C. Faloutsos 15-826

g CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture#3: Primary key indexing — hashing
C. Faloutsos

% CMU SCS

Reading Material

* [Litwin] Litwin, W., (1980), Linear
Hashing: A New Tool for File and Table
Addressing, VLDB, Montreal, Canada,
1980

* textbook, Chapter 3

» Ramakrinshan+Gehrke, Chapter 11

15-826 Copyright: C. Faloutsos (2013) 2

g CMU SCS

Outline

Goal: ‘Find similar / interesting things’
* Intro to DB
¢ Indexing - similarity search

+ Data Mining

15-826 Copyright: C. Faloutsos (2013) 3

C. Faloutsos 15-826

g CMU SCS

Indexing - Detailed outline

* primary key indexing
— B-trees and variants

q — (static) hashing
— extendible hashing

* secondary key indexing

* spatial access methods
* text

15-826 Copyright: C. Faloutsos (2013) 4

% CMU SCS

(Static) Hashing

Problem: “find EMP record with ssn=123"

What if disk space was free, and time was at
premium?

15-826 Copyright: C. Faloutsos (2013) 5

g CMU SCS

Hashing

A: Brilliant idea: key-to-address transformation:

#0 page
N R
)\- #123 page
N K
#999,999,999
15-826 Copyright: C. Faloutsos (2013) 6

C. Faloutsos 15-826

g CMU SCS

Hashing

Since space is NOT free:
» use M, instead of 999,999,999 slots
* hash function: h(key) = slot-id

#0 page
N [
123; Smith; Main str N #123 page
N [
#999,999,999
15-826 Copyright: C. Faloutsos (2013) 7
% CMU SCS
0
Hashing

Typically: each hash bucket is a page, holding
many records:

#0 page
N N
(12 smit e[|z
N N
M
15-826 Copyright: C. Faloutsos (2013) 8

g CMU SCS

Hashing - design decisions?

* eg., IRS, 200M tax returns, by SSN

15-826 Copyright: C. Faloutsos (2013) 9

C. Faloutsos 15-826

g CMU SCS

Indexing- overview

* B-trees
* (static) hashing
=) — hashing functions
— size of hash table

— collision resolution
— Hashing vs B-trees
— Indices in SQL

» Extendible hashing

15-826 Copyright: C. Faloutsos (2013)

% CMU SCS

Design decisions

1) formula () for hashing function
2) size of hash table M
3) collision resolution method

15-826 Copyright: C. Faloutsos (2013)

g CMU SCS

Design decisions

1) formula £() for hashing function Division hashing
2) size of hash table M 90% utilization
3) collision resolution method Separate chaining

15-826 Copyright: C. Faloutsos (2013)

C. Faloutsos 15-826

g CMU SCS

Design decisions - functions

* Goal: uniform spread of keys over hash
buckets

* Popular choices:

— Division hashing

— Multiplication hashing

15-826 Copyright: C. Faloutsos (2013) 13

Division hashing

h(x) = (a*x+b) mod M
* eg., h(ssn) = (ssn) mod 1,000

— gives the last three digits of ssn

* M: size of hash table - choose a prime
number, defensively (why?)

15-826 Copyright: C. Faloutsos (2013) 14

g CMU SCS

Division hashing

* eg., M=2; hash on driver-license number
(dIn), where last digit is ‘gender’ (0/1 = M/F)

* in an army unit with predominantly male
soldiers

* Thus: avoid cases where M and keys have
common divisors - prime M guards against
that!

15-826 Copyright: C. Faloutsos (2013) 15

C. Faloutsos 15-826

g CMU SCS

Design decisions

1) formula /() for hashing function
®) 2) size of hash table M
3) collision resolution method

15-826 Copyright: C. Faloutsos (2013) 16

Size of hash table

* eg., 50,000 employees, 10 employee-
records / page

* Q: M=?? pages/buckets/slots

15-826 Copyright: C. Faloutsos (2013) 17

g CMU SCS

Size of hash table

* eg., 50,000 employees, 10 employees/page

* Q: M=?? pages/buckets/slots

» A: utilization ~ 90% and

— M: prime number

Eg., in our case: M= closest prime to
50,000/10/0.9 = 5,555

15-826 Copyright: C. Faloutsos (2013) 18

C. Faloutsos 15-826

g CMU SCS

Design decisions

1) formula /() for hashing function
2) size of hash table M
q 3) collision resolution method

15-826 Copyright: C. Faloutsos (2013) 19

Collision resolution

* Q: what is a ‘collision’?
« A:??

