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Must-read Material 

•  Christos Faloutsos and Ibrahim Kamel, 
Beyond Uniformity and Independence: 
Analysis of R-trees Using the Concept of 
Fractal Dimension, Proc. ACM SIGACT-
SIGMOD-SIGART PODS, May 1994, pp. 
4-13, Minneapolis, MN.  
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Optional Material 

Optional, but very useful: Manfred Schroeder 
Fractals, Chaos, Power Laws: Minutes 
from an Infinite Paradise W.H. Freeman 
and Company, 1991 (on reserve in the WeH 
library) 
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Reminder 

•  Code at 
www.cs.cmu.edu/~christos/SRC/fdnq_h.zip 

Also, in ‘R’ 
> library(fdim); 
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Outline 

Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 
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Indexing - Detailed outline 
•  primary key indexing 
•  secondary key / multi-key indexing 
•  spatial access methods 

–  z-ordering 
–  R-trees 
–  misc 

•  fractals 
–  intro 
–  applications 

•  text 
•  ... 
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Indexing - Detailed outline 
•  fractals 

–  intro 
–  applications 

•  disk accesses for R-trees (range queries) 
•  dimensionality reduction 
•  selectivity in M-trees 
•  dim. curse revisited 
•  “fat fractals” 
•  quad-tree analysis [Gaede+] 
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(Fractals mentioned before:) 

•  for performance analysis of R-trees 
•  fractals for dim. reduction 
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Case study#1: R-tree performance 

Problem 
•  Given 

–   N points in E-dim space 

•  Estimate # disk accesses for a range query 
 (q1 x ... x qE ) 

(assume: ‘good’ R-tree, with tight, cube-like MBRs) 
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Case study#1: R-tree performance 

Problem 
•  Given 

–   N points in E-dim space 
–  with fractal dimension D 

•  Estimate # disk accesses for a range query 
 (q1 x ... x qE ) 

(assume: ‘good’ R-tree, with tight, cube-like MBRs) 
Typically, in DB Q-opt: uniformity + independence 
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Examples:World’s countries 

•  BUT: area vs population for ~200 countries 
(1991 CIA fact-book).  

area 

pop 

log(area) 

log(pop) 
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Examples:World’s countries 

•  neither uniform, nor independent! 

area 

pop 

log(area) 

log(pop) 
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For fun: identification 
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For fun: identification 
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For fun: identification 

Highest density 

lowest density 

47 residents(!) 
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For fun: identification 

47 residents(!) 
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Examples: TIGER files 

•  neither uniform, nor independent! 
MG county LB county 
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How to proceed? 

•  recall the [Pagel+] formula, for range 
queries of size q1 x q2 

#DiskAccesses(q1,q2) = 
          sum ( xi,1 + q1) * (xi,2 + q2) 

But:  

formula needs to know the xi,j sizes of MBRs! 
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How to proceed? 

But:  
formula needs to know the xi,j sizes of MBRs! 

Answer (jumping ahead): 
s = (C/N)1/D0 

CMU SCS 

15-826 Copyright: C. Faloutsos (2013) 20 

How to proceed? 

But:  
formula needs to know the xi,j sizes of MBRs! 

Answer (jumping ahead): 
s = (C/N)1/D0 

side of (parent) MBR 
page capacity 

# of data points 

Hausdorff fd 
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Let’s see the rationale 

s = (C/N)1/D0 
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R-trees - performance analysis 
I.e: for range queries - how many disk accesses, 

if we just now that we have 
- N points in E-d space? 
A: can not tell! need to know distribution 

proof 
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R-trees - performance analysis 
Q: OK - so we are told that the Hausdorff fractal 

dim. = D0 - Next step? 
(also know that there are at most C points per 

page) 
D0=1 D0=2 

proof 
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R-trees - performance analysis 
Assumption1: square-like parents (s*s) 
Assumption2: fully packed (C points each) 
Assumption3: non-overlapping 

D0=1 D0=2 

s1=s2=s 

proof 
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R-trees - performance analysis 
Assumption1: square-like parents (s*s) 
Assumption2: fully packed (N/C non-empty) 
Assumption3: non-overlapping 

D0=1 

s1=s2=s 

proof 
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R-trees - performance analysis 
Hint: dfn of Hausdorff f.d.: 

Felix Hausdorff (1868-1942) 

proof 
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Reminder: 
Hausdorff or box-counting fd: 

•  Box counting plot: Log( N ( r ) ) vs Log ( r) 
•  r: grid side 
•  N (r ): count of non-empty cells 
•  (Hausdorff) fractal dimension D0: 
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Reminder 

•  Hausdorff  fd: 
r 

log(r) 

log(#non-empty cells) 

D0 

proof 

N/C 

s 
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Reminder 

•  dfn of Hausdorff  fd implies that 
N(r) ~  r(-D0) 

# non-empty cells of side r 

proof 
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R-trees - performance analysis 
Q (rephrased): what is the side s1, s2, ... of 

parent nodes, given N data points, packed by 
C, with f.d. = D0 

D0=1 D0=2 

proof 
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R-trees - performance analysis 
Q (rephrased): what is the side s1, s2, ... of 

parent nodes, given N data points, packed by 
C, with f.d. = D0 

D0=1 D0=2 

s1 

s2 

proof 
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R-trees - performance analysis 
Q (rephrased): what is the side s1, s2, ... of 

parent nodes, given N data points, packed by 
C, with f.d. = D0 

D0=1 D0=2 

s1=s2=s 

proof 
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R-trees - performance analysis 
A: (educated guess) 
•  s=s1=s2 (= ... ) - square-like MBRs 
•  N/C non-empty cells = K * s(-D0) 

D0=1 D0=2 

s1 

s2 
log(s) 

log(#cells) 

proof 
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R-trees - performance analysis 
Details of derivations: in [PODS 94]. 
Finally, expected side s of parent MBRs: 

s = (C/N)1/D0 

Q: sanity check: how does s change with D0? 
A: 

proof 
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R-trees - performance analysis 
Details of derivations: in [Kamel+, PODS 94]. 
Finally, expected side s of parent MBRs: 

s = (C/N)1/D0 

Q: sanity check: how does s change with D0? 
A: s grows with D0 
Q: does it make sense? 

