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Overview Applications of sensors/streams
* Goals/ motivation: find patterns in large * ‘Smart house’: monitoring temperature,
datasets: humldlty etc
— (A) Sensor data ¢ Financial, sales, economic series
— (B) network/graph data

* Solutions: self-similarity and power laws
* Discussion

MSU, 2005 C. Faloutsos 3 MSU, 2005 C. Faloutsos 4
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Motivation - Applications

* Medical: ECGs +; blood
pressure etc monitoring

* Scientific data: seismological;
astronomical; environment /
anti-pollution; meteorological

MSU, 2005

C. Faloutsos

Motivation - Applications
(cont’d)
¢ Computer systems

— web servers (buffering, prefetching)

— network traffic monitoring
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Motivation - Applications
(cont’d)
* civil/automobile infrastructure
— bridge vibrations [Oppenheim+02]

— road conditions / traffic monitoring

MSU, 2005

C. Faloutsos

Web traffic

¢ [Crovella Bestavros, SIGMETRICS’96]
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Self-* Storage (Ganger+)
= “self-*” = self-managing, self-tuning, self-healing, ... Problem definition
= Goal: 1 petabyte (PB) for CMU researchers
= www.pdl.cmu.edu/SelfStar

Given: one or more sequences

Xpo Xys iy Xpy o3 U Y ve s Vg oe)

. ¢ Find
survivable,
self-managing storage — patterns; clusters; outliers; forecasts;
structure
a storage brick
~1PB (0.5-5 TB)
MSU, 2005 9 MSU, 2005 C. Faloutsos 10
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Problem #1 Problem #1
# bytes # bytes
ress ¢ Find patterns, in large 008 — * Find patterns, in large
H datasets H o datasets
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indep.,
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Problem #1

# bytes
resos ¢ Find patterns, in large
datasets

ases08

Pumber ofbytos roact

500

250
time, in 30 slot

time
P n
indep.,
ident. distr

MSU, 2005 C. Faloutsos 13
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Overview

Goals/ motivation: find patterns in large datasets:
— (A) Sensor data

=)  — (B) network/graph data

Solutions: self-similarity and power laws

Discussion

MSU, 2005 C. Faloutsos

. School of Computer Science
Carnegie Mellon

Problem #1

# bytes
rovoe = * Find patterns, in large
H ’ datasets
g
@ 352406 l
5
: L

° s00

tims, in 30min siot

time
Q: Then, how to generate
> > such bursty traffic?
ident. distr
MSU, 2005 C. Faloutsos 14

- T
Problem #2 - network and
graph mining
How does the Internet look like?

How does the web look like?

What constitutes a ‘normal’ social
network?

What is the ‘network value’ of a
customer?

which gene/species affects the others
the most?

.

.

MSU, 2005 C. Faloutsos 16



10/21/2005 23:09

.m,.mu of Computer Science
Carnegic Mellon

Network and graph mining

Food Web Protein Interactions
[Moody '01] [Martinez '91] [genomebiology.com]

Friendship Network

Graphs are everywhere!

MSU, 2005 C. Faloutsos 17

B
Solutions
* New tools: power laws, self-similarity and

‘fractals” work, where traditional
assumptions fail

¢ Let’s see the details:

MSU, 2005 C. Faloutsos 19

BB conmr s
Problem#2
Given a graph:

* which node to market-to /
defend / immunize first?
* Are there un-natural sub-

graphs? (eg., criminals’ rings)?

[from Lumeta: ISPs 6/1999]

MSU, 2005 C. Faloutsos 18

B s
Overview

* Goals/ motivation: find patterns in large
datasets:
— (A) Sensor data
— (B) network/graph data
m) ° Solutions: self-similarity and power laws
¢ Discussion

MSU, 2005 C. Faloutsos 20
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

B

& 8
/\ ' A ﬁm‘ zero area: (3/4)Minf
c, A c oo =
Jé infinite length!
n'iZ\ «iiix 4/3)Ninf
2 ¢ (4/3)"ini
(a)

Q: What is its dimensionality??

A B

MSU, 2005 C. Faloutsos 21

Intrinsic (‘fractal’) dimension

¢ Q: fractal dimension ¢ Q: fd of a plane?

of a line?

