of L_∞ Formula



15.



Conclusions

- Dimensionality ‘curse’:
 - for high-d, indices slow down to $\sim O(N)$
- If the **intrinsic** dim. is low, there is hope
- otherwise, do seq. scan, or sacrifice accuracy (approximate nn)

15-826

Copyright: C. Faloutsos (2013)

#58

Conclusions – cont'd

- Worst-case theory is **over-pessimistic**
- High dimensional data can exhibit good performance if **correlated, non-uniform**
- Many real data sets are **self-similar**
- Determinant is **intrinsic** dimensionality
 - multiple fractal dimensions (D_0 and D_2)
 - indication of how far one can go

15-826

Copyright: C. Faloutsos (2013)

59

References

- Sunil Arya, David M. Mount: *Approximate Nearest Neighbor Queries in Fixed Dimensions*. SODA 1993: 271-280
ANN library:
<http://www.cs.umd.edu/~mount/ANN/>

References

- Berchtold, S., D. A. Keim, et al. (1996). The X-tree : An Index Structure for High-Dimensional Data. VLDB, Mumbai (Bombay), India.
- Ciaccia, P., M. Patella, et al. (1998). *A Cost Model for Similarity Queries in Metric Spaces*. PODS.

15-826

Copyright: C. Faloutsos (2013)

#61

References cnt'd

- Nievergelt, J., H. Hinterberger, et al. (March 1984). "The Grid File: An Adaptable, Symmetric Multikey File Structure." ACM TODS 9(1): 38-71.
- Pagel, B.-U., F. Korn, et al. (2000). *Deflating the Dimensionality Curse Using Multiple Fractal Dimensions*. ICDE, San Diego, CA.
- Papadimitriou, C. H., P. Raghavan, et al. (1998). Latent Semantic Indexing: A Probabilistic Analysis. PODS, Seattle, WA.

15-826

Copyright: C. Faloutsos (2013)

#62

References cnt'd

- Traina, C., A. J. M. Traina, et al. (2000). *Distance Exponent: A New Concept for Selectivity Estimation in Metric Trees*. ICDE, San Diego, CA.
- Weber, R., H.-J. Schek, et al. (1998). A Quantitative Analysis and Performance Study for Similarity-Search Methods in high-dimensional spaces. VLDB, New York, NY.

15 826

Copyright: C. Faloutsos (2013)

463

References cnt'd

- Yao, A. C. and F. F. Yao (May 6-8, 1985). A General Approach to d-Dimensional Geometric Queries. Proc. of the 17th Annual ACM Symposium on Theory of Computing (STOC), Providence, RI.

15-826

Copyright: C. Faloutsos (2013)

#64