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Introduction

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]

Protein Interactions 
[genomebiology.com]

Friendship Network 
[Moody ’01]

Graphs are everywhere!
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Physical graphs

• Physical networks

• Physical Internet

• Telephone lines

• Commodity distribution networks
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Networks derived from 
"behavior"

• Telephone call patterns

• Email, Blogs, Web, Databases, XML

• Language processing

• Web of trust, epinions.com
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Outline

Topology, ‘ laws’ and generators
• ‘ Laws’ and patterns

• Generators

• Tools
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Motivating questions

• What do real graphs look like?
– What properties of nodes, edges are important 

to model?
– What local and global properties are important 

to measure?

• How to generate realistic graphs?
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Why should we care?

• A1: extrapolations: how will the 
Internet/Web look like next year?

• A2: algorithm design: what is a realistic 
network topology, 
– to try a new routing protocol? 

– to study virus/rumor propagation, and 
immunization?
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Why should we care? (cont’d)

• A3: Sampling: How to get a ‘good’ sample 
of a network?

• A4: Abnormalities: is this sub-graph / sub-
community / sub-network ‘normal’? (what is
normal?)
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Virus propagation

• Who is the best person/computer  to 
immunize against a virus?
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Outline

Topology, ‘ laws’ and generators
• ‘ Laws’ and patterns

• Generators

• Tools
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Topology

How does the Internet look like? Any rules?

(Looks random – right?)
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Laws and patterns

Real graphs are NOT random!!

• Diameter

• in- and out- degree distributions

• other (surprising) patterns
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Laws – degree distributions

• Q: avg degree is ~2 - what is the most 
probable degree?

degree

count ??

2
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Laws – degree distributions

• Q: avg degree is ~3 - what is the most 
probable degree?

degreedegree

count ??

2

count

2
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I.Power-law: outdegree O

The plot is linear in log-log scale [FFF’99]

freq = degree (-2.15)

O = -2.15

Exponent = slope

Outdegree

Frequency

Nov’97

-2.15
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II.Power-law: rank R

• The plot is a line in log-log scale

Exponent = slope

R = -0.74

R

outdegree

Rank: nodes  in decreasing outdegree order

Dec’98
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III. Eigenvalues

• Let A be the adjacency matrix of graph

• λ and v is an eigenvalue/eigenvector pair if:
A v = λ v

• Eigenvalues are strongly related to graph 
topology

A
B C

D

A B C D

A 1

B 1 1 1

C 1

D 1
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III.Power-law: eigen E

• Eigenvalues in decreasing order (first 20)

• [Mihail+, 02]:   R = 2 *  E

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

Dec’98
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IV. The Node Neighborhood

• N(h) = # of pairs of nodes within h hops

UCLA-IPAM 05 (c) 2005 C. Faloutsos 21

Carnegie Mellon

IV. The Node Neighborhood

• Q: average degree = 3 - how many 
neighbors should I expect within 1,2,… h
hops?

• Potential answer:
1 hop -> 3 neighbors

2 hops -> 3 *  3

…

h hops -> 3h
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IV. The Node Neighborhood

• Q: average degree = 3 - how many 
neighbors should I expect within 1,2,… h
hops?

• Potential answer:
1 hop -> 3 neighbors

2 hops -> 3 *  3

…

h hops -> 3h

WE HAVE DUPLICATES!
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IV. The Node Neighborhood

• Q: average degree = 3 - how many 
neighbors should I expect within 1,2,… h
hops?

• Potential answer:
1 hop -> 3 neighbors

2 hops -> 3 *  3

…

h hops -> 3h

‘avg’ degree: meaningless!
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IV. Power-law: hopplot H

Pairs of nodes as a function of hops   N(h)= hH

H = 4.86

Dec 98Hops

# of Pairs # of Pairs

Hops      Router level ’95

H = 2.83
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Observation
• Q: Intuition behind ‘hop exponent’?
• A: ‘ intrinsic=fractal dimensionality’ of the 

network

N(h) ~ h1 N(h) ~ h2

...
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Hop plots

• More on fractal/intrinsic dimensionalities: 
very soon
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But:

• Q1: How about graphs from other domains?

• Q2: How about temporal evolution?
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The Peer-to-Peer Topology

• Frequency versus degree 

• Number of adjacent peers follows a power-law

[Jovanovic+]
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More Power laws

• Also hold for other web graphs [Barabasi+, 
‘99], [Kumar+, ‘99]

• citation graphs (see later)

• and many more
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Time Evolution: rank R
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The rank exponent has not changed! [Siganos+, ‘03]

Domain
level

#days since Nov. ‘97
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Outline

Part 1: Topology, ‘ laws’ and generators
• ‘ Laws’ and patterns

• Power laws for degree, eigenvalues, hop-plot
• ???