. o e ,
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What is a fractal?

= self-similar point set, e.g., Sierpinski triangle:

B

B B
/\ ! A @Vk zero area: (3/4)Minf
o n c .-
i infinite length!
c Amc (4/3)Minf
(&)
Q: What is its dimensionality??

A:log3/log2 =158 (!1?!)

MSU, 2005 C. Faloutsos 2

B

Intrinsic (‘fractal’) dimension

¢ Q: fractal dimension * Q: fd of a plane?

of a line? e Arnn(<=r1)~1"2
s Armn(<=r1)~1l fd== slope of (log(nn)
(‘power law’: y=x"a) vs.. log(r) )

MSU, 2005 C. Faloutsos 24
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Sierpinsky triangle

== ‘correlation integral’

log(#pairs
within <=r)

= CDF of pairwise distances

MSU, 2005 C. Faloutsos 25

Outline

* Problems

e Self-similarity and power laws
=) * Solutions to posed problems

¢ Discussion

MSU, 2005 C. Faloutsos 27

mputer Science

/ Observations: Fractals <->\

power laws
Closely related:
e fractals <=>
¢ self-similarity <=>

¢ scale-free <=>

¢ power laws ( y=x“; Lot
F=K r?)

\(\:s y=e® or y=x*+b)
MSUT2005 C. Faloutsos 26

N

Solution #1: traffic

o disk traces: self-similar: (also: [Leland+94])
* How to generate such traffic?
#bytes

time

MSU, 2005 C. Faloutsos 28
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Solution #1: traffic

¢ disk traces (80-20 ‘law’) — ‘multifractals’
20%/\, 80%

MSU, 2005

MSU, 2005

4

N

80-20 / multifractals

20

A\

80

/\

*p; (1-p) in general

* yes, there are
d denci

30000

60000

C. Faloutsos

90000
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80-20 / multifractals
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MSU, 2005 C. Faloutsos

More on 80/20: PQRS

* Part of ‘self-* storage’ project

—_—
MSU. 2005 cylinder# ¢ pauos 32
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B s
More on 80/20: PQRS

¢ Part of ‘self-* storage’ project

p q q
r s r N
€. Faloutsos 33

B s
Problem #2 - topology

How does the Internet look like? Any rules?

MSU, 2005 C. Faloutsos 35

. School of Computer Science
Carnegie Mellon

Overview

Goals/ motivation: find patterns in large datasets:
— (A) Sensor data

— (B) network/graph data

Solutions: self-similarity and power laws

— sensor/traffic data
- — network/graph data
Discussion

.

MSU, 2005 C. Faloutsos 34
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Patterns?

avg degree is, say 3.3

count * pick a node at random
— guess its degree,
a exactly (-> “mode”)
]
A
avg: 3.3 degree
MSU, 2005 C. Faloutsos 36
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count

Patterns?

A
avg: 3.3

MSU, 2005

.Srhml of Computer Science
Carnegic Mellon

degree

C. Faloutsos

avg degree is, say 3.3
pick a node at random
— guess its degree,
exactly (-> “mode”)
A: 1

Solution#2: Rank exponent R

e Al: Power law in the degree distribution

[SIGCOMMY99]

internet domains

. att.com

log(degree)

ibm.com

N ais o] 5 ] akeria) ——

-0.82

log(rank)

MSU, 2005

C. Faloutsos

. School of Computer Science
Carnegie Mellon

Patterns?

avg degree is, say 3.3
pick a node at random
- what is the degree
you expect it to have?

o Al

A’: very skewed distr.
Corollary: the mean is
meaningless!

(and std -> infinity (!))

count

AA
avg: 3.3 degree

MSU, 2005 C. Faloutsos 38

. School of Computer Science
Carnegie Mellon

Solution#2’: Eigen Exponent E

Eigenvalue
10

Fioemn +
expld 3031) M DATTI4) ——

Exponent = slope

E=-048

May 2001

1 o o0
Rank of decreasing eigenvalue

» A2: power law in the eigenvalues of the adjacency

matrix
MSU, 2005 C. Faloutsos 40
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Power laws - discussion Power laws - discussion
¢ do they hold, over time? ¢ do they hold, over time?
* Yes! for multiple years [Siganos+]
* do they hold on other graphs/domains? * do they hold on other graphs/domains?
* Yes!
— web sites and links [Tomkins+], [Barabasi+]
— peer-to-peer graphs (gnutella-style)
— who-trusts-whom (epinions.com)

