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Introduction

Protein Interactions

Internet Map Food Web !
[genomebiology.com]

[lumeta.com] [Martinez '91]

Graphs are everywhere!

Friendship Network
[Moody '01]
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Physical graphs

e Physical networks

Physical Internet

e Telephone lines

Commodity distribution networks
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Networks derived from
"behavior"
Telephone call patterns
« Email, Blogs, Web, Databases, XML
 Language processing
Web of trust, epinions.com
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Outline

Topology, ‘ laws' and generators
e ‘Laws and patterns
e Generators
e Tools
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Motivating questions

* What do real graphs look like?

—What properties of nodes, edges are important
to model?

—What local and global properties are important
to measure?

* How to generate realistic graphs?
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Why should we care?

e Al: extrapolations: how will the
Internet/Web look like next year?

e A2: algorithm design: what isaredistic
network topology,
— to try anew routing protocol ?

— to study virus/rumor propagation, and
immunization?
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Why should we care? (cont’ d)

¢ A3: Sampling: How to get a‘good’ sample
of anetwork?

e A4: Abnormalities: isthis sub-graph / sub-
community / sub-network ‘normal’ ? (what is
normal ?)
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2 Virus propagation )

¢ Whoisthebest person/computer to
immunize against avirus?
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Outline

Topology, ‘ laws' and generators
e ‘Laws and patterns
e Generators
e Tools
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Topology

How does the Internet look like? Any rules?

(Looks random —right?)
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Laws and patterns

Real graphs are NOT random!!

* Diameter

* in- and out- degree distributions
« other (surprising) patterns
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Laws — degree distributions

e Q: avg degree is ~2 - what is the most
probable degree?

count »

AN

2 degree
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Laws — degree distributions

.

CarnegieMellon

|.Power-law: outdegree O

Frequency awrsms - THE | Exponent = slope
N 0=-215
\J-2.15
10 ," ..
B Nov' 97
Outdegrfae b

Theplot islinear inlog-log scale [FFF 99]
freq = degree (229
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e Q: avg degreeis xZ } what is the most
probe| ]|
count count

2 degree 2 degree
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[1.Power-law: rank R

outdegree oo -+ 025 | Exponent = slope

w R=-0.74

‘ Dec'98

1 10 100 1000 10000

Rank: nodes in decreasing outdegree order
» Theplotisalineinlog-log scale
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[11. Eigenvalues

e Let A bethe adjacency matrix of graph
e Aandvisan eigenvalue/eigenvector pair if:

Av=Av
« Eigenvalues are strongly related to graph
topology T e P
B C A 1
A B 1 1 1
C 1
D 1
D
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I11.Power-law: eigen E

Eigenvaue

anole 77250) 516 BBy —— Exponent = slope
\\\ E=-048
Dec'98

1

1 10

Rank of decreasing eigenvalue
* Eigenvaluesin decreasing order (first 20)
e [Mihail+,02]: R=2*E
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IV. The Node Neighborhood

e N(h) = # of pairs of nodes within h hops
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IV. The Node Neighborhood

¢ Q: average degree = 3 - how many
neighbors should | expect within 1,2,... h
hops?

 Potentia answer:
1 hop -> 3 neighbors
2hops->3* 3

h hops -> 3"
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IV. The Node Neighborhood

¢ Q: average degree = 3 - how many
neighbors should | expect within 1,2,... h
hops? 0| \

 Potentia answer!
1 hop -> 3 neighbo

2hops->3* 3
WE HAVE DUPLICATES!
h hops -> 3"
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IV. The Node Neighborhood

e Q: average degree = 3 - how many
neighbors should | expect within 1,2,... h
hops?

| NORES
 Potentia answer
1 hop -> 3 neighb:
2hops->3* 3

‘avg’ degree: meaningless!
h hops -> 3"
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V. Power-law: hopplot H

#of Pairs H=486 # of Pairs H=283
ot
testo anptozesn 4R 10410 apesosen -1 TRER)
mmmmmmmmmmmmmm o — e numbero pard —
[ [
[ [
,,,,,,,,,,,,,,, .