• Generators
• Tools

Part 2: PageRank, HITS and eigenvalues
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Any other ‘ laws’?

Yes!

UCLA-IPAM 05 (c) 2005 C. Faloutsos 33

Carnegie Mellon

Any other ‘ laws’?

Yes!

• Small diameter
– six degrees of separation / ‘Kevin Bacon’

– small worlds [Watts and Strogatz]
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Any other ‘ laws’?
• Bow-tie, for the web [Kumar+ ‘99]

• IN, SCC, OUT, ‘ tendrils’

• disconnected components
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Any other ‘ laws’?
• power-laws in communities (bi-partite cores) 

[Kumar+, ‘99]

2:3 core
(m:n core)

Log(m)

Log(count)

n:1

n:2n:3
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Any other ‘ laws’?
• “Jellyfish” for Internet [Tauro+ ’01]

• core: ~clique

• ~5 concentric layers

• many 1-degree nodes
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How do graphs evolve?

• degree-exponent seems constant - anything 
else?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs, 
hints that

diameter ~ O(log(N))     or

diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size

• Q: What is happening, in reality?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs, 
hints that

diameter ~ O(log(N))     or

diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size

• Q: What is happening, in reality?

• A: It shr inks(!!), towards a constant value
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Shrinking diameter

ArXiv physics papers 
and their citations

[Leskovec+05a]
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Shrinking diameter

ArXiv: who co-authored 
with whom
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Shrinking diameter

U.S. patents citing each 
other
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Shrinking diameter

Autonomous systems
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that 

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? ...*  E(t)
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that 

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? ...*  E(t)

• A: over-doubled!
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Temporal evolution of graphs

• A: over-doubled - but obeying:

E(t) ~ N(t)a            for all t

where 1<a<2

a=1: constant avg degree

a=2: ~full clique

• Real graphs densify over time [Leskovec+05a]
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Temporal evolution of graphs

• A: over-doubled - but obeying:

E(t) ~ N(t)a            for all t

• Identically:

log(E(t)) / log(N(t)) = constant       for all t
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Densification Power Law

ArXiv: Physics papers

and their citations

1.69

N(t)

E(t)
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Densification Power Law

U.S. Patents, citing each 
other

1.66

N(t)

E(t)
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Densification Power Law

Autonomous Systems

1.18

N(t)

E(t)

UCLA-IPAM 05 (c) 2005 C. Faloutsos 51

Carnegie Mellon

Densification Power Law

ArXiv: who co-authored 
with whom

1.15

N(t)

E(t)
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Summary of ‘ laws’

• Power laws for degree distributions

• …………... for eigenvalues, bi-partite cores

• Small & shr inking diameter (‘6 degrees’ )

• ‘Bow-tie’ for web; ‘ jelly-fish’ for internet

• ``Densification Power Law’ ’ , over time
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Outline

Part 1: Topology, ‘ laws’ and generators
• ‘ Laws’ and patterns

• Generators

• Tools
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Generators

• How to generate random, realistic graphs?
– Erdos-Renyi model: beautiful, but unrealistic

– process-based generators

– recursive generators
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Erdos-Renyi

• random graph – 100 
nodes, avg degree = 2

• Fascinating properties 
(phase transition)

• But: unrealistic 
(Poisson degree 
distribution != power 
law)
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Process-based

• Barabasi; Barabasi-Albert: Preferential 
attachment -> power-law tails!
– ‘ rich get richer’

• [Kumar+]: preferential attachment + mimic
– Create ‘communities’

UCLA-IPAM 05 (c) 2005 C. Faloutsos 57

Carnegie Mellon

Process-based (cont’d)

• [Fabrikant+, ‘02]: H.O.T.: connect to 
closest, high connectivity neighbor

• [Pennock+, ‘02]: Winner does NOT take all

• ... and many more
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Recursive generators - intuition

• recursion <-> self-similarity <-> power laws
(see details later)

• Recursion -> communities within 
communities within communities
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Wish list for a generator:

• Power-law-tail in- and out-degrees

• Power-law-tail scree plots

• shr inking/constant diameter

• Densification Power Law

• communities-within-communities

Q: how to achieve all of them?
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Wish list for a generator:

• Power-law-tail in- and out-degrees

• Power-law-tail scree plots

• shrinking/constant diameter

• Densification Power Law

• communities-within-communities

Q: how to achieve all of them?

