

Anomaly detection in large graphs

Christos Faloutsos
CMU

Thank you!

Annette Jiang

• Evan Butterfield

• Tina Huang

Roadmap

- Introduction Motivation
 - Why study (big) graphs?

Conclusions

Graphs - why should we care?

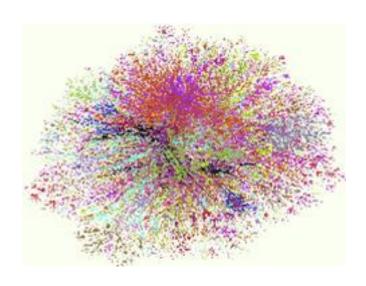
>\$10B; ~1B users

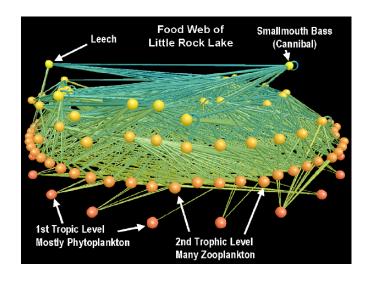
Tencent, June 2017

(c) C. Faloutsos, 2017

4

Graphs - why should we care?





Internet Map [lumeta.com]

Food Web [Martinez '91]

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! BLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

•

Many-to-many db relationship -> graph

Motivating problems

• P1: patterns? Fraud detection?

• P2: patterns in time-evolving graphs /

tensors

Motivating problems

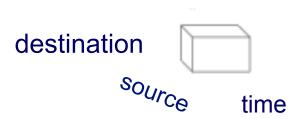
• P1: patterns? Fraud detection?

destination Source time

Motivating problems

• P1: patterns? Fraud detection?

tensors



* Robust Random Cut Forest Based Anomaly Detection on Streams Sudipto Guha, Nina Mishra, Gourav Roy, Okke Schrijvers, ICML'16

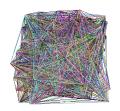
Roadmap

- Introduction Motivation
 - Why study (big) graphs?

- Part#1: Patterns & fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

Tencent, June 2017

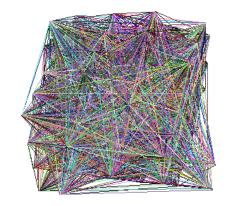
(c) C. Faloutsos, 2017



Part 1: Patterns, & fraud detection

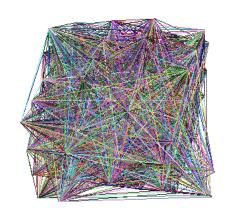
Laws and patterns

• Q1: Are real graphs random?



Laws and patterns

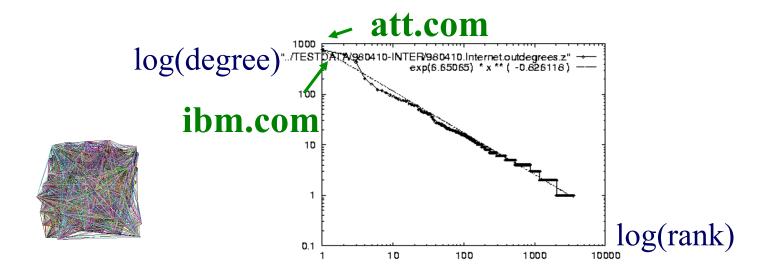
- Q1: Are real graphs random?
- A1: NO!!
 - Diameter ('6 degrees'; 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data



Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

internet domains



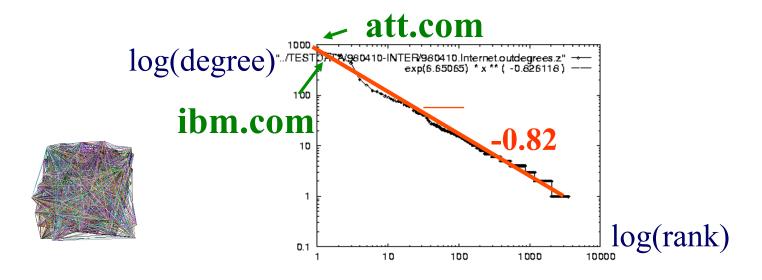
Tencent, June 2017

(c) C. Faloutsos, 2017

Solution# S.1

• Power law in the degree distribution [Faloutsos x 3 SIGCOMM99]

