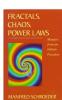


Lecture #9: Fractals - case studies - I

C. Faloutsos

- Christos Faloutsos and Ibrahim Kamel, *Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension*, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp. 4-13, Minneapolis, MN.


15-826

Copyright: C. Faloutsos (2013)

2

Optional, but **very** useful: Manfred Schroeder
*Fractals, Chaos, Power Laws: Minutes
from an Infinite Paradise* W.H. Freeman
and Company, 1991 (on reserve in the WeH
library)

15-826

Copyright: C. Faloutsos (2013)

3

Reminder

- Code at
www.cs.cmu.edu/~christos/SRC/fdnq_h.zip

Also, in 'R'
> library(fdim);

15-826

Copyright: C. Faloutsos (2013)

4

Outline

Goal: ‘Find similar / interesting things’

- Intro to DB
- Indexing - similarity search
- Data Mining

15-826

Copyright: C. Faloutsos (2013)

5

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
 - z-ordering
 - R-trees
 - misc
- fractals
 - intro
 - applications
- text

CMU SCS

Indexing - Detailed outline

- fractals
 - intro
 - applications
 - disk accesses for R-trees (range queries)
 - dimensionality reduction
 - selectivity in M-trees
 - dim. curse revisited
 - “fat fractals”
 - quad-tree analysis [Gaedde+]

15-826 Copyright: C. Faloutsos (2013) 7

CMU SCS

(Fractals mentioned before:)

- for performance analysis of R-trees
- fractals for dim. reduction

15-826 Copyright: C. Faloutsos (2013) 8

CMU SCS

Case study#1: R-tree performance

Problem

- Given
 - N points in E-dim space
- Estimate # disk accesses for a range query
 $(q_1 \times \dots \times q_E)$

(assume: ‘good’ R-tree, with tight, cube-like MBRs)

15-826 Copyright: C. Faloutsos (2013) 9

CMU SCS

Case study#1: R-tree performance

Problem

- Given
 - N points in E -dim space
 - with fractal dimension D
- Estimate # disk accesses for a range query
($q_1 \times \dots \times q_E$)

(assume: ‘good’ R-tree, with tight, cube-like MBRs)

Typically, in DB Q-opt: uniformity + independence

15-826 Copyright: C. Faloutsos (2013) 10

CMU SCS

Examples:World's countries

- BUT: area vs population for ~200 countries (1991 CIA fact-book).

pop	log(pop)

area log(area)

15-826 Copyright: C. Faloutsos (2013) 11

CMU SCS

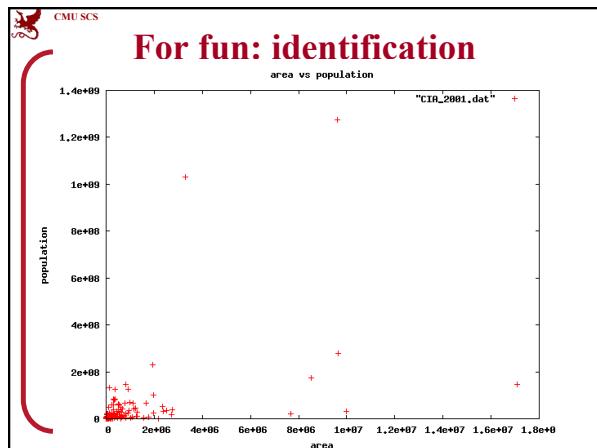
Examples:World's countries

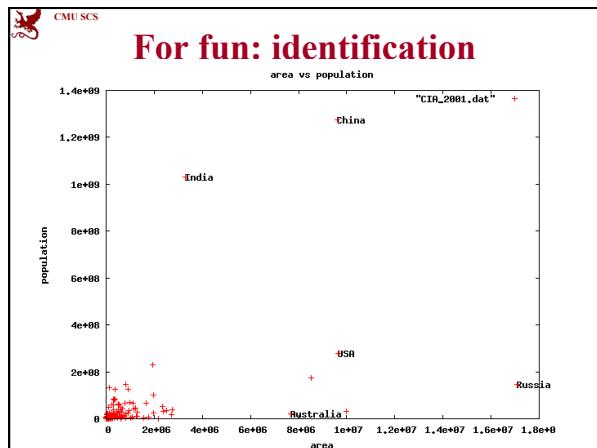
- neither uniform, nor independent!