Q: does it suffer from (intrinsic) dim. curse? 
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R-trees - performance analysis 
Q: Final-final formula (# disk accesses for range 

queries q1 x q2 x ... ): 
A: 
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R-trees - performance analysis 
Q: Final-final formula (# disk accesses for range 

queries q1 x q2 x ... ): 
A: # of parent-node accesses: 

N/C * (s + q1) * (s + q2 ) * ... ( s + qE ) 
A: # of grand-parent node accesses 
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R-trees - performance analysis 
Q: Final-final formula (# disk accesses for range 

queries q1 x q2 x ... ): 
A: # of parent-node accesses: 

N/C * (s + q1) * (s + q2 ) * ... ( s + qE ) 
A: # of grand-parent node accesses 

N/(C^2) * (s’ + q1) * (s’ + q2 ) * ... ( s’ + qE ) 
s’ = ?? 
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R-trees - performance analysis 
Q: Final-final formula (# disk accesses for range 

queries q1 x q2 x ... ): 
A: # of parent-node accesses: 

N/C * (s + q1) * (s + q2 ) * ... ( s + qE ) 
A: # of grand-parent node accesses 

N/(C^2) * (s’ + q1) * (s’ + q2 ) * ... ( s’ + qE ) 
s’ = (C^2/N)1/D0 
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R-trees - performance analysis 
Results: IUE (x-y star coordinates) 

# leaf accesses 

query side 
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R-trees - performance analysis 
Results: LB County 

# leaf accesses 

query side 
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R-trees - performance analysis 
Results: MG-county 

# leaf accesses 

query side 
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R-trees - performance analysis 
Results: 2D- uniform 

# leaf accesses 

query side 
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R-trees - performance analysis 
Conclusions: usually, <5% relative error, for 

range queries 
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Indexing - Detailed outline 
•  fractals 

–  intro 
–  applications 

•  disk accesses for R-trees (range queries) 
•  dimensionality reduction 
•  selectivity in M-trees 
•  dim. curse revisited 
•  “fat fractals” 
•  quad-tree analysis [Gaede+] 
•  .... 

Optional 

✔ 
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Case study #2: Dim. reduction 

Problem definition: ‘Feature selection’ 
•  given N points, with E dimensions 
•  keep the k most ‘informative’ dimensions 
[Traina+,SBBD’00] 

Caetano 
Traina 

Agma 
Traina 

Leejay 
Wu 

Optional 
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Dim. reduction - w/ fractals 

not informative 

Optional 
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Dim. reduction 

Problem definition: ‘Feature selection’ 
•  given N points, with E dimensions 
•  keep the k most ‘informative’ dimensions 
Re-phrased: spot and drop attributes with 

strong (non-)linear correlations 
Q: how do we do that? 

Optional 
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Dim. reduction 

A: Hint: correlated attributes do not affect the 
intrinsic/fractal dimension, e.g., if  

y = f(x,z,w) 
we can drop y 
(hence: ‘partial fd’ (PFD) of a set of 

attributes = the fd of the dataset, when 
projected on those attributes) 

Optional 
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Dim. reduction - w/ fractals 

PFD~0 

PFD=1 
global FD=1 

Optional 
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Dim. reduction - w/ fractals 

PFD=1 

PFD=1 
global FD=1 

Optional 
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Dim. reduction - w/ fractals 

PFD~1 

PFD~1 
global FD=1 

Optional 
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Dim. reduction - w/ fractals 

•  (problem: given N points in E-d, choose k 
best dimensions) 

•  Q: Algorithm? 

Optional 
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Dim. reduction - w/ fractals 

•  Q: Algorithm? 
•  A: e.g., greedy - forward selection: 

–  keep the attribute with highest partial fd 
–  add the one that causes the highest increase in 

pfd 
–  etc., until we are within epsilon from the full 

f.d. 

Optional 
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Dim. reduction - w/ fractals 

•  (backward elimination: ~ reverse) 
–  drop the attribute with least impact on the p.f.d. 
–  repeat 
–  until we are epsilon below the full f.d. 

Optional 
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Dim. reduction - w/ fractals 

•  Q: what is the smallest # of attributes we 
should keep? 

Optional 
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Dim. reduction - w/ fractals 

•  Q: what is the smallest # of attributes we 
should keep? 

•  A: we should keep at least as many as the 
f.d. (and probably, a few more) 

Optional 
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Dim. reduction - w/ fractals 

•  Results: E.g., on the ‘currency’ dataset 
•  (daily exchange rates for USD, HKD, BP, 

FRF, DEM, JPY - i.e., 6-d vectors, one per 
day - base currency: CAD) 

e.g.: 

USD 

FRF 

Optional 
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E.g., on the ‘currency’ dataset 
correlation integral 

log(r) 

log(#pairs(<=r)) 

Optional 
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E.g., on the ‘currency’ dataset 
Optional 
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Dim. reduction - w/ fractals 
 Conclusion: 
•  can do non-linear dim. reduction 

PFD~1 

PFD~1 

global FD=1 

Optional 
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