MSU, 2005 C. Faloutsos 41

MSU, 2005 C. Faloutsos

- 200 400 600 800 >
£ oo Domain
g level
g 07
:‘) W
~ -0.8
c
& 09
-1 " 7 ) W
Instances in time: Nov'97 and on a) Gnutella snapshot from Dec 28, 2000 (1-0.94)
¢ Number of immediate peers (= degree), follows a
¢ The rank exponent has not changed! P eree),
. power-law
[Siganos+]
MSU, 2005 C. Faloutsos 43
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epinions.com
count ¢ who-trusts-whom
. [Richardson +
ol R Domingos, KDD
T, 2001]
. N
LI \
(out) degree
MSU, 2005 C. Faloutsos
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Recent discoveries [KDD’05]

* How do graphs evolve?

¢ degree-exponent seems constant - anything
else?

MSU, 2005 C. Faloutsos

MSU, 2005 C. Faloutsos

School of Computer Science
Carnegie Mellon

Why care about these patterns?

better graph generators [BRITE, INET]
— for simulations
— extrapolations

‘abnormal’ graph and subgraph detection

3

MSU, 2005 C. Faloutsos

Evolution of diameter?

* Prior analysis, on power-law-like graphs,

hints that
diameter ~ O(log(N)) or
diameter ~ O( log(log(N)))

* i.e.., slowly increasing with network size
* Q: What is happening, in reality?
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Evolution of diameter?

¢ Prior analysis, on power-law-like graphs,
hints that
diameter ~ O(log(N)) or
diameter ~ O( log(log(N)))
¢ ie.., slowly increasing with network size
¢ Q: What is happening, in reality?
¢ A: It shrinks(!!), towards a constant value

MSU, 2005 C. Faloutsos 49

.Srhml of Computer Science
Carnegic Mellon

Shrinking diameter

ArXiv: who wrote what

w‘;m 200 2002

(b) Affiliation network

MSU, 2005 C. Faloutsos 51

. School of Computer Science
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Shrinking diameter

ArXiv physics papers
and their citations
[Leskovec+05a] R
¥
§
§
o m o
Time [yoars)
(a) arXiv citation graph
MSU, 2005 C. Faloutsos 50

. School of Computer Science
Carnegie Mellon

Shrinking diameter

U.S. patents citing each

other
H
s s 7
Time [years]
(c) Patents
MSU, 2005 C. Faloutsos
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Shrinking diameter

Autonomous systems

MSU, 2005 C. Faloutsos 53

.Srhml of Computer Science
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Temporal evolution of graphs

¢ N(t) nodes; E(t) edges at time t
¢ suppose that
N(t+1) =2 * N(t)
* Q: what is your guess for
E(t+1) =7X * E(t)

¢ A: over-doubled!

MSU, 2005 C. Faloutsos 55

School of Computer Science
Carnegie Mellon

Temporal evolution of graphs

* N(t) nodes; E(t) edges at time t
* suppose that
N(t+1) =2 * N(t)
* Q: what is your guess for
E(t+1) =? 2 * E(t)

MSU, 2005 C. Faloutsos 54

Temporal evolution of graphs

* A: over-doubled - but obeying:
| E()~N@y  forallr |
where 1<a<2

a=1: constant avg degree
a=2: ~full clique
* Real graphs densify over time [Leskovec+05]

MSU, 2005 C. Faloutsos 56
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Temporal evolution of graphs

¢ A: over-doubled - but obeying:
| E()~N@oe  foralls |
¢ Identically:
|log(E(t)) /log(N(1)) = constant| for all ¢

MSU, 2005 C. Faloutsos 57

Densification Power Law

U.S. Patents, citing each
other

E©

Numberof adgs

(b) Patents

N(t)

MSU, 2005 C. Faloutsos 59

mputer Science

Densification Power Law

ArXiv: Physics papers
and their citations

(a) arXiv

N(t)

MSU, 2005 C. Faloutsos 58

Densification Power Law

Autonomous Systems

1 e g0)

0 10 10 0

Rum
(¢) Autonomous Systems

N

MSU, 2005 C. Faloutsos 60
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Densification Power Law

ArXiv: who wrote what

o

E®)

o
&

(d) Affiliation network
N(»)

MSU, 2005 C. Faloutsos 61
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What else can they solve?

separability [KDD’02]

forecasting [CIKM’02]
dimensionality reduction [SBBD’00]
¢ non-linear axis scaling [KDD’02]

¢ disk trace modeling [PEVA’02]

) ° selectivity of spatial/multimedia queries
[PODS’94, VLDB’95, ICDE’00]

.