15-826 Copyright: C. Faloutsos (2013) 20

g CMU SCS

Collision resolution

#0 page

N R
123; Smith; Main str. | ————— FUL #(123)

f\'v v

15-826 Copyright: C. Faloutsos (2013) 21

C. Faloutsos 15-826

g CMU SCS

Collision resolution

* Q: what is a ‘collision’?

« A:??

* Q: why worry about collisions/overflows?
(recall that buckets are ~90% full)

15-826 Copyright: C. Faloutsos (2013) 2

Collision resolution

* Q: what is a ‘collision’?

« A:??

* Q: why worry about collisions/overflows?
(recall that buckets are ~90% full)

 A: ‘birthday paradox’

15-826 Copyright: C. Faloutsos (2013) 23

g CMU SCS

Collision resolution

* open addressing
— linear probing (ie., put to next slot/bucket)

— re-hashing

* separate chaining (ie., put links to overflow
pages)

15-826 Copyright: C. Faloutsos (2013) 24

C. Faloutsos

g CMU SCS

Collision resolution

linear probing: 0
page

#h(123)

123; Smith; Main str. I\i’ FUL

at
- 31
<<
<<

15-826 Copyright: C. Faloutsos (2013)

SKIP |

% CMU SCS

Collision resolution

re-hashing #0 page
h1()
123; Smith; Main str. #h(123)
h2()
M
15-826 Copyright: C. Faloutsos (2013)

g CMU SCS

Collision resolution

separate chaining

NoR

/N

SKIP |

123; Smith; Main str. | ————— FUL

f\'v v

15-826 Copyright: C. Faloutsos (2013)

15-826

C. Faloutsos

g CMUSCS
Design decisions - conclusions

* function: division hashing
— h(x) = (a*x+b) mod M
* size M: ~90% util.; prime number.

* collision resolution: separate chaining
— easier to implement (deletions!);
— no danger of becoming full

15-826 Copyright: C. Faloutsos (2013) 28

% CMU SCS

Indexing- overview

* B-trees

* (static) hashing
— hashing functions
— size of hash table
— collision resolution

®) - Hashing vs B-trees

— Indices in SQL

» Extendible hashing

15-826 Copyright: C. Faloutsos (2013) 29

g CMU SCS

Hashing vs B-trees:

Hashing offers
 speed ! (O(1) avg. search time)

..but:

15-826 Copyright: C. Faloutsos (2013) 30

15-826

10

C. Faloutsos

g CMU SCS

Hashing vs B-trees:

..but B-trees give:

* key ordering:
— range queries
— proximity queries
— sequential scan

* O(log(N)) guarantees for search, ins./del.
* graceful growing/shrinking

15-826 Copyright: C. Faloutsos (2013) 31

% CMU SCS

Hashing vs B-trees:

thus:
* B-trees are implemented in most systems

footnotes:
¢ ‘dbm’ and ‘ndbm’ of UNIX: offer one or both

15-826 Copyright: C. Faloutsos (2013) 3

g CMU SCS

Indexing- overview

* B-trees

* (static) hashing
— hashing functions
— size of hash table
— collision resolution
— Hashing vs B-trees

m) - Indices in SQL
+ Extendible hashing

15-826 Copyright: C. Faloutsos (2013) 33

15-826

11

C. Faloutsos

B3

CMU SCS

Indexing in SQL

« create index <index-name> on <relation-
name> (<attribute-list>)

* create unique index <index-name> on
<relation-name> (<attribute-list>)

* drop index <index-name>

15-826 Copyright: C. Faloutsos (2013) 34

Indexing in SQL

. eg.,
create index ssn-index
on STUDENT (ssn)
* or (eg., on TAKES(ssn,cid, grade)):
create index sc-index
on TAKES (ssn, c-id)

15-826 Copyright: C. Faloutsos (2013) 35

=

CMU SCS

Indexing- overview

* B-trees
* (static) Hashing
+ extensible hashing
— ‘linear’ hashing [Litwin]

15-826 Copyright: C. Faloutsos (2013) 36

15-826

12

C. Faloutsos

g CMU SCS

Problem with static hashing

* problem: overflow?