A: Kronecker matrix product [Leskovec+05b]
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Kronecker product
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Kronecker product
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Kronecker product

N N*N N**4
UCLA-IPAM 05 (c) 2005 C. Faloutsos 64

Carnegie Mellon

Properties of Kronecker graphs:

• Power-law-tail in- and out-degrees

• Power-law-tail scree plots

• constant diameter

• perfect Densification Power Law

• communities-within-communities
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Properties of Kronecker graphs:

• Power-law-tail in- and out-degrees

• Power-law-tail scree plots

• constant diameter

• perfect Densification Power Law

• communities-within-communities

and we can prove all of the above

(first and only generator that does that)
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Properties of Kronecker graphs:

• ‘stochastic’ version gives even better results 
and
– Includes Erdos-Renyi as special case

– Includes ‘RMAT’ as special case 
[Chakrabarti+,’04]

• (stochastic version: generate Kronecker 
matrix; decimate edges with some 
probability)



C. Faloutsos CMU

12

UCLA-IPAM 05 (c) 2005 C. Faloutsos 67

Carnegie Mellon

Kronecker - ArXiv

real

(stochastic)
Kronecker

Degree Scree Diameter D.P.L.

(det. 
Kronecker)
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Kronecker - patents

Degree Scree Diameter D.P.L.
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Kronecker - A.S.
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Conclusions

‘ Laws’ and patterns:
• Power laws for degrees, eigenvalues, 

‘ communities’ /cores

• Small / Shrinking diameter

• Bow-tie; jelly-fish
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Conclusions, cont’ d

Generators

• Preferential attachment (Barabasi)

• Variations
• Recursion – Kronecker product & RMAT
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Outline

Topology, ‘ laws’ and generators
• ‘ Laws’ and patterns

• Generators

• Tools
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Outline

Part 1: Topology, ‘ laws’ and generators
• ‘ Laws’ and patterns

• Generators

• Tools: power laws and fractals
• Why so many power laws?

• Self-similarity, power laws, fractal dimension
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Power laws

• Q1: Are they only in graph-related settings?

• A1: 

• Q2: Why so many?

• A2:
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Power laws

• Q1: Are they only in graph-related settings?

• A1: NO! 

• Q2: Why so many?

• A2: self-similarity; ‘ rich-get-richer’
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A famous power law: Zipf’ s law

• Bible - rank vs 
frequency (log-log)

log(rank)

log(freq)

“a”

“ the”
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Power laws, cont’ed

• length of  file transfers [Bestavros+]

• web hit counts [Huberman]

• magnitude of earthquakes (Guttenberg-
Richter law)

• sizes of lakes/islands (Korcak’s law)

• Income distribution (Pareto’s law)
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Web Site Traffic

log(freq)

log(count)
Zipf

Click-stream data

u-id’s url’s

log(freq)

log(count)

‘ yahoo’

‘super-surfer’
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Lotka’s law

(Lotka’s law of publication count); and 
citation counts: (citeseer.nj.nec.com 6/2001)

1

10

100

100 1000 10000

lo
g 

co
un

t

log # citations

’cited.pdf’

log(#citations)

log(count)

J. Ullman
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Power laws

• Q1: Are they only in graph-related settings?

• A1: NO! 

• Q2: Why so many?

• A2: self-similarity; ‘ rich-get-richer’
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Fractals and power laws

• Power laws and fractals are closely related
• And fractals appear in MANY cases

– coast-lines: 1.1-1.5
– brain-surface: 2.6
– rain-patches: 1.3
– tree-bark: ~2.1
– stock prices / random walks: 1.5
– ... [see Mandelbrot; or Schroeder]
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Digression: intro to fractals

• Fractals: sets of points that are self similar
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A famous fractal

e.g., Sierpinski triangle:
B

CA A C

B

A C

B

C’

’

A’

B’

C’

B’

A’

(a)

...
zero area;

infinite length!

dimensionality = ??
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A famous fractal

e.g., Sierpinski triangle:
B

CA A C

B

A C

B

C’

’

A’

B’

C’

B’

A’

(a)

...
zero area;

infinite length!

dimensionality = log(3)/log(2) = 1.58
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A famous fractal

equivalent graph:
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Intrinsic (‘ fractal’ ) dimension

How to estimate it?

