Carnegie Mellon

Finding patterns in large, real networks

Christos Faloutsos

CMU

www.cs.cmu.edu/~christos/TALKS/UCLA-05

Carnegie Mellon

Thanks to

• Deepayan Chakrabarti (CMU)

• Michalis Faloutsos (UCR)

• George Siganos (UCR)

UCLA-IPAM 05 (c) 2005 C. Faloutsos

Internet Map [lumeta.com]

Food Web [Martinez '91]

Graphs are everywhere!

Friendship Network [Moody '01]

UCLA-IPAM 05

Carnegie Mellon

Protein Interactions [genomebiology.com]

Protein Interactions [genomebiology.com]

Carnegie Mellon

Physical graphs

- Physical networks
- Physical Internet
- Telephone lines
- Commodity distribution networks

UCLA-IPAM 05 (c) 2005 C. Faloutsos

Carnegie Mellon

Outline

Topology, 'laws' and generators

- · 'Laws' and patterns
- Generators
- Tools

CI A-IPAM 05

Faloutsos 6

Carnegie Mellon

Networks derived from "behavior"

- Telephone call patterns
- Email, Blogs, Web, Databases, XML
- Language processing
- Web of trust, epinions.com

UCLA-IPAM 05

2005 C. Falouteos 5

Carnegie Mellon

Motivating questions

- What do real graphs look like?
 - What properties of nodes, edges are important to model?
 - What local and global properties are important to measure?
- How to generate realistic graphs?

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Why should we care?

- **A1: extrapolations**: how will the Internet/Web look like next year?
- **A2: algorithm design**: what is a realistic network topology,
 - to try a new routing protocol?
 - to study virus/rumor propagation, and immunization?

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Why should we care? (cont'd)

- **A3: Sampling**: How to get a 'good' sample of a network?
- **A4: Abnormalities**: is this sub-graph / sub-community / sub-network 'normal'? (what **is** normal?)

UCLA-IPAM 05

Carnegie Mellon

Outline

Topology, 'laws' and generators

- \Rightarrow
- · 'Laws' and patterns
- · Generators
- Tools

UCLA-IPAM 05

05 C. Falouteos

Carnegie Mellon

Virus propagation

• Who is the best person/computer to immunize against a virus?

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Topology

How does the Internet look like? Any rules?

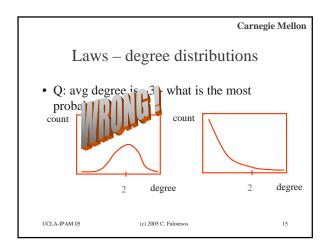
(Looks random - right?)

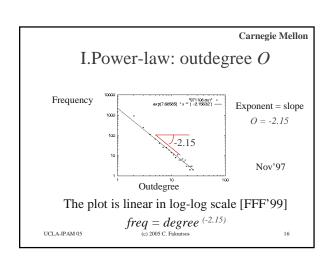
UCLA-IPAM 05

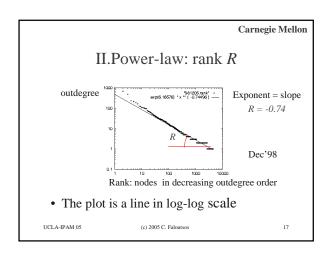
2005 C. Faloutsos

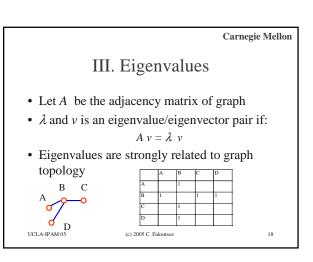
Carnegie Mellon

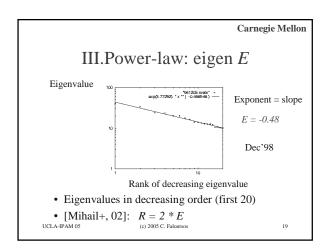

Laws and patterns


Real graphs are NOT random!!