.

MSU, 2005 C. Faloutsos 63
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Outline

problems

Fractals

Solutions

!

Discussion
— what else can they solve?
— how frequent are fractals?

MSU, 2005 C. Faloutsos 62

School o .

.C"“”“II] ormedlﬂ Full Content Indexing, Search and Retrieval
from Digital Video Archives

N

¢ Query (6TB of — | - Py T——]

data) n

* Search results

(ranked)

/ -

Storyboard

Collage with maps,
common phrases,

named entities and
dynamic query slider:

www.informedia.cs.cmu.edu

MSU, 2005 C. Faloutsos 64
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Index trees

¢ OMNI trees [ICDE’01, w/ Roberto Filho,
Caetano and Agma Traina]

¢ Slim-trees [EDBT’00, w/ C+A Traina,
Seeger]

MSU, 2005 C. Faloutsos 65

B s
Problem #3 - spatial d.m.

Galaxies (Sloan Digital Sky Survey w/ B.
Nichol) - ‘spiral’ and ‘elliptical®
galaxies

- patterns? (not Gaussian; not
uniform)

-attraction/repulsion?

- separability??

MSU, 2005 C. Faloutsos 67
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What else can they solve?

-

separability [KDD’02]

forecasting [CIKM’02]
dimensionality reduction [SBBD’00]
non-linear axis scaling [KDD’02]
disk trace modeling [PEVA’02]

selectivity of spatial/multimedia queries
[PODS’94, VLDB’95, ICDE’00]

MSU, 2005 C. Faloutsos 66

= Camegiortetan
Solution#3: spatial d.m.

CORRELATION INTEGRAL!

log(#pairs within <=r )
Te+10
‘ell-ell poirs.ns’
Te+08 *=pi-=pi poinis.ns’ -1.8sl
cpiid-al it ponigs e 8 slope
1e+08 .
18407 - plateau!
ell-ell o
Te+08 - repulsion!
100000 Spi-spi
1-Sp1
10000 p p y
1000 e = \
100 \ # spi-ell
i’
10 -na—n—n.n.nn.n.n.nr
1
1e-08 1607 106 1e-00.0000.001 0.01 0.1 1 10 W00 log(r)

MSU, 2005 C. Faloutsos 68
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Solution#3: spatial d.m.

log(#pairs within <=r ) [w/ Seeger, Traina, Traina, SIGMODO00]
T+

“elellpairs.ns’
Te+08 *=pi-sp i points.ns" -
i gt | - 1.8 slope
1e+08 '
resa7 - plateau!
ell-ell .
- repulsion!
i
\ spi-ell
10 e caaea’
;
Te081.07 10 08 e 000 01 001 01 1 10 100 108(F)
MSU, 2005 C. Faloutsos 69
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Solution#3: spatial d.m.

log(#pairs within <=r )
1e+10

ell-ellpaints.ns"

Te+08 *=pi-sp i points.ns" -
'spi:;jj\.&.pmnl 2 1.8 slope

- plateau!

ell-ell .
- repulsion!

spi-spi

o spi-ell

fosooccaooad

1
1e08%e 07 1e 08 1e-000.00010.001 0.01 01 1 10 100 IOg(r)

MSU, 2005 C. Faloutsos
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Carnegic Mellon

Solution#3: spatial d.m.