UCLA-IPAM 05 (c) 2005 C. Faloutsos 87

Carnegie Mellon

Intrinsic (‘ fractal’ ) dimension

• Q: fractal dimension 
of a line?

• A: nn ( <= r ) ~ r^1
(‘power law’ : y=x^a)

• Q: fd of a plane?

• A: nn ( <= r ) ~ r^2

fd== slope of (log(nn) vs 
log(r) )
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Sierpinsky triangle

log( r )

log(#pairs 
within <=r )

1.58

== ‘cor relation integral’

= CDF of pairwise distances
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Sierpinsky triangle

log( r )

log(#pairs 
within <=r )

1.58

== ‘cor relation integral’

= CDF of pairwise distances
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Line

log( r )

log(#pairs 
within <=r )

1.58

== ‘cor relation integral’

= CDF of pairwise distances

1...
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2-d (Plane)

log( r )

log(#pairs 
within <=r )

1.58

== ‘cor relation integral’

= CDF of pairwise distances

2
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Recall: Hop Plot

• Internet routers: how many neighbors 
within h hops?  (= correlation integral!)

Reachability function: 
number of neighbors 
within r hops, vs r (log-
log).

Mbone routers, 1995log(hops)

log(#pairs)

2.8
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Fractals and power laws

They are related concepts:

• fractals <=>

• self-similarity <=>

• scale-free <=>

• power laws ( y= xa )
– F = C r(-2)
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Conclusions

• Real settings/graphs: skewed distributions
– ‘mean’ is meaningless

degree

count ??

2

count

2
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Conclusions

• Real settings/graphs: skewed distributions
– ‘mean’ is meaningless

– slope of power law, instead

degree

count ??

2

count

2 log(degree)

log(count)
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Conclusions: Tools:

• rank-frequency plot (a’ la Zipf)

• Correlation integral (= neighborhood 
function)
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Conclusions (cont’d)

• Recursion/self-similarity
– May reveal non-obvious patterns (e.g., bow-ties 

within bow-ties within bow-ties) [Dill+, ‘01]

“ To iterate is human, to recurse is divine”
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Resources

Generators:

• RMAT (deepay AT cs.cmu.edu)

• Kronecker ({ deepay,jure}  AT cs.cmu.edu)

• BRITE  http://www.cs.bu.edu/brite/

• INET: http://topology.eecs.umich.edu/inet
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Other resources

Visualization - graph algo’s:

• Graphviz: http://www.graphviz.org/

• pajek: http://vlado.fmf.uni-
lj.si/pub/networks/pajek/

Kevin Bacon web site:        
http://www.cs.virginia.edu/oracle/
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Thank you!

www.cs.cmu.edu/~christos

www.db.cs.cmu.edu
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EXTRA
Virus propagation
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Outline

Topology, ‘ laws’ and generators

EXTRA: Virus Propagation
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Problem definition

• Q1: How does a virus spread across an 
arbitrary network?

• Q2: will it create an epidemic?
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Framework

• Susceptible-Infected-Susceptible (SIS) 
model 
– Cured nodes immediately become susceptible 

Susceptible 
&  healthy

Infected &  
infectious

Infected by neighbor

Cured 
internally

UCLA-IPAM 05 (c) 2005 C. Faloutsos 116

Carnegie Mellon

The model

• (virus) Birth rate β: probability than an 
infected neighbor attacks

• (virus) Death rate δ: probability that an 
infected node heals

Infected

Healthy

NN1

N3

N2
Prob. 

�
Prob. �

Prob. δδδδ
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The model

• Virus ‘strength’ s= β/δ

Infected

Healthy

NN1

N3

N2
Prob. 

�
Prob. �

Prob. �
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Epidemic threshold τ

of a graph, defined as the value of τ, such that

if   strength s = β / δ <  τ
an epidemic can not happen

Thus, 

• given a graph

• compute its epidemic threshold
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Epidemic threshold τ

What should τ depend on?

• avg. degree? and/or highest degree? 

• and/or variance of degree?

• and/or third moment of degree?
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Epidemic threshold

• [Theorem] We have no epidemic, if 

�
/� < � = 1/ � 1,A
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Epidemic threshold

• [Theorem] We have no epidemic, if 

�
/� < � = 1/ � 1,A

largest eigenvalue
of adj. matrix A

attack prob.

recovery prob.
epidemic threshold

Proof: [Wang+03]
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Experiments (Oregon)
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Our result:

• Holds for any graph

• includes older results as special cases
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Thank you!

www.cs.cmu.edu/~christos

www.db.cs.cmu.edu

(really done this time � )