* problem: underflow? (underutilization)

15-826 Copyright: C. Faloutsos (2013) 37

% CMU SCS
Solution: Dynamic/extendible
hashing
* idea: shrink / expand hash table on demand..
* ..dynamic hashing
Details: how to grow gracefully, on overflow?

Many solutions — simplest: Linear hashing
[Litwin]

15-826 Copyright: C. Faloutsos (2013) 38

g CMU SCS

Indexing- overview

* B-trees
+ Static hashing
+ extendible hashing
— ‘extensible” hashing [Fagin, Pipenger +]
m) — ‘linear’ hashing [Litwin]

15-826 Copyright: C. Faloutsos (2013) 39

15-826

13

C. Faloutsos 15-826

Linear hashing - Detailed
overview

* Motivation

e main idea

search algo

insertion/split algo

* deletion
* performance analysis

* variations

15-826 Copyright: C. Faloutsos (2013) 40

% CMU SCS

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

15-826 Copyright: C. Faloutsos (2013) 41

g CMU SCS

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

A: split buckets from left to right, regardless
of which one overflowed (‘crazy’, but it
works well!) - Eg.:

15-826 Copyright: C. Faloutsos (2013) 42

14

C. Faloutsos 15-826

g CMU SCS

Linear hashing
Initially: 2(x) =x mod N (N=4 here)

Assume capacity: 3 records / bucket

Insert key 17’

bucket- id 0 1 2 3
4 85 916 7 11
13
15-826 Copyright: C. Faloutsos (2013) 43

% CMU SCS

Linear hashing

Initially: #(x) =x mod N (N=4 here)

overflow of bucket#1

17
bucket- id 0 1 2 3
4 815 916 7 11
13
15-826 Copyright: C. Faloutsos (2013) 44

g CMU SCS

Linear hashing

Initially: 2(x) =x mod N (N=4 here)
overflow of bucket#1

Split #0, anyway!!!

bucket- id 0 1 2 3
4 815 916 7 11
13
15-826 Copyright: C. Faloutsos (2013) 45

15

C. Faloutsos 15-826

g CMU SCS

Linear hashing

Initially: A(x) =x mod N (N=4 here)
Split #0, anyway!!!

1
7 Q: But, how?
bucket- id 0 1 2 3
4 815 916 7 11
13
15-826 Copyright: C. Faloutsos (2013) 46

% CMU SCS

Linear hashing
A:use two h.f.: h0(x) = x mod N
hl(x) =x mod (2*N)

17
bucket- id 0 1 2 3
4 815 916 7 11
13
15-826 Copyright: C. Faloutsos (2013) 47

g CMU SCS

Linear hashing - after split:
A: use two h.f.: h0(x) = x mod N
hi(x) =x mod (2*N)

bucket- id 0 1 2 3 4
8 5 916 7 11| 4
13
17
15-826 Copyright: C. Faloutsos (2013) 48

16

C. Faloutsos 15-826

g CMU SCS

Linear hashing - after split:
A:use two h.f.: h0(x) = x mod N
hil(x) =x mod (2*N)

bucket- id 0 1 2 3 4
8 5 9|6 7 11| 4
13
!
17 overflow
15-826 Copyright: C. Faloutsos (2013) 49

% CMU SCS

Linear hashing - after split:
A:use two h.f.: h0(x) = x mod N
hl(x) =x mod (2*N)

lsplit ptr
bucket- id 0 1 2 3
8 |5 916 |7 1|4
13
|
17 overflow
15-826 Copyright: C. Faloutsos (2013) 50

g CMU SCS

Linear hashing - overview

¢ Motivation

¢ main idea

) « scarch algo

* insertion/split algo

* deletion

* performance analysis

e variations

15-826 Copyright: C. Faloutsos (2013) 51

17

C. Faloutsos 15-826

g CMU SCS

Linear hashing - searching?

h0(x) = x mod N (for the un-split buckets)
hl(x) = x mod (2*N) (for the splitted ones)

lsplit ptr
bucket- id 0 1 2 3 4
8 |5 %916 |7 11]4
13
|
17 overflow
15-826 Copyright: C. Faloutsos (2013) 52

% CMU SCS

Linear hashing - searching?
Q1: find key ‘6’? Q2: find key ‘4°?