Ter10 rl
<
r2 I .:. \>.:.
.
. o
o ®

lo05Ie T oG8 e U1 20T 01 1 10 W0 Heuristic on choosing # of
2 rl clusters

MSU, 2005 C. Faloutsos 70
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What else can they solve?

separability [KDD’02]

forecasting [CIKM’02]
dimensionality reduction [SBBD’00]
non-linear axis scaling [KDD’02]
disk trace modeling [PEVA’02]

selectivity of spatial/multimedia queries
[PODS’94, VLDB’95, ICDE’00]

-

MSU, 2005 C. Faloutsos
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Problem#4: dim. reduction

cc
¢ given attributes x,, ... X,

— possibly, non-linearly correlated
e drop the useless ones

MSU, 2005 C. Faloutsos

Outline

* problems

Fractals

Solutions

Discussion
— what else can they solve?
mm) — how frequent are fractals?

MSU, 2005 C. Faloutsos

®o00

mpg

Problem#4: dim. reduction

cc
¢ given attributes X, ... X,

— possibly, non-linearly correlated h j 999

e drop the useless ones mpg

(Q: why?
A: to avoid the ‘dimensionality curse’)

Solution: keep on dropping attributes, until
the f.d. changes! [w/ Traina+, SBBD’00]

MSU, 2005 C. Faloutsos 74

Fractals & power laws:

appear in numerous settings:

* medical

¢ geographical / geological

* social

¢ computer-system related

¢ <and many-many more! see [Mandelbrot]>

MSU, 2005 C. Faloutsos 76



10/21/2005 23:09

Fractals: Brain scans

¢ brain-scans
Log(#octants)

MSU, 2005 C. Faloutsos octree levels .

More fractals
e periphery of malignant tumors: ~1.5

* benign: ~1.3
¢ [Burdet+]

MSU, 2005 C. Faloutsos 79

fMRI brain scans

¢ Center for Cognitive Brain Imaging @ CMU
¢ Tom Mitchell, Marcel Just, ++

fMRI Goal: human brain function

Which voxels are active,

for a given cognitive task?
MSU, 2005 C. Faloutsos 78

More fractals:

e cardiovascular system: 3 (!) lungs: ~2.9

MSU, 2005 C. Faloutsos 80
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By
Fractals & power laws:

appear in numerous settings:
* medical

» geographical / geological
* social

¢ computer-system related

C. Faloutsos

MSU, 2005

.Srhml of Computer Science
Carnegic Mellon

I — Gt

MSU, 2005

sl 3
\iar Hotini)

5 [
N gGavle f“ -
e

i) &
e
S o Slockholm

e
More fractals:

¢ Coastlines: 1.2-1.58

— T
| L1 NNV
1.3
81 MSU, 2005 C. Faloutsos 82

B s
More fractals:

* the fractal dimension for the Amazon river

is 1.85 (Nile: 1.4)

[ems.gphys.unc.edu/nonlinear/fractals/examples.html]

képing (“
At ’gm Baltic -
N9 gilist Ve MSU. 2005 €. Faloutsos 84
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mputer Science

More fractals:

¢ the fractal dimension for the Amazon river
is 1.85 (Nile: 1.4)
[ems.gphys.unc.edu/nonlinear/fractals/examples.html]
- e ——

MSU, 2005 C. Faloutsos 85
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Jog(#pairs(within <= 1)) A: self-similarity:

SLope= LsinT e intrinsic dim. = 1.51

eso Jog(r)

MSU, 2005 C. Faloutsos 87

f Computer Science
¢ Mellon

GIS points

Cross-roads of
Montgomery county:

eany rules?

MSU, 2005 C. Faloutsos 86

oo
Examples:LB county

* Long Beach county of CA (road end-points)

log(#pairs)

log(r)

MSU, 2005 C. Faloutsos 88
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nputer Science

More power laws: areas — More power laws: areas —
Korcak’s law Korcak’s law

log(count( >= area))

Scandinavian lakes

Any pattern? b
Scandinavian lakes § |
area vs
complementary
cumulative count
(log-log axes)

\

log(area)

MSU, 2005 C. Faloutsos 89 MSU, 2005 C. Faloutsos 90

More power laws: Korcak More power laws

* Energy of earthquakes (Gutenberg-Richter
law) [simscience.org]

log(cbunt( >= area))
- Energy
released log(count)
i H \‘\\‘\
Japan islands; E J i \
area vs cumulative . = e Lol INARIN .
count (log-log axes) log(area) =~ day Magnitude = log(energy)