- Diameter
- in- and out- degree distributions
- other (surprising) patterns

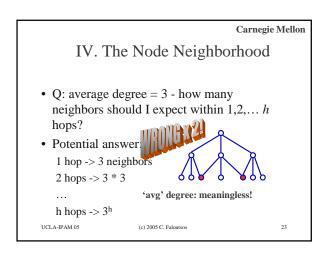

UCLA-IPAM 05

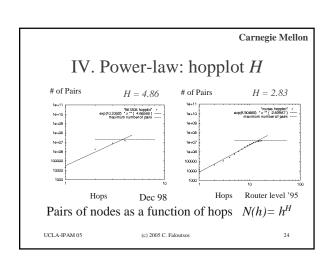

(c) 2005 C. Faloutsos

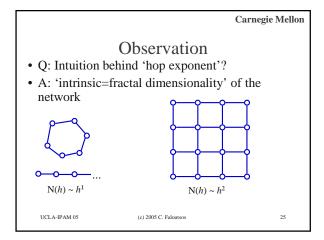


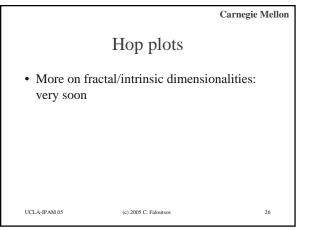
Carnegie Mellon IV. The Node Neighborhood

• N(h) = # of pairs of nodes within h hops

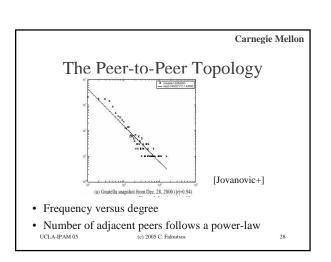

• Q: average degree = 3 - how many neighbors should I expect within 1,2,... h hops?
• Potential answer:
1 hop -> 3 neighbors
2 hops -> 3 * 3
...
h hops -> 3h


UCLA-IPAM 05 (c) 2005 C. Faloutsos 21


• Q: average degree = 3 - how many neighbors should I expect within 1,2,... h hops?
• Potential answer:


1 hop -> 3 neighbors
2 hops -> 3 * 3
...
WE HAVE DUPLICATES!
h hops -> 3h

UCLA-IPAM 05 (c) 2005 C. Faloutsos 22

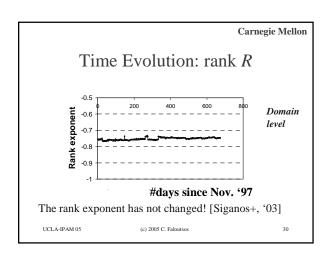


Carnegie Mellon

But:

- Q1: How about graphs from other domains?
- Q2: How about temporal evolution?

UCLA-IPAM 05 (c) 2005 C. Faloutsos 27



Carnegie Mellon

More Power laws

- Also hold for other web graphs [Barabasi+, '99], [Kumar+, '99]
- citation graphs (see later)
- and many more

T.A-IPAM 05 (c) 2005 C. Faloutsos

Carnegie Mellon

Outline

Part 1: Topology, 'laws' and generators

- 'Laws' and patterns
 - Power laws for degree, eigenvalues, hop-plot
 - ???
- Generators
- Tools

Part 2: PageRank, HITS and eigenvalues

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Any other 'laws'?
Yes!

UCLA-IPAM 05 (c) 2005 C. Faloutsos 32

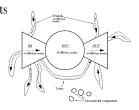
Carnegie Mellon

31

Any other 'laws'?

Yes!

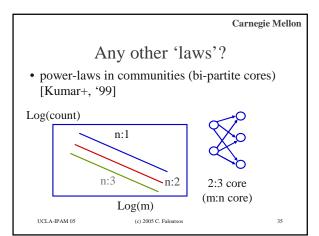
- · Small diameter
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

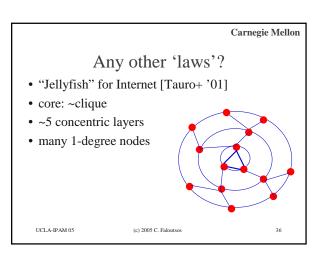

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Any other 'laws'?