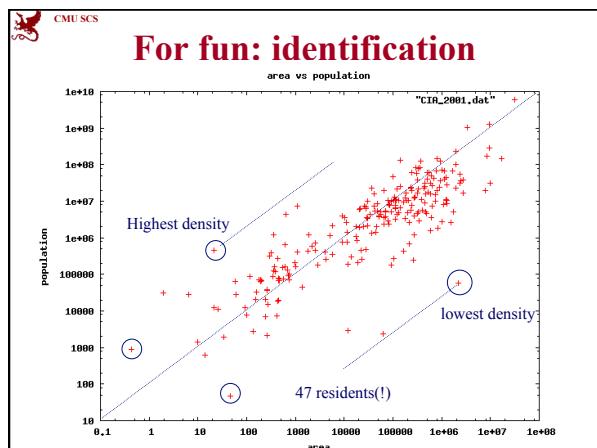
pop	log(pop)

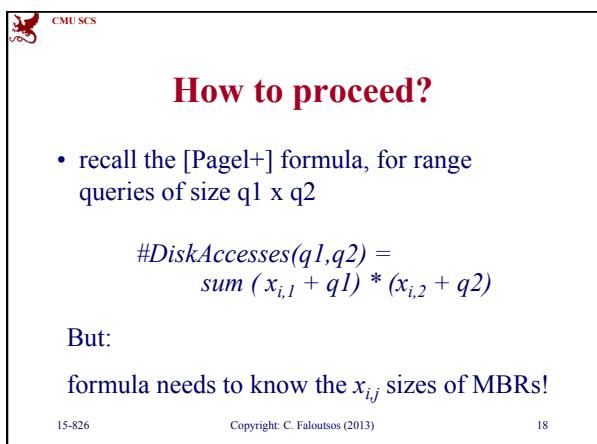
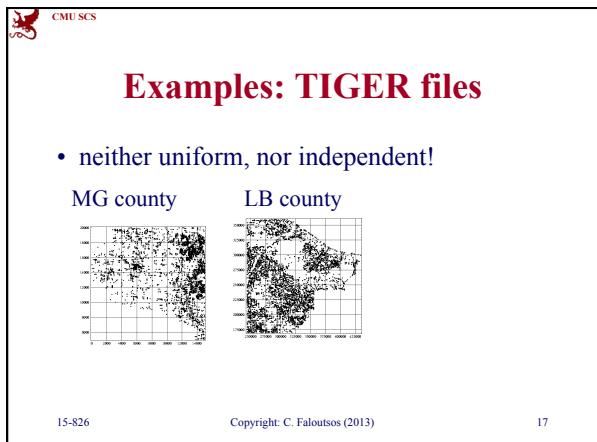
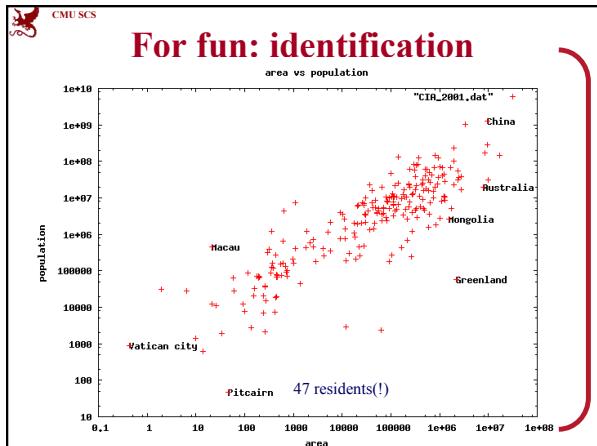
area log(area)

15-826 Copyright: C. Faloutsos (2013) 12





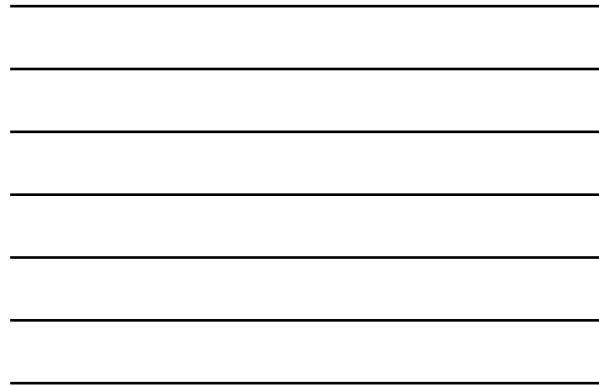


How to proceed?