MSU, 2005 C. Faloutsos 91 MSU, 2005 C. Faloutsos 92
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Fractals & power laws:

appear in numerous settings:

* medical

¢ geographical / geological

* social

¢ computer-system related

MSU, 2005

.Srhml of Computer Science
Carnegic Mellon

count of
customers

Count of services

C. Faloutsos

TELCO data

‘best customer’

/

Amount of servios usage # of Service units

Count-frequency plot of real and synthetic data

MSU, 2005

C. Faloutsos

.sm of Computer Science
Carnegie Mellon

A famous power law: Zipf’s

log(freq) law

BIBLE rankfreq, pbt

* Bible - rank vs.
frequency (log-log)

1 o T X0 1o om0t “Rank/frequency plOt”

log(rank)

MSU, 2005 C. Faloutsos 94

. School of Computer Science
Carnegie Mellon

SALES data — store#96

count of “r Eos
products ’

“aspirin”?

#Units sold
Count-frequency plot for store no. 96.

MSU, 2005 C. Faloutsos 96



10/21/2005 23:09

“omputer Science

Olympic medals (Sidney’00,

Athens’04): Athens’04):
log(#medals) log(#medals)

25 25

Jp e H

[]

15 " e + ahens 151 + alhens
1 \ 1 ey 11 u sidney
[ —\.. 15 S

0 . . —- 0 . . — -

0 15 1 15 H 0 05 1 15 2
log( rank) log( rank)
MSU, 2005 C. Faloutsos 97 MSU, 2005 C. Faloutsos 98
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Even more power laws: Even more power laws:
« Income distribution (Pareto’s law) library science (Lotka’s law of publication
o size of firms count); and citation counts:

(citeseer.nj.nec.com 6/2001)

log(count) M‘%

..... - “ log(#citations)

¢ publication counts (Lotka’s law)

1lman

N

MSU, 2005 C. Faloutsos 99 MSU, 2005 C. Faloutsos 100
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Even more power laws: Fractals & power laws:
¢ web hit counts [w/ A. Montgomery] appear in numerous settings:
¢ medical
Web Site Traffic . 1 i
tog(lount) geographical / geological
- * social
Zipf
\ “ydhoo.com” ¢ computer-system related
\ ¥ 1dg(freq)

MSU, 2005 C. Faloutsos 101 MSU, 2005 C. Faloutsos 102

Power laws, cont’d Power laws, cont’d
¢ In- and out-degree distribution of web sites ¢ In- and out-degree distribution of web sites
[Barabasi], [IBM-CLEVER] [Barabasi], [IBM-CLEVER]

log indegree log(freq)

from [Ravi Kumar, ¢ /

from [Ravi Kumar,

Prabhakar Raghavan, : Prabhakar Raghavan,
Sridhar Rajagopalan, T Sridhar Rajagopalan,
Andrew Tomkins | -~ log(freq) Andrew Tomkins ] log indegree

MSU, 2005 C. Faloutsos 103 MSU, 2005 C. Faloutsos 104
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B s B s
Power laws, cont’d Conclusions
¢ In- and out-degree distribution of web sites ¢ Fascinating problems in Data Mining: find
[Barabasi], [[BM-CLEVER] patterns in
¢ length of file transfers [Crovella+Bestavros — sensors/streams
‘96] — graphs/networks

e duration of UNIX jobs

MSU, 2005 C. Faloutsos 105 MSU, 2005 C. Faloutsos 106

gs:hwl of Computer Science
Carnegie Mellon

Conclusions - cont’d Resources
New tools for Data Mining: self-similarity & ¢ Manfred Schroeder “Chaos, Fractals and
power laws: appear in many cases Power Laws”, 1991

Bad news: Good news: 5
lead to skewed distributions « ‘correlation integral®
(no Gaus on for separability
uniformity endence « rank/frequency plots

4 ’ « 80-20 (multifractals)
mean, v

«  (Hurst exponent,

«  strange attractors,

MSU, 2005 C. Faloutsos + renormalization theory, o7
o )
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Thank you!

Contact info:
christos <at> cs.cmu.edu
www. cs.cmu.edu /~christos
(w/ papers, datasets, code for fractal dimension
estimation, etc)
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