1a407 te+07
16408 > 1e408

100000 100000

10000 10000

1000 1000
1 10 1 10 100

Hops Dec 98 Hops  Router level '95
Pairs of nodes as afunction of hops N(h)= h"
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Observation
* Q: Intuition behind ‘ hop exponent’ ?
» A:‘intrinsic=fractal dimensionality’ of the
network

o

N(h) ~ ht N(h) ~ h?
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Hop plots

¢ More on fractal/intrinsic dimensionalities:
very soon
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But:

¢ Q1: How about graphs from other domains?
¢ Q2: How about temporal evolution?
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The Peer-to-Peer Topology

u = 3
(@) Gutella snapshot from Dee, 28, 2000 i[~0.94)

[Jovanovic+]

* Frequency versus degree
» Number of adjacent peersfollows a power-law
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More Power laws

« Also hold for other web graphs [Barabasi+,
‘99, [Kumar+, ‘99]

« citation graphs (see | ater)
« and many more
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Time Evolution: rank R

-0.5

0 .
-3 Domain
level

L

VB —mm

Rank exponent

B

#days since Nov. ‘97
The rank exponent has not changed! [Siganos+, ‘03]
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Outline

Part 1: Topology, ‘ laws and generators
e ‘Laws and patterns
*  Power laws for degree, eigenvalues, hop-plot

» o

¢ Generators
e Tools

Part 2: PageRank, HITS and eigenvalues
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Any other ‘laws ?

Yes!
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Any other ‘laws ?

Yes!

e Small diameter
— six degrees of separation / ‘Kevin Bacon’
— small worlds [Watts and Strogatz]
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Any other ‘laws ?
» Bow-tig, for the web [Kumar+ ‘99]
* IN, SCC, OUT, ‘tendrils
« disconnected components
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Any other ‘laws ?

 power-laws in communities (bi-partite cores)
[Kumar+, ‘99]

Log(count)
*
\ n:2 2:3 core
m:n core
Log(m) ( )
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Any other ‘laws ?
“Jellyfish” for Internet [Tauro+ '01]
* core: ~clique
« ~5 concentric layers
e many 1-degree nodes
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How do graphs evolve?

« degree-exponent seems constant - anything
else?
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Evolution of diameter?

* Prior analysis, on power-law-like graphs,
hints that
diameter ~ O(log(N)) or
diameter ~ O( log(log(N)))
* i.e.., slowly increasing with network size
¢ Q: What is happening, in reality?
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Evolution of diameter?

 Prior analysis, on power-law-like graphs,
hints that
diameter ~ O(log(N)) or
diameter ~ O( log(log(N)))
* i.e..,, sowly increasing with network size
e Q: What is happening, in reality?
e A:ltshrinks(!!), towards a constant value
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Shrinking diameter

ArXiv physics papers
and their citations —ragern
e e ot

CarnegieMellon
Shrinking diameter

ArXiv: who co-authored
with whom

1992 1994 1996 1998 2000 2002
Time [years]

(b) Affiliation network
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[Leskovec+05d]
g o
o sy
1992 1994 1996 1998 2000 2002 2004
Time [years]
(a) arXiv citation graph
UCLA-IPAM 05 (c) 2005 C. Faloutsos 40
CarnegieMellon
Shrinking diameter

U.S. patents citing each
other

1975 1980 1985 1990 1995 2000
Time [years]

(c) Patents
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Shrinking diameter

Autonomous systems

3000 3500 4000 4500 5000 5500 6000 6500
Size of the graph [number of nodes]

(d) AS
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Temporal evolution of graphs

* N(t) nodes; E(t) edges at time t
* suppose that
N(t+1) =2* N(t)
* Q: what isyour guess for
E(t+1) =?..* E(t)
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Temporal evolution of graphs

N(t) nodes; E(t) edges at timet
suppose that
N(t+1) =2* N(t)
* Q: what isyour guess for
E(t+1) =?..* E(t)
 A: over-doubled!
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Temporal evolution of graphs

« A: over-doubled - but obeying:
| EM~N@®®  foralt |
where 1<a<2
a=1: constant avg degree
a=2: ~full clique
» Real graphs densify over time [Leskovec+05a]
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Temporal evolution of graphs

 A: over-doubled - but obeying:
| E®~N@®? foralt |
* ldentically:
10g(E(®)) / 10g(N(t)) = constant|

for al t
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Densification Power Law

ArXiv: Physics papers

and their citations
E() ..

dges
00113 x" R%=1.0

, =

(a) arXiv N(t)
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Densification Power Law

U.S. Patents, citing each

other
E(t)

1075
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Densification Power Law

Autonomous Systems
E()
%
(¢) Autonomous Systems
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Densification Power Law

ArXiv: who co-authored

with whom
E() .