Q3: key ‘87?
lsplit ptr
bucket- id 0 1 2 3
8 |5 916 |7 1|4
13
|
17 overflow
15-826 Copyright: C. Faloutsos (2013) 53

g CMU SCS

Linear hashing - searching?

Algo to find key k’:
» compute b= h0(k);
« if b<split-ptr, compute b=h1(k)

« search bucket b

15-826 Copyright: C. Faloutsos (2013) 54

18

C. Faloutsos 15-826

g CMU SCS

Linear hashing - overview

* Motivation

e main idea

* search algo

m)+ insertion/split algo

* deletion
* performance analysis

variations

15-826 Copyright: C. Faloutsos (2013) 55

% CMU SCS

Linear hashing - insertion?

Algo: insert key ‘&

* compute appropriate bucket ‘b’

« if the overflow criterion is true

esplit the bucket of ‘split-ptr’

« split-ptr ++ (*)

15-826 Copyright: C. Faloutsos (2013) 56

g CMU SCS

Linear hashing - insertion?

notice: overflow criterion is up to us!!

Q: suggestions?

15-826 Copyright: C. Faloutsos (2013) 57

19

C. Faloutsos 15-826

g CMU SCS

Linear hashing - insertion?

notice: overflow criterion is up to us!!

Q: suggestions?
Al: space utilization >= u-max

15-826 Copyright: C. Faloutsos (2013) 58

% CMU SCS

Linear hashing - insertion?

notice: overflow criterion is up to us!!

Q: suggestions?
Al: space utilization > u-max

A2: avg length of ovf chains > max-len
A3: ...

15-826 Copyright: C. Faloutsos (2013) 59

g CMU SCS

Linear hashing - insertion?

Algo: insert key ‘&

 compute appropriate bucket ‘b’

« if the overflow criterion is true

+split the bucket of “split-ptr’

« split-ptr ;‘*)

what if we reach the right edge??
15-826 Copyright: C. Faloutsos (2013) 60

20

C. Faloutsos

g CMU SCS

Linear hashing - split now?

h0(x) =xmod N (for the un-split buckets)
hl(x) = x mod (2*N) for the splitted ones)

split ptr

15-826 Copyright: C. Faloutsos (2013) 61

% CMU SCS

Linear hashing - split now?

h0(x) = x mod N (for the un-split buckets)
hl(x) = x mod (2*N) (for the splitted ones)

split ptr

15-826 Copyright: C. Faloutsos (2013) 62

g CMU SCS

Linear hashing - split now?
e —feFie=splil buckets)

hl(x) =x mod (2*N) (for the splitted ones)

split ptr
0 1 2 3 4 5 6 7
15-826 Copyright: C. Faloutsos (2013) 63

15-826

21

C. Faloutsos

g CMU SCS

Linear hashing - split now?

=Split buckets)
hl(x) =x mod (2*N) (for the splitted ones)

split ptr
0 1 2 3 4 5 6 7
15-826 Copyright: C. Faloutsos (2013) 64

% CMU SCS
Linear hashing - split now?

this state is called ‘full expansion’

15-826

split ptr
0 1 2 3 4 5 6 7
15-826 Copyright: C. Faloutsos (2013) 65

g CMU SCS

Linear hashing - observations

In general, at any point of time, we have at most two
h.f. active, of the form:

*h,(x) = x mod (N *2")
hyi(x) = x mod (N * 2]

(after a full expansion, we have only one h.f.)

15-826 Copyright: C. Faloutsos (2013)

66

22

C. Faloutsos

CMU SCS

Linear hashing - overview

* Motivation

* main idea

* search algo

* insertion/split algo
m). deletion

* performance analysis

variations

15-826 Copyright: C. Faloutsos (2013) 67

CMU SCS

Linear hashing - deletion?

 reverse of insertion:

15-826 Copyright: C. Faloutsos (2013) 68

CMU SCS

Linear hashing - deletion?
* reverse of insertion:

« if the underflow criterion is met

— contract!

