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• Prof. Rong Jin
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Overview

• Goals/ motivation: find patterns in large 

datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

• Discussion
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Applications of sensors/streams

• ‘Smart house’: monitoring temperature, 

humidity etc

• Financial, sales, economic series
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Motivation - Applications

• Medical: ECGs +; blood 

pressure etc monitoring

• Scientific data: seismological; 

astronomical; environment / 

anti-pollution; meteorological
Sunspot Data
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Motivation - Applications 

(cont’d)

• civil/automobile infrastructure

– bridge vibrations [Oppenheim+02]

–  road conditions / traffic monitoring

Automobile traffic
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Motivation - Applications 

(cont’d)

•  Computer systems

– web servers (buffering, prefetching)

– network traffic monitoring

– ...

http://repository.cs.vt.edu/lbl-conn-7.tar.Z
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Web traffic

• [Crovella Bestavros, SIGMETRICS’96]
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...

survivable,

self-managing storage

infrastructure

...

a storage brick

(0.5–5 TB)~1 PB

� “self-*” = self-managing, self-tuning, self-healing, …

� Goal: 1 petabyte (PB) for CMU researchers

� www.pdl.cmu.edu/SelfStar

Self-* Storage (Ganger+)
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Problem definition

• Given: one or more sequences 

x1 ,  x2 ,  … ,  xt ,  …; (y1, y2, … , yt, …)

• Find 

– patterns; clusters; outliers; forecasts; 
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Problem #1

• Find patterns, in large

datasets

time

# bytes
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Problem #1

• Find patterns, in large

datasets

time

# bytes

Poisson 

indep., 

ident. distr
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Problem #1

• Find patterns, in large

datasets

time

# bytes

Poisson 

indep., 

ident. distr
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Problem #1

• Find patterns, in large

datasets

time

# bytes

Poisson 

indep., 

ident. distr

Q: Then, how to generate

such bursty traffic?
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Overview

• Goals/ motivation: find patterns in large datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

• Discussion
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Problem #2 - network and 

graph mining

• How does the Internet look like?

• How does the web look like?

• What constitutes a ‘normal’ social 

network?

• What is the ‘network value’ of a 

customer? 

• which gene/species affects the others 

the most?
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Network and graph mining

Food Web 

[Martinez ’91]

Protein Interactions 

[genomebiology.com]
Friendship Network 

[Moody ’01]

Graphs are everywhere!
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Problem#2

Given a graph:

• which node to market-to / 

defend / immunize first?

• Are there un-natural sub-

graphs? (eg., criminals’ rings)?

[from Lumeta: ISPs 6/1999]
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Solutions

• New tools: power laws, self-similarity and 

‘fractals’ work, where traditional 

assumptions fail

• Let’s see the details:
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Overview

• Goals/ motivation: find patterns in large 

datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

• Discussion
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

...
zero area: (3/4)^inf

infinite length!

(4/3)^inf

Q: What is its dimensionality??
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

...
zero area: (3/4)^inf

infinite length!

(4/3)^inf

Q: What is its dimensionality??

A: log3 / log2 = 1.58 (!?!)
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Intrinsic (‘fractal’) dimension

• Q: fractal dimension 

of a line?

• Q: fd of a plane?
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Intrinsic (‘fractal’) dimension

• Q: fractal dimension 
of a line?

• A: nn ( <= r ) ~ r^1

(‘power law’: y=x^a)

• Q: fd of a plane?

• A: nn ( <= r ) ~ r^2

fd== slope of (log(nn) 
vs.. log(r) )

10/21/2005 23:09



MSU, 2005 C. Faloutsos 25

School of Computer Science

Carnegie Mellon

Sierpinsky triangle

log( r )

log(#pairs 

within <=r )

1.58

== ‘correlation integral’

= CDF of pairwise distances
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Observations: Fractals <-> 

power laws

Closely related:

• fractals <=>

• self-similarity <=>

• scale-free <=>

• power laws ( y= xa ; 

F=K r-2)

• (vs y=e-ax or y=xa+b)
log( r )

log(#pairs 

within <=r )