- Bow-tie, for the web [Kumar+ '99]
- IN, SCC, OUT, 'tendrils'
- disconnected components



Carnegie Mellon

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

How do graphs evolve?

· degree-exponent seems constant - anything else?

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Evolution of diameter?

• Prior analysis, on power-law-like graphs, hints that

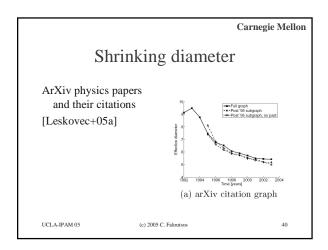
> diameter $\sim O(\log(N))$ or diameter ~ $O(\log(\log(N)))$

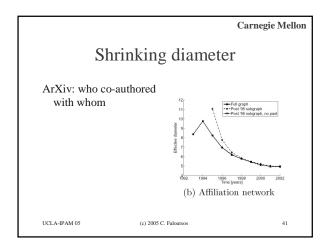
- i.e.., slowly increasing with network size
- Q: What is happening, in reality?

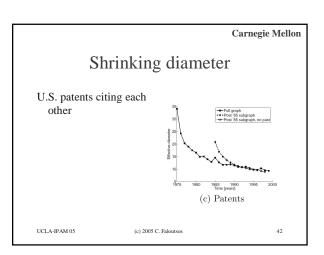
UCLA-IPAM 05

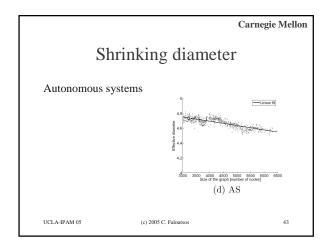
(c) 2005 C. Faloutsos

Carnegie Mellon


Evolution of diameter?


• Prior analysis, on power-law-like graphs, hints that


> diameter $\sim O(\log(N))$ or diameter $\sim O(\log(\log(N)))$


- i.e.., slowly increasing with network size
- Q: What is happening, in reality?
- A: It shrinks(!!), towards a constant value

UCLA-IPAM 05 (c) 2005 C. Faloutsos

Carnegie Mellon

Temporal evolution of graphs

- N(t) nodes; E(t) edges at time t
- · suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for

$$E(t+1) = ? ... * E(t)$$

UCLA-IPAM 05 (c) 2005 C. Faloutsos

Carnegie Mellon

Temporal evolution of graphs

- N(t) nodes; E(t) edges at time t
- suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for

$$E(t+1) = ? ... * E(t)$$

• A: over-doubled!

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Temporal evolution of graphs

• A: over-doubled - but obeying:

$$E(t) \sim N(t)^a$$
 for all t

where 1 < a < 2

a=1: constant avg degree

a=2: ~full clique

• Real graphs **densify** over time [Leskovec+05a]

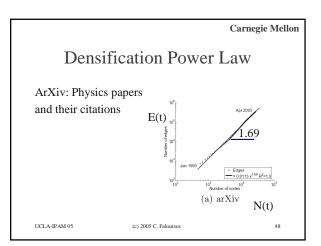
UCLA-IPAM 05

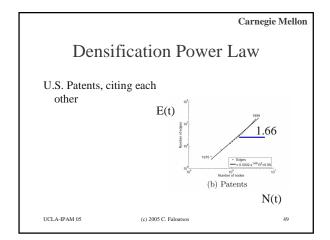
(c) 2005 C. Faloutsos

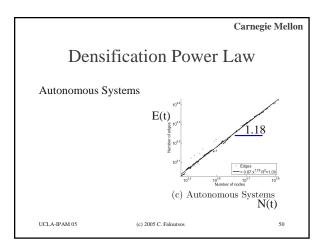
Carnegie Mellon

Temporal evolution of graphs

• A: over-doubled - but obeying:


$$E(t) \sim N(t)^a$$
 for all t


• Identically:


$$log(E(t)) / log(N(t)) = constant$$

for all t

UCLA-IPAM 05 (c) 2005 C. Faloutsos

Carnegie Mellon

Summary of 'laws'

• Power laws for degree distributions
• for eigenvalues, bi-partite cores
• Small & shrinking diameter ('6 degrees')
• 'Bow-tie' for web; 'jelly-fish' for internet
• ``Densification Power Law'', over time

Outline

Part 1: Topology, 'laws' and generators

· 'Laws' and patterns

· Generators

· Tools

UCLA-IPAM 05 (c) 2005 C. Faloutsos 53

Generators

• How to generate random, realistic graphs?