15-826 Copyright: C. Faloutsos (2013) 69

15-826

23

C. Faloutsos 15-826

g CMU SCS
Linear hashing - how to

contract?
h0(x) = mod N (for the un-split buckets)
hl(x) = mod (2*N) (for the splitted ones)

split ptr

15-826 Copyright: C. Faloutsos (2013) 70

% CMUSCS
Linear hashing - how to

contract?
h0(x) = mod N (for the un-split buckets)
hl(x) = mod (2*N) (for the splitted ones)

split ptr
v
0 1 2 3 4 5 Tt
15-826 Copyright: C. Faloutsos (2013) 71

g CMU SCS

Linear hashing - overview

* Motivation

* main idea

* search algo

* insertion/split algo

* deletion

) . performance analysis

e variations

15-826 Copyright: C. Faloutsos (2013) 72

24

C. Faloutsos 15-826

g CMU SCS

Linear hashing - performance

» [Larson, TODS 1982]

search-time

split: if u>u,

=.85
(avg # of d.a.) (say v,)
1.01 d.a. .
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2013) 73

% CMU SCS

Linear hashing - performance

» [Larson, TODS 1982]

search-time

split: if u>u,

— 85
(avg # of d.a.) (say uy=85)
2
1o1da (o
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2013) 74

g CMU SCS

Linear hashing - performance

» [Larson, TODS 1982]

search-time

split: if u>u,

=.85
(avg # of d.a.) (say vy)
??
1.01 d.a. /
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2013) 75

25

C. Faloutsos 15-826

g CMU SCS

Linear hashing - performance

» [Larson, TODS 1982]

search-time

split: if u>u,

=.85
(avg # of d.a.) (say v,)
/ 7
1.01 d.a.
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2013) 76

% CMU SCS

Linear hashing - performance

» [Larson, TODS 1982]

. split: if u>u
search-time P 0

—85
(avg # of d.a.) (say uy=85)
1.01 d.a. / .
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2013) 77

g CMU SCS

Linear hashing - performance

» [Larson, TODS 1982]

. split: if u>u
search-time P 0

=.85
(avg #of d.a.) (say ug=85)
eg., 1.3 d.a.
eg., 1.01 d.a. ¢ N
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2013) 78

26

C. Faloutsos 15-826

g CMU SCS

Linear hashing - overview

* Motivation

e main idea

* search algo

* insertion/split algo

* deletion
* performance analysis

m). variations

15-826 Copyright: C. Faloutsos (2013) 79

% CMU SCS

Other hashing variations

* ‘order preserving’

* ‘perfect hashing’ (no collisions!) [Ed. Fox,
et al]

15-826 Copyright: C. Faloutsos (2013) 80

g CMU SCS

Primary key indexing -
conclusions

* hashing is O(1) on the average for search

* linear hashing: elegant way to grow a hash
table

* B-trees: industry work-horse for primary-
key indexing (O(log(N) w.c.!)

15-826 Copyright: C. Faloutsos (2013) 81

27

C. Faloutsos 15-826

g CMU SCS
References for primary key
indexing

» [Fagint+] Ronald Fagin, Jiirg Nievergelt, Nicholas
Pippenger, H. Raymond Strong: Extendible Hashing - A
Fast Access Method for Dynamic Files. TODS 4(3):
315-344(1979)

* [Fox] Fox, E. A., L. S. Heath, Q.-F. Chen, and A. M.
Daoud. "Practical Minimal Perfect Hash Functions for
Large Databases." Communications of the ACM 35.1
(1992): 105-21.

15-826 Copyright: C. Faloutsos (2013) 82

% CMU SCS

References, cont’d

* [Knuth] D.E. Knuth. The Art Of Computer Programming,
Vol. 3, Sorting and Searching, Addison Wesley

» [Larson] Per-Ake Larson Performance Analysis of Linear
Hashing with Partial Expansions ACM TODS, 7,4, Dec.
1982, pp 566--587

» [Litwin] Litwin, W., (1980), Linear Hashing: A New Tool
for File and Table Addressing, VLDB, Montreal, Canada,
1980

15-826 Copyright: C. Faloutsos (2013) 83

28