1.58
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Outline

• Problems

• Self-similarity and power laws

• Solutions to posed problems

• Discussion
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time

#bytes

Solution #1: traffic

• disk traces: self-similar: (also: [Leland+94])

• How to generate such traffic?
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Solution #1: traffic

• disk traces (80-20 ‘law’) – ‘multifractals’

time

#bytes

20% 80%
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80-20 / multifractals
20 80
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80-20 / multifractals

20
• p ; (1-p) in general

• yes, there are 

dependencies

80
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More on 80/20: PQRS

• Part of ‘self-* storage’ project

time

cylinder#
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More on 80/20: PQRS

• Part of ‘self-* storage’ project

p q

r s

q

r s
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Overview

• Goals/ motivation: find patterns in large datasets:

– (A) Sensor data

– (B) network/graph data

• Solutions: self-similarity and power laws

– sensor/traffic data

– network/graph data

• Discussion
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Problem #2 - topology

How does the Internet look like? Any rules?
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Patterns?

• avg degree is, say 3.3

• pick a node at random 

– guess its degree, 

exactly (-> “mode”)

degree

count

avg: 3.3
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Patterns?

• avg degree is, say 3.3

• pick a node at random 

– guess its degree, 

exactly (-> “mode”)

• A: 1!!

degree

count

avg: 3.3
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Patterns?

• avg degree is, say 3.3

• pick a node at random 
- what is the degree 
you expect it to have?

• A: 1!!

• A’: very skewed distr.

• Corollary: the mean is 
meaningless!

• (and std -> infinity (!))

degree

count

avg: 3.3

MSU, 2005 C. Faloutsos 39

School of Computer Science

Carnegie Mellon

Solution#2: Rank exponent R
• A1: Power law in the degree distribution 

[SIGCOMM99]

internet domains

log(rank)

log(degree)

-0.82

att.com

ibm.com
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Solution#2’: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency 
matrix

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001
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Power laws - discussion

• do they hold, over time?

• do they hold on other graphs/domains?
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Power laws - discussion

• do they hold, over time?

• Yes! for multiple years [Siganos+]

• do they hold on other graphs/domains?

• Yes!

– web sites and links [Tomkins+], [Barabasi+]

– peer-to-peer graphs (gnutella-style)

– who-trusts-whom (epinions.com)
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Time Evolution: rank R
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• The rank exponent has not changed! 

[Siganos+]

Domain

level

log(rank)

log(degree)

-
0.82

att.com

ibm.com
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The Peer-to-Peer Topology

• Number of immediate peers (= degree), follows a 

power-law

[Jovanovic+]

degree

count

10/21/2005 23:09
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epinions.com

• who-trusts-whom 

[Richardson + 

Domingos, KDD 

2001]

(out) degree

count
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Why care about these patterns?

• better graph generators [BRITE, INET]

– for simulations

– extrapolations

• ‘abnormal’ graph and subgraph detection
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Recent discoveries [KDD’05]

• How do graphs evolve? 

• degree-exponent seems constant - anything 

else?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs, 

hints that

diameter ~ O(log(N))     or

diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size

• Q: What is happening, in reality?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs, 

hints that

diameter ~ O(log(N))     or

diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size

• Q: What is happening, in reality?

• A: It shrinks(!!), towards a constant value
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Shrinking diameter

ArXiv physics papers 

and their citations

[Leskovec+05a]
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Shrinking diameter

ArXiv: who wrote what
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Shrinking diameter

U.S. patents citing each 

other
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Shrinking diameter

Autonomous systems
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that 

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? 2 * E(t)
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t

• suppose that 

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? 2 * E(t)

• A: over-doubled!

x
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Temporal evolution of graphs

• A: over-doubled - but obeying:

E(t) ~ N(t)a            for all t  

where 1<a<2

a=1: constant avg degree

a=2: ~full clique

• Real graphs densify over time [Leskovec+05]
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Temporal evolution of graphs

• A: over-doubled - but obeying:

E(t) ~ N(t)a            for all t  

• Identically:

log(E(t)) / log(N(t)) = constant       for all t
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Densification Power Law

ArXiv: Physics papers

and their citations

1.69

N(t)

E(t)
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Densification Power Law

U.S. Patents, citing each 

other

1.66

N(t)

E(t)
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Densification Power Law

Autonomous Systems

1.18

N(t)

E(t)
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Densification Power Law

ArXiv: who wrote what

1.15

N(t)

E(t)
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Outline

• problems

• Fractals

• Solutions

• Discussion 

– what else can they solve? 