- Erdos-Renyi model: beautiful, but unrealistic


- process-based generators

- recursive generators

Carnegie Mellon

Erdos-Renyi

- random graph 100 nodes, avg degree = 2
- · Fascinating properties (phase transition)
- · But: unrealistic (Poisson degree distribution != power law)

UCLA-IPAM 05

(c) 2005 C. Falou

Carnegie Mellon

Carnegie Mellon

Process-based

- Barabasi; Barabasi-Albert: Preferential attachment -> power-law tails!
 - 'rich get richer'
- [Kumar+]: preferential attachment + mimic
 - Create 'communities'

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Process-based (cont'd)

- [Fabrikant+, '02]: H.O.T.: connect to closest, high connectivity neighbor
- [Pennock+, '02]: Winner does NOT take all
- · ... and many more

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Recursive generators - intuition

- recursion <-> self-similarity <-> power laws (see details later)
- Recursion -> communities within communities within communities

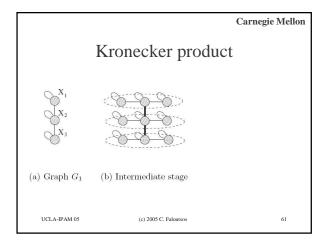
UCLA-IPAM 05

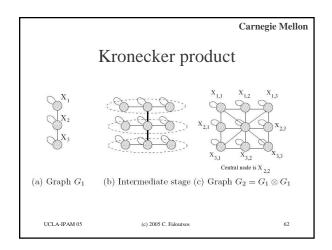
(c) 2005 C. Faloutsos

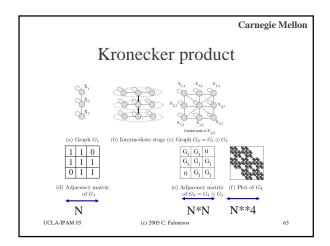
Carnegie Mellon

Wish list for a generator:

- · Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- shrinking/constant diameter
- Densification Power Law
- communities-within-communities


Q: how to achieve all of them?


(c) 2005 C. Faloutsos


Carnegie Mellon

Wish list for a generator:

- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- shrinking/constant diameter
- Densification Power Law
- communities-within-communities
- Q: how to achieve all of them?
- A: Kronecker matrix product [Leskovec+05b]

Carnegie Mellon

Properties of Kronecker graphs:

- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- constant diameter
- perfect Densification Power Law
- communities-within-communities

UCLA-IPAM 05 (c) 2005 C. Faloutsos 64

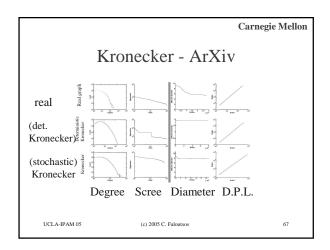
Carnegie Mellon

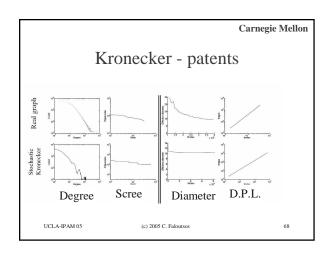
Properties of Kronecker graphs:

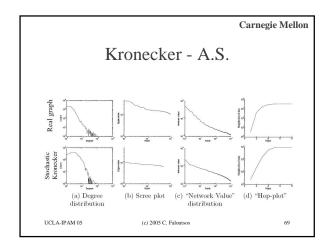
- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- constant diameter
- perfect Densification Power Law
- communities-within-communities

and we can prove all of the above

(first and only generator that does that)


A-IPAM 05 (c) 2005 C. Falouteos


Carnegie Mellon


Properties of Kronecker graphs:

- 'stochastic' version gives even better results and
 - Includes Erdos-Renyi as special case
 - Includes 'RMAT' as special case [Chakrabarti+,'04]
- (stochastic version: generate Kronecker matrix; decimate edges with some probability)

LA-IPAM 05 (c) 2005 C. Faloutsos 66

Carnegie Mellon

Conclusions

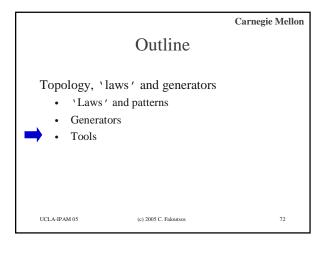
Laws' and patterns:

Power laws for degrees, eigenvalues, 'communities'/cores

Small / Shrinking diameter

Bow-tie; jelly-fish

Carnegie Mellon


Conclusions, cont ' d

Generators

• Preferential attachment (Barabasi)

• Variations

• Recursion – Kronecker product & RMAT

Carnegie Mellon

Outline

Part 1: Topology, 'laws' and generators

- · 'Laws' and patterns
- · Generators
- · Tools: power laws and fractals
 - · Why so many power laws?
 - · Self-similarity, power laws, fractal dimension

UCLA-IPAM 05

(c) 2005 C. Faloutsos

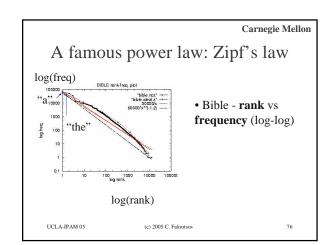
Carnegie Mellon

Power laws

- Q1: Are they only in graph-related settings?
- A1
- Q2: Why so many?
- A2:

UCLA-IPAM 05 (c) 2005 C. Faloutsos

Carnegie Mellon


Power laws

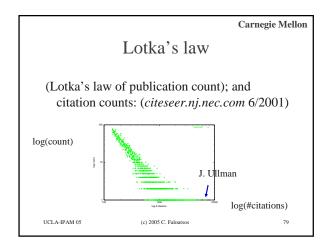
• Q1: Are they only in graph-related settings?

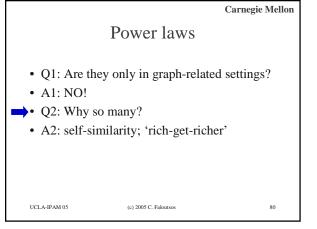
- A1: NO!
- Q2: Why so many?
- A2: self-similarity; 'rich-get-richer'

UCLA-IPAM 05

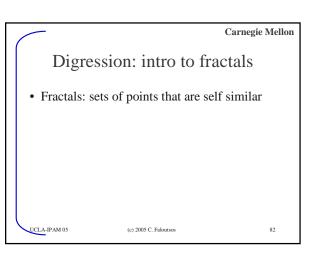
(c) 2005 C. Faloutsos

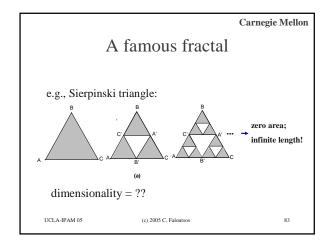
Carnegie Mellon

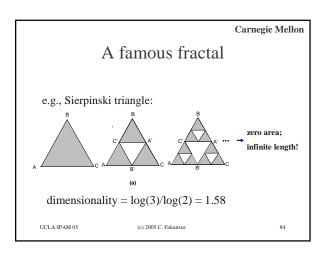

Power laws, cont'ed

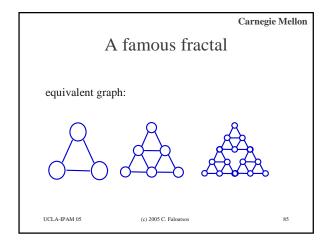

- length of file transfers [Bestavros+]
- web hit counts [Huberman]
- magnitude of earthquakes (Guttenberg-Richter law)
- sizes of lakes/islands (Korcak's law)
- Income distribution (Pareto's law)