But:

formula needs to know the $x_{i,j}$ sizes of MBRs!


Answer (jumping ahead):

$$s = (C/N)^{1/D0}$$

15-826

Copyright: C. Faloutsos (2013)

19

How to proceed?

But:

formula needs to know the $x_{i,j}$ sizes of MBRs!

Answer (jumping ahead):

$$s = (C/N)^{1/D_0}$$

of data points

page capacity

15-826

Copyright: C. Faloutsos (2013)

20

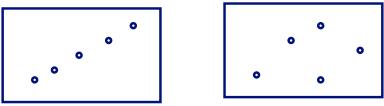
Let's see the rationale

$$s = (C/N)^{1/D0}$$

15-826

Copyright: C. Faloutsos (2013)

21


CMU SCS

R-trees - performance analysis

 I.e: for range queries - how many disk accesses, if we just know that we have

- N points in E -d space?

A: can not tell! need to know distribution

15-826 Copyright: C. Faloutsos (2013) 22

CMU SCS

R-trees - performance analysis

 Q: OK - so we are told that the **Hausdorff** fractal dim. = D_0 - Next step?

(also know that there are at most C points per page)

$D_0=1$ $D_0=2$

15-826 Copyright: C. Faloutsos (2013) 23

CMU SCS

R-trees - performance analysis

 Assumption1: square-like parents (s^* 's)

Assumption2: fully packed (C points each)

Assumption3: non-overlapping

$D_0=1$ $D_0=2$

$s_1 = s_2 = s$

15-826 Copyright: C. Faloutsos (2013) 24

CMU SCS

R-trees - performance analysis

Assumption1: square-like parents (s*s)
 Assumption2: fully packed (N/C non-empty)
 Assumption3: non-overlapping

D0=1

15-826

Copyright: C. Faloutsos (2013)

25

proof

CMU SCS

R-trees - performance analysis

Hint: dfn of Hausdorff f.d.:

Felix Hausdorff (1868-1942)

15-826

Copyright: C. Faloutsos (2013)

26

proof

CMU SCS

Reminder:

Hausdorff or box-counting fd:

- Box counting plot: $\text{Log}(N(r))$ vs $\text{Log}(r)$
- r: grid side
- $N(r)$: count of non-empty cells
- (Hausdorff) fractal dimension D0:

$$D_0 = -\frac{\partial \log(N(r))}{\partial \log(r)}$$

15-826

Copyright: C. Faloutsos (2013)

27

proof

CMU SCS

Reminder

proof

- Hausdorff fd:

r — $\log(\# \text{non-empty cells})$

15-826 Copyright: C. Faloutsos (2013) 28

CMU SCS

Reminder

proof

- dfn of Hausdorff fd implies that

$$N(r) \sim r^{(-D_0)}$$

non-empty cells of side r

15-826 Copyright: C. Faloutsos (2013) 29

CMU SCS

R-trees - performance analysis

proof

Q (rephrased): what is the side s_1, s_2, \dots of parent nodes, given N data points, packed by C , with f.d. = D_0

$D_0=1$

$D_0=2$

15-826 Copyright: C. Faloutsos (2013) 30

CMU SCS

R-trees - performance analysis

Q (rephrased): what is the side s_1, s_2, \dots of parent nodes, given N data points, packed by C , with f.d. = D_0

$D_0=1$ $D_0=2$

15-826 Copyright: C. Faloutsos (2013) 31

CMU SCS

R-trees - performance analysis

Q (rephrased): what is the side s_1, s_2, \dots of parent nodes, given N data points, packed by C , with f.d. = D_0

$D_0=1$ $D_0=2$

15-826 Copyright: C. Faloutsos (2013) 32

CMU SCS

R-trees - performance analysis

A: (educated guess)

- $s = s_1 = s_2 = \dots$ - square-like MBRs
- N/C non-empty cells = $K * s^{(-D_0)}$

$D_0=1$ $D_0=2$

15-826 Copyright: C. Faloutsos (2013) 33

CMU SCS

R-trees - performance analysis

Details of derivations: in [PODS 94].