– how frequent are fractals?
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What else can they solve?

• separability [KDD’02]

• forecasting [CIKM’02]

• dimensionality reduction [SBBD’00]

• non-linear axis scaling [KDD’02]

• disk trace modeling [PEVA’02]

• selectivity of spatial/multimedia queries

[PODS’94, VLDB’95, ICDE’00]

• ...
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Storyboard

• Search results 

(ranked)

Collage with maps, 

common phrases, 

named entities and 

dynamic query sliders   

• Query (6TB of 

data)

Full Content Indexing, Search and Retrieval 
from Digital Video Archives

www.informedia.cs.cmu.edu
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MSU, 2005 C. Faloutsos 65

School of Computer Science

Carnegie Mellon

Index trees

• OMNI trees [ICDE’01, w/ Roberto Filho, 

Caetano and Agma Traina]

• Slim-trees [EDBT’00, w/ C+A Traina, 

Seeger]

• ...
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What else can they solve?

• separability [KDD’02]

• forecasting [CIKM’02]

• dimensionality reduction [SBBD’00]

• non-linear axis scaling [KDD’02]

• disk trace modeling [PEVA’02]

• selectivity of spatial/multimedia queries 

[PODS’94, VLDB’95, ICDE’00]

• ...
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Problem #3 - spatial d.m.

Galaxies (Sloan Digital Sky Survey w/ B. 

Nichol) - ‘spiral’ and ‘elliptical’ 

galaxies

- patterns? (not Gaussian; not

uniform)

-attraction/repulsion?

- separability??
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Solution#3: spatial d.m.

log(r)

log(#pairs within <=r )

spi-spi

spi-ell

ell-ell

- 1.8 slope

- plateau!

- repulsion!

CORRELATION INTEGRAL!
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Solution#3: spatial d.m.

log(r)

log(#pairs within <=r )

spi-spi

spi-ell

ell-ell

- 1.8 slope

- plateau!

- repulsion!

[w/ Seeger, Traina, Traina, SIGMOD00]
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Solution#3: spatial d.m.

r1r2

r1

r2

Heuristic on choosing # of 

clusters
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Solution#3: spatial d.m.

log(r)

log(#pairs within <=r )

spi-spi

spi-ell

ell-ell

- 1.8 slope

- plateau!

- repulsion!
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What else can they solve?

• separability [KDD’02]

• forecasting [CIKM’02]

• dimensionality reduction [SBBD’00]

• non-linear axis scaling [KDD’02]

• disk trace modeling [PEVA’02]

• selectivity of spatial/multimedia queries 

[PODS’94, VLDB’95, ICDE’00]

• ...
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Problem#4: dim. reduction

• given attributes x1, ... xn

– possibly, non-linearly correlated

• drop the useless ones mpg

cc
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Problem#4: dim. reduction

• given attributes x1, ... xn

– possibly, non-linearly correlated

• drop the useless ones

(Q: why?

  A: to avoid the ‘dimensionality curse’)

Solution: keep on dropping attributes, until 
the f.d. changes! [w/ Traina+, SBBD’00]

mpg

cc
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Outline

• problems

• Fractals

• Solutions

• Discussion 

– what else can they solve? 