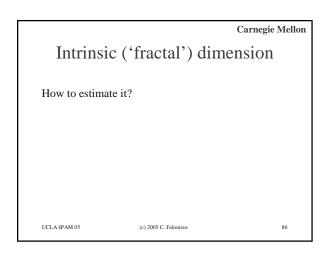
UCLA-IPAM 05


(c) 2005 C. Faloutsos



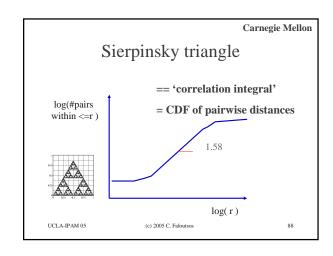


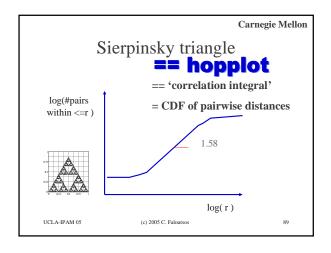


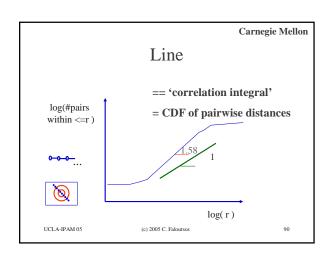

• Power laws and fractals are closely related • And fractals appear in MANY cases - coast-lines: 1.1-1.5 - brain-surface: 2.6 - rain-patches: 1.3 - tree-bark: ~2.1 - stock prices / random walks: 1.5 - ... [see Mandelbrot; or Schroeder]

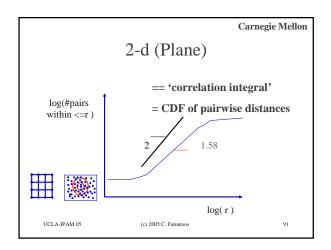
Carnegie Mellon

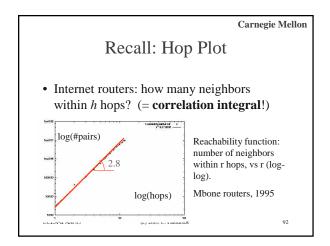
Intrinsic ('fractal') dimension

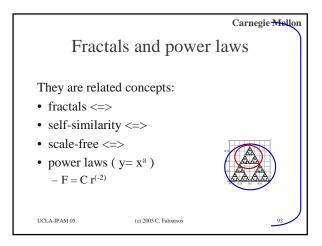

• Q: fractal dimension of a line?

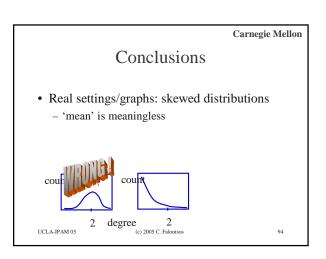

• A: $nn (<=r) \sim r^{1}$ ('power law': $y=x^{a}$)

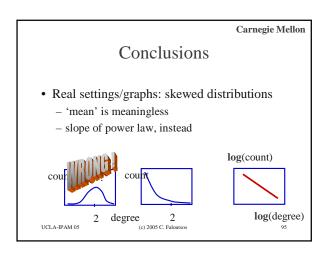

UCLA-IPAM 05

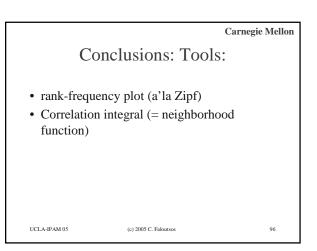

• Q: fd of a plane?