Finally, expected side s of parent MBRs:

$$s = (C/N)^{1/D0}$$

Q: sanity check: how does s change with $D0$?

A:

15-826

Copyright: C. Faloutsos (2013)

34

CMU SCS

R-trees - performance analysis

Details of derivations: in [Kamel+, PODS 94].

Finally, expected side s of parent MBRs:

$$s = (C/N)^{1/D0}$$

Q: sanity check: how does s change with $D0$?

A: s grows with $D0$

Q: does it make sense?

Q: does it suffer from (intrinsic) dim. curse?

15-826

Copyright: C. Faloutsos (2013)

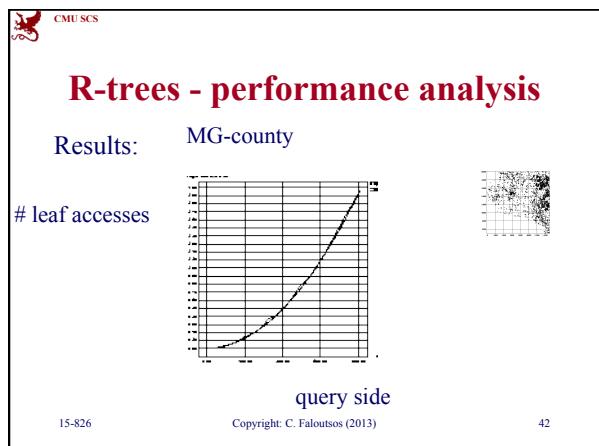
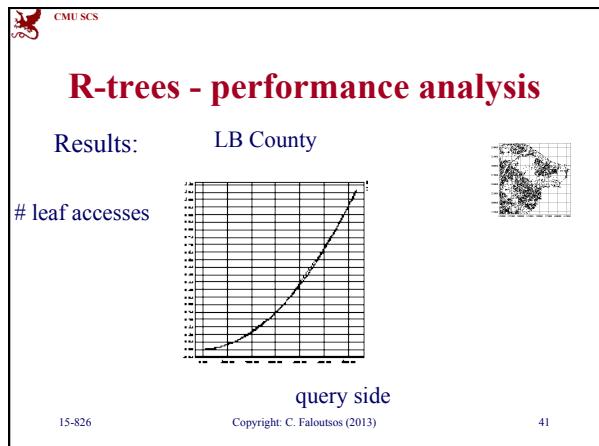
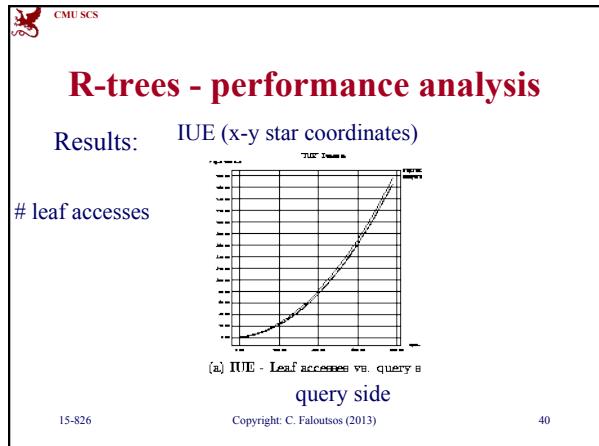
35

CMU SCS

R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries $q1 \times q2 \times \dots$):

A:

15-826

Copyright: C. Faloutsos (2013)

36

 CMU SCS

R-trees - performance analysis

Results: 2D- uniform

leaf accesses

query side	# leaf accesses
0	0
2	10
4	25
6	45
8	70
10	95

query side

15-826

Copyright: C. Faloutsos (2013)

43

 CMU SCS

R-trees - performance analysis

Conclusions: usually, <5% relative error, for range queries

15-826

Copyright: C. Faloutsos (2013)