(d) Affiliation network
N(t)
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Summary of ‘laws

» Power laws for degree distributions
L for eigenvalues, bi-partite cores
e Small & shrinking diameter (‘6 degrees’)

* ‘Bow-tie' for web; ‘jelly-fish’ for internet

e “Densification Power Law'’, over time
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Outline

Part 1: Topology, ‘ laws and generators
e ‘Laws and patterns
ﬂ e Generators
e Tools
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Generators

» How to generate random, realistic graphs?
— Erdos-Renyi model: beautiful, but unrealistic
— process-based generators
— recursive generators
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Erdos-Renyi

 random graph — 100
nodes, avg degree = 2

* Fascinating properties
(phase transition)

» But: unredlistic
(Poisson degree

distribution '= power i, ..
) e 3
o \.\,}\ sey
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Process-based

 Barabasi; Barabasi-Albert: Preferential
attachment -> power-law tails!
— ‘rich get richer’

o [Kumar+]: preferential attachment + mimic
— Create ‘communities
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Process-based (cont’ d)

« [Fabrikant+, ‘02]: H.O.T.: connect to
closest, high connectivity neighbor

* [Pennock+, ‘02]: Winner does NOT take all
e ... and many more
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Recursive generators - intuition

e recursion <-> self-similarity <-> power laws
(see details later)

* Recursion -> communities within
communities within communities
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Wish list for a generator:

» Power-law-tail in- and out-degrees
» Power-law-tail scree plots

* shrinking/constant diameter

* Densification Power Law

» communities-within-communities
Q: how to achieve al of them?
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Wish list for a generator:

» Power-law-tail in- and out-degrees

» Power-law-tail scree plots

* shrinking/constant diameter

* Densification Power Law

» communities-within-communities

Q: how to achieve al of them?

A: Kronecker matrix product [Leskovec+05b]
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Kronecker product

(a) Graph Gy (b) Intermediate stage
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Kronecker product

Central node is X 2

(a) Graph Gy (b) Intermediate stage (¢) Graph Gz = Gy @ G
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Kronecker product

X"
olx
olx
)
(a) Graph Gy (b) Intermediate stage (¢) Graph Ga = Gy @ Gy
1/1]0 GG, 0
11]1 9159
0]1]1 0[G,|G,
(d) Adjacency matrix (e) Adjacency matrix () F
of Gy of Ga =G1 @G
" > r— Ar—
N N*N N**4
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Properties of Kronecker graphs:

 Power-law-tail in- and out-degrees
 Power-law-tail scree plots

* constant diameter

« perfect Densification Power Law

» communities-within-communities
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Properties of Kronecker graphs:

» Power-law-tail in- and out-degrees

» Power-law-tail scree plots
 constant diameter

* perfect Densification Power Law

» communities-within-communities
and we can proveall of the above
(first and only generator that does that)

UCLA-IPAM 05 (c) 2005 C. Faloutsos 65

CarnegieMellon

Properties of Kronecker graphs:

* ‘stochastic’ version gives even better results
and
— Includes Erdos-Renyi as special case
—Includes ‘RMAT’ as specia case

[Chakrabarti+,’ 04]

* (stochastic version: generate Kronecker
matrix; decimate edges with some
probability)
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CMU

11



C. Faloutsos

CarnegieMellon

Kronecker - ArXiv

CarnegieMellon
Kronecker - patents
N1
& 3 | S I o
< U S S
25 N 1 ] .
EE RN i o
F2 W o
Degree  Scree Diameter D.P.L.
UCLA-IPAM 05 (c) 2005 C. Faloutsos
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real z T
(det. + AN
Kronecker)z £ NEA —
(stochastic) 7 4 . | ~
Kronecker # i | 01 o L —
Degree Scree Diameter D.P.L.
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B N o
3 \\ I S 4] A
B oed 0\ i LI BN 4 /
F] 3, l\ H \ iw !
= - - T R
28 N 1
&2 l“L \ : /
(a) Degree (b) Seree plot () “Network Value”  (d) “Hop-plot”
distribution distribution
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Conclusions