• A: $nn (<=r) \sim r^{2}$ fd== slope of (log(nn) vs log(r))









Carnegie Mellon

Conclusions (cont'd)

- Recursion/self-similarity
 - May reveal non-obvious patterns (e.g., bow-ties within bow-ties within bow-ties) [Dill+, '01]

"To iterate is human, to recurse is divine"

UCLA-IPAM 05

(c) 2005 C. Faloutsos

97

Carnegie Mellon

Resources

Generators:

- RMAT (deepay AT cs.cmu.edu)
- Kronecker ({deepay,jure} AT cs.cmu.edu)
- BRITE http://www.cs.bu.edu/brite/
- INET: http://topology.eecs.umich.edu/inet

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Carnegie Mellon

Other resources

Visualization - graph algo's:

- Graphviz: http://www.graphviz.org/
- pajek: http://vlado.fmf.unilj.si/pub/networks/pajek/

Kevin Bacon web site: http://www.cs.virginia.edu/oracle/

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

References

- [Aiello+, '00] William Aiello, Fan R. K. Chung, Linyuan Lu: A random graph model for massive graphs. STOC 2000: 171-180
- [Albert+] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi: Diameter of the World Wide Web, Nature 401 130-131 (1999)
- [Barabasi, '03] Albert-Laszlo Barabasi Linked: How Everything Is Connected to Everything Else and What It Means (Plume, 2003)

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

References, cont'd

• [Barabasi+, '99] Albert-Laszlo Barabasi and Reka Albert.

- [Barabasi+, 99] Albert-Laszlo Barabasi and Reka Albert. *Emergence of scaling in random networks*. Science, 286:509–512, 1999
- [Broder+, '00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web, WWW, 2000

UCLA-IPAM 05

(c) 2005 C. Faloutsos

References, cont'd

- [Chakrabarti+, '04] RMAT: A recursive graph generator, D. Chakrabarti, Y. Zhan, C. Faloutsos, SIAM-DM 2004
- [Dill+, '01] Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins: Selfsimilarity in the Web. VLDB 2001: 69-78

UCLA-IPAM 05

c) 2005 C. Faloutsos

Carnegie Mellon

References, cont'd

- [Fabrikant+, '02] A. Fabrikant, E. Koutsoupias, and C.H. Papadimitriou. Heuristically Optimized Trade-offs: A New Paradigm for Power Laws in the Internet. ICALP, Malaga, Spain, July 2002
- [FFF, 99] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On power-law relationships of the Internet topology," in SIGCOMM 1999

UCLA-IPAM 05

(c) 2005 C. Faloutsos

103

Carnegie Mellon

References, cont'd

- [Leskovec+05a] Jure Leskovec, Jon Kleinberg and Christos Faloutsos *Graphs over Time: Densification Laws*, *Shrinking Diameters and Possible Explanations* KDD 2005, Chicago, IL. (**Best research paper award**)
- [Leskovec+05b] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg and Christos Faloutsos, Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, ECML/PKDD 2005, Porto, Portugal.

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

References, cont'd

- [Jovanovic+, '01] M. Jovanovic, F.S. Annexstein, and K.A. Berman. Modeling Peer-to-Peer Network Topologies through "Small-World" Models and Power Laws. In TELFOR, Belgrade, Yugoslavia, November, 2001
- [Kumar+ '99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins: Extracting Large-Scale Knowledge Bases from the Web. VLDB 1999: 639-650

UCLA-IPAM 05

(c) 2005 C. Faloutsos

105

Carnegie Mellon

References, cont'd

- [Leland+, '94] W. E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE Transactions on Networking, 2, 1, pp 1-15, Feb. 1994.
- [Mihail+, '02] Milena Mihail, Christos H. Papadimitriou: On the Eigenvalue Power Law. RANDOM 2002: 254-262

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

References, cont'd

- [Milgram '67] Stanley Milgram: *The Small World Problem*, Psychology Today 1(1), 60-67 (1967)
- [Montgomery+, '01] Alan L. Montgomery, Christos Faloutsos: *Identifying Web Browsing Trends and Patterns*. IEEE Computer 34(7): 94-95 (2001)

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

References, cont'd

- [Palmer+, '01] Chris Palmer, Georgos Siganos, Michalis Faloutsos, Christos Faloutsos and Phil Gibbons The connectivity and fault-tolerance of the Internet topology (NRDM 2001), Santa Barbara, CA, May 25, 2001
- [Pennock+, '02] David M. Pennock, Gary William Flake, Steve Lawrence, Eric J. Glover, C. Lee Giles: Winners don't take all: Characterizing the competition for links on the web Proc. Natl. Acad. Sci. USA 99(8): 5207-5211 (2002)