44

CMU SCS

CMU SCS

Case study #2: Dim. reduction

Optional

Problem definition: ‘Feature selection’

- given N points, with E dimensions
- keep the k most ‘informative’ dimensions

[Traina+, SBD’00]

15-826 Copyright: C. Faloutsos (2013) 46

Caetano Traina Agma Traina Leejay Wu

CMU SCS

Dim. reduction - w/ fractals

Optional

(a) Quarter-circle

(b) Line

(c) Spike

not informative

15-826 Copyright: C. Faloutsos (2013) 47

CMU SCS

Dim. reduction

Optional

Problem definition: ‘Feature selection’

- given N points, with E dimensions
- keep the k most ‘informative’ dimensions

Re-phrased: spot and drop attributes with strong (non-)linear correlations

Q: how do we do that?

15-826 Copyright: C. Faloutsos (2013) 48

CMU SCS

Dim. reduction

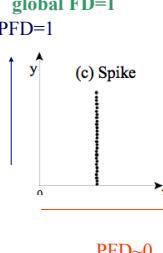
Optional

A: Hint: correlated attributes do not affect the intrinsic/fractal dimension, e.g., if

$$y = f(x, z, w)$$

we can drop y
(hence: ‘partial fd’ (PFD) of a set of attributes = the fd of the dataset, when projected on those attributes)

15-826 Copyright: C. Faloutsos (2013) 49



CMU SCS

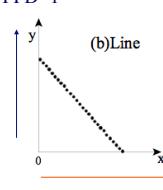
Dim. reduction - w/ fractals

Optional

global FD=1
PFD=1

PFD=0

15-826 Copyright: C. Faloutsos (2013) 50



CMU SCS

Dim. reduction - w/ fractals

Optional

global FD=1
PFD=1

PFD=1

15-826 Copyright: C. Faloutsos (2013) 51

CMU SCS

Dim. reduction - w/ fractals

Optional

global FD=1 PFD~1

(a) Quarter-circle

PFD~1

15-826 Copyright: C. Faloutsos (2013) 52

CMU SCS

Dim. reduction - w/ fractals

Optional

- (problem: given N points in $E-d$, choose k best dimensions)
- Q: Algorithm?

15-826 Copyright: C. Faloutsos (2013) 53

CMU SCS

Dim. reduction - w/ fractals

Optional

- Q: Algorithm?
- A: e.g., greedy - forward selection:
 - keep the attribute with highest partial fd
 - add the one that causes the highest increase in pfd
 - etc., until we are within ϵ from the full f.d.

15-826 Copyright: C. Faloutsos (2013) 54

CMU SCS

CMU SCS

Optional

Dim. reduction - w/ fractals

- Q: what is the smallest # of attributes we should keep?

15-826

Copyright: C. Faloutsos (2013)

56

CMU SCS

CMU SCS

Dim. reduction - w/ fractals

Optional

- Results: E.g., on the ‘currency’ dataset
- (daily exchange rates for USD, HKD, BP, FRF, DEM, JPY - i.e., 6-d vectors, one per day - base currency: CAD)

e.g.: FRF

15-826 Copyright: C. Faloutsos (2013) 58

CMU SCS

E.g., on the ‘currency’ dataset

Optional

$\log(\# \text{pairs}(\leq r))$ correlation integral

15-826 Copyright: C. Faloutsos (2013) 59

CMU SCS

E.g., on the ‘currency’ dataset

Optional

15-826 Copyright: C. Faloutsos (2013) 60

CMU SCS

Dim. reduction - w/ fractals

Optional

Conclusion:

- can do non-linear dim. reduction

global FD=1

PFD~1

PFD~1

15-826

Copyright: C. Faloutsos (2013)

61

CMU SCS

References

- [PODS94] Faloutsos, C. and I. Kamel (May 24-26, 1994). *Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension*. Proc. ACM SIGACT-SIGMOD-SIGART PODS, Minneapolis, MN.
- [Traina+, SBBD'00] Traina, C., A. Traina, et al. (2000). *Fast feature selection using the fractal dimension*. XV Brazilian Symposium on Databases (SBBD), Paraiba, Brazil.

15-826

Copyright: C. Faloutsos (2013)

62