– how frequent are fractals?
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related

• <and many-many more! see [Mandelbrot]>
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Fractals: Brain scans

• brain-scans

octree levels

Log(#octants)

2.63 = 

fd
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fMRI brain scans

• Center for Cognitive Brain Imaging @ CMU

• Tom Mitchell, Marcel Just, ++

fMRI Goal: human brain function

Which voxels are active, 

for a given cognitive task?
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More fractals

• periphery of malignant tumors: ~1.5

• benign: ~1.3

• [Burdet+]
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More fractals:

• cardiovascular system: 3 (!) lungs: ~2.9
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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More fractals:

• Coastlines: 1.2-1.58

1 1.1

1.3

MSU, 2005 C. Faloutsos 83

School of Computer Science

Carnegie Mellon

MSU, 2005 C. Faloutsos 84

School of Computer Science

Carnegie Mellon

More fractals:

• the fractal dimension for the Amazon river 

is 1.85 (Nile: 1.4)
[ems.gphys.unc.edu/nonlinear/fractals/examples.html]
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More fractals:

• the fractal dimension for the Amazon river 

is 1.85 (Nile: 1.4)
[ems.gphys.unc.edu/nonlinear/fractals/examples.html]
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Cross-roads of 

Montgomery county:

•any rules?

GIS points
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GIS

A: self-similarity:

• intrinsic dim. = 1.51

log( r )

log(#pairs(within <= r))

1.51
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Examples:LB county

• Long Beach county of CA (road end-points)

1.7

log(r)

log(#pairs)
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More power laws: areas – 

Korcak’s law

Scandinavian lakes

Any pattern?
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More power laws: areas – 

Korcak’s law

Scandinavian lakes 

 area vs 

complementary 

cumulative count 

(log-log axes)

log(count( >= area))

log(area)
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More power laws: Korcak

Japan islands;

area vs cumulative 

count (log-log axes) log(area)

log(count( >= area))
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More power laws

•  Energy of earthquakes (Gutenberg-Richter 

law) [simscience.org]

log(count)

Magnitude = log(energy)day

Energy 

released
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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A famous power law: Zipf’s 

law

• Bible - rank vs. 

frequency (log-log)

log(rank)

log(freq)

“a”

“the”

“Rank/frequency plot”
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TELCO data

# of service units

count of

customers

‘best customer’
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SALES data – store#96

# units sold

count of 

products

“aspirin”
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Olympic medals (Sidney’00, 

Athens’04):

log( rank)

log(#medals)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

athens

sidney

MSU, 2005 C. Faloutsos 98

School of Computer Science

Carnegie Mellon

Olympic medals (Sidney’00, 

Athens’04):

log( rank)

log(#medals)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

athens

sidney
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Even more power laws:

• Income distribution (Pareto’s law)

• size of firms

• publication counts (Lotka’s law)
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Even more power laws:

library science (Lotka’s law of publication 

count); and citation counts: 

(citeseer.nj.nec.com 6/2001)

log(#citations)

log(count)

Ullman
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Even more power laws:

• web hit counts [w/ A. Montgomery]

Web Site Traffic

log(freq)

log(count)

Zipf

“yahoo.com”
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Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related
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Power laws, cont’d

• In- and out-degree distribution of web sites 

[Barabasi], [IBM-CLEVER]

log indegree

- log(freq)

from [Ravi Kumar, 

Prabhakar Raghavan, 

Sridhar Rajagopalan, 

Andrew Tomkins ]
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Power laws, cont’d

• In- and out-degree distribution of web sites 

[Barabasi], [IBM-CLEVER]

log indegree

log(freq)

from [Ravi Kumar, 

Prabhakar Raghavan, 

Sridhar Rajagopalan, 

Andrew Tomkins ]
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Power laws, cont’d

• In- and out-degree distribution of web sites 

[Barabasi], [IBM-CLEVER]

• length of  file transfers [Crovella+Bestavros 

‘96]

• duration of UNIX jobs
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Conclusions

• Fascinating problems in Data Mining: find 

patterns in

– sensors/streams 

– graphs/networks

MSU, 2005 C. Faloutsos 108

School of Computer Science

Carnegie Mellon

Resources

• Manfred Schroeder “Chaos, Fractals and 

Power Laws”, 1991
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Thank you!

Contact info:

christos <at> cs.cmu.edu

 www. cs.cmu.edu /~christos

(w/ papers, datasets, code for fractal dimension 

estimation, etc)
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