UCLA-IPAM 05

(c) 2005 C. Faloutsos

108

Carnegie Mellon

References, cont'd

 [Schroeder, '91] Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W H Freeman & Co., 1991 (excellent book on fractals)

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Faloutsos 1

Carnegie Mellon

References, cont'd

- [Siganos+, '03] G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos *Power-Laws and the AS-level Internet Topology*, Transactions on Networking, August 2003.
- [Watts+ Strogatz, '98] D. J. Watts and S. H. Strogatz Collective dynamics of 'small-world' networks, Nature, 393:440-442 (1998)
- [Watts, '03] Duncan J. Watts Six Degrees: The Science of a Connected Age W.W. Norton & Company, (February 2003)

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

Thank you!

www.cs.cmu.edu/~christos www.db.cs.cmu.edu

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

EXTRA Virus propagation

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon

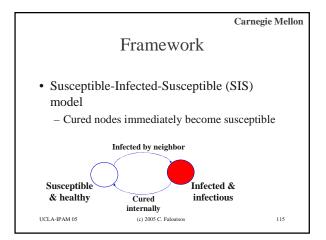
Outline

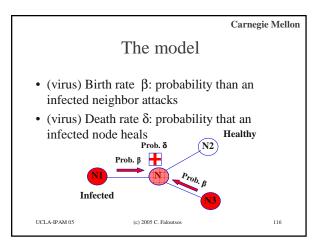
Topology, 'laws' and generators

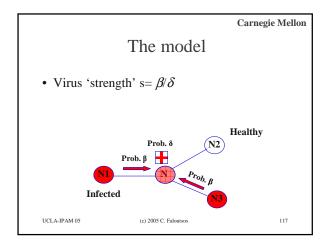
EXTRA: Virus Propagation

UCLA-IPAM 05

(c) 2005 C. Faloutsos


Carnegie Mellon


Problem definition


- Q1: How does a virus spread across an arbitrary network?
- Q2: will it create an epidemic?

UCLA-IPAM 05

2005 C. Faloutsos

Epidemic threshold τ of a graph, defined as the value of τ , such that if strength $s=\beta/\delta<\tau$ an epidemic can not happen Thus,

• given a graph

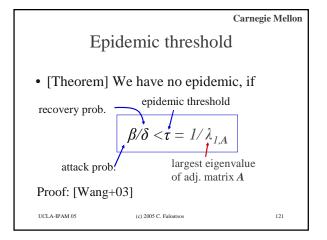
• compute its epidemic threshold

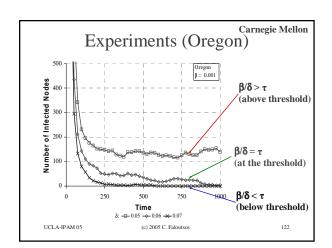
Carnegie Mellon

Epidemic threshold τ

What should τ depend on?

• avg. degree? and/or highest degree?

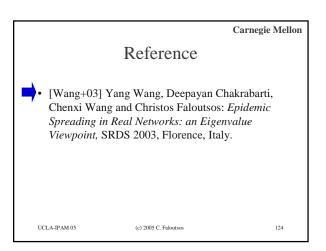

• and/or variance of degree?


• and/or third moment of degree?

UCLA-IPAM 05

(c) 2005 C. Faloutsos

Carnegie Mellon Epidemic threshold $\hbox{\bf e} \ \hbox{ [Theorem] We have no epidemic, if}$ $\boxed{\beta/\delta<\tau=1/\,\lambda_{I,A}}$ UCLA-IPAM 05 (c) 2005 C. Faloutsos 120



Carnegie Mellon

Our result:

- Holds for any graph
- includes older results as special cases

UCLA-IPAM 05 (c) 2005 C. Faloutsos

Carnegie Mellon

Thank you!

www.cs.cmu.edu/~christos www.db.cs.cmu.edu

(really done this time ©)

UCLA-IPAM 05

(c) 2005 C. Faloutsos