‘ Laws and patterns:

e Power lawsfor degrees, eigenvalues,
* communities’ /cores

e Small / Shrinking diameter
e Bow-tie jelly-fish
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Conclusions, cont’ d

Generators
 Preferentia attachment (Barabasi)

* Variations
» Recursion — Kronecker product & RMAT
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Outline
Topology, ‘ laws' and generators
e ‘Laws and patterns
e Generators
# » Tools
72

UCLA-IPAM 05
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Outline Power laws
Part 1: Topology, ‘ laws and generators e Q1: Arethey only in graph-related settings?
e ‘Laws and patterns e Al:
+  Generators * Q2: Why so many?
=) . Tools power lawsand fractals .« A2:

e Why so many power laws?
Self-similarity, power laws, fractal dimension
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Power laws A famous power law: Zipf'slaw
|0g(frm) BIBLE rankfre ot
m) « Q1: Arethey only in graph-rel ated settings? “
) oo « Bible- rank vs
* ALNO! frequency (log-log)
* Q2: Why so many?

o A2: self-aimilarity; ‘rich-get-richer’

] 1o 100 Toop 10000 10000
bog rank

log(rank)
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Click-stream data

Power Ialvs’ Cont, ed Weh Site Traffic
log(count) ,

« length of filetransfers [Bestavros+] u-id's urI(;S ¥pf 1

 web hit counts [Huberman] f §g \_ ya/hO<

» magnitude of earthquakes (Guttenberg- o | 10001

Richter law) °  logcount) |

* sizes of lakes/islands (Korcak’ s law)

« Income distribution (Pareto’s law) \\mpe"s“”e"
; = / log(freq)

UCLAIPAM 05 (2005 Faautos 7 UCLATPAM 05 (2005 Faautos 7
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Lotka s law

(Lotka s law of publication count); and
citation counts: (citeseer.nj.nec.com 6/2001)

log(count)

J. Ullman

“ log(#citations)
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Power laws

e Q1: Arethey only in graph-related settings?
* AL:NO!

m) - Q2: Why so many?
o A2: self-aimilarity; ‘rich-get-richer’

UCLA-IPAM 05 (c) 2005 C. Faloutsos 80
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Fractals and power laws

» Power laws and fractals are closely related
e And fractals appear in MANY cases

— coast-lines: 1.1-1.5

— brain-surface: 2.6

— rain-patches: 1.3

— tree-bark: ~2.1

— stock prices/ random walks: 1.5

— ... [see Mandelbrot; or Schroeder]
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Digression: intro to fractals

* Fractals: sets of pointsthat are self similar

UCLA-IPAM 05

(c) 2005 C. Faloutsos 82
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A famous fractal

e.g., Sierpinski triangle:

Zero area;

-
infinite length!

@

dimensionality = ??
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A famous fractal

e.g., Sierpinski triangle:

Zero area;

-
infinite length!

@

dimensionality = log(3)/log(2) = 1.58
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A famous fractal

equivalent graph:

VANV
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Intrinsic (‘fractal’) dimension

» Q: fractal dimension » Q:fdof aplane?

of aline? e Ainn(<=r)~r2
o Atnn(<=r)~rl fd== slope of (log(nn) vs
(‘power law’: y=x"a) log(r) )

(c) 2005 C. Faloutsos 87
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Sierpinsky triangle
== hopplot
=="‘correlation integral’
log(#pairs _ Lo
within <=r ) = CDF of pairwise distances
158
log(r)
UCLA-IPAM 05 (c) 2005 C. Faloutsos 89
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Intrinsic (‘fractal’) dimension

How to estimateit?

UCLA-IPAM 05 (c) 2005 C. Faloutsos 86
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Sierpinsky triangle
=="‘correlation integral’
log(#pairs _ —_— .
within <=r) = CDF of pairwise distances
158
log(r)
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Line
=="‘correlation integral’
log(#pairs _ A :
within <=r) = CDF of pairwise distances
58
0—0—0— 1
log(r)
UCLA-IPAM 05 (c) 2005 C. Faloutsos 90
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2-d (Plane)
=="‘correlation integral’
log(#pairs _ . ]
within <=r ) = CDF of pairwise distances

log(r)
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Recall: Hop Plot

* Internet routers: how many neighbors
within h hops? (= correlation integral!)

R

| lOg(#pairs)

Reachability function:
number of neighbors

\ 2.8 within r hops, vsr (log-
e ) log).

o log(hops) Mbone routers, 1995

UeLAnirAm vo ) 2w rauuss 92

Carnegie on

Fractals and power laws

They are related concepts:

« fractals <=>

o sef-similarity <=>

o scalefree<=>

e power laws (y=x2)
-F=Crt

UCLA-IPAM 05 (©) 2005 C. Faloutsos _sy
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Conclusions

» Real settings/graphs: skewed distributions
—‘mean’ is meaningless

cou 3 couk

2 degree 2
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Conclusions

» Real settings/graphs: skewed distributions
—‘mean’ is meaningless
— dlope of power law, instead

\ log(count)
I
cou I Y cou k \
2 degree 2 log(degree)
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Conclusions: Toals;

« rank-frequency plot (ala Zipf)
e Correlationintegral (= neighborhood
function)

UCLA-IPAM 05 (c) 2005 C. Faloutsos 96
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Conclusions (cont’ d)

» Recursion/sdf-similarity
— May reveal non-obvious patterns (e.g., bow-ties
within bow-ties within bow-ties) [Dill+, ‘01]

>

“Toiterateishuman, torecurseisdivine”
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Resources

Generators:

* RMAT (deepay AT cs.cmu.edu)

» Kronecker ({ degpay,jure} AT cs.cmu.edu)
e BRITE http://www.cs.bu.edu/brite/

¢ INET: http://topology.eecs.umich.edu/inet
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Other resources

Visualization - graph algo’s:

 Graphviz: http://www.graphviz.org/

e pgek: http://vlado.fmf.uni-
lj.si/pub/networks/pajek/

Kevin Bacon web site:

http://www.cs.virginia.edu/oracle/
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EXTRA
Virus propagation
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Outline

Topology, ‘ laws' and generators
m)EX TRA: Virus Propagation
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Problem definition

* Q1: How does a virus spread across an
arbitrary network?

e Q2: will it create an epidemic?
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Framework

* Susceptible-Infected-Susceptible (S1S)
model

— Cured nodes immediately become susceptible

Infected by neighbor

CarnegieMellon

The model

« (virus) Birthrate 3: probability than an
infected neighbor attacks

« (virus) Death rate &: probability that an

infected node hed's Healthy
Prob.

Prob. B Ba
[

Infected
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Susceptile S l Infected &
& healthy “Cured infectious
internally
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The model

e Virus ‘strength’ s= 0

Healthy

Prob. &
Prob. B Bﬂ
—
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Epidemic threshold 1

of agraph, defined as the value of T, such that
if strengths=pg/0< 1

an epidemic can not happen

Thus,

 given agraph

» compute its epidemic threshold
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B
Infected \ .
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Epidemic threshold 1
What should T depend on?

¢ avg. degree? and/or highest degree?
« and/or variance of degree?
« and/or third moment of degree?

O ® @
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Epidemic threshold

 [Theorem] We have no epidemic, if

BIs<t=1/ 24
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Epidemic threshold

 [Theorem] We have no epidemic, if

recovery prob. eplderrluc threshold

Blo <i= Ui

T
attack prob_/ largest eigenvalue
of adj. matrix A
Proof: [Wang+03]
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Experiments (Oregon)

500
% 4004 Bd>t
= (above threshold)
Banl
3
s f Ky L
2 pePSbomn el Bd=1
£ 1004 (at the threshold)
=z N
0 : * A
0 250 500 750 \mck /d< T
Time (below threshold)
8: -5-0.05 =~ 0.06 =< 0.07
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Our result:

¢ Holds for any graph
« includes older results as special cases
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Thank you!

www.cs.cmu.edu/~christos
www.db.cs.cmu.edu

(really done thistime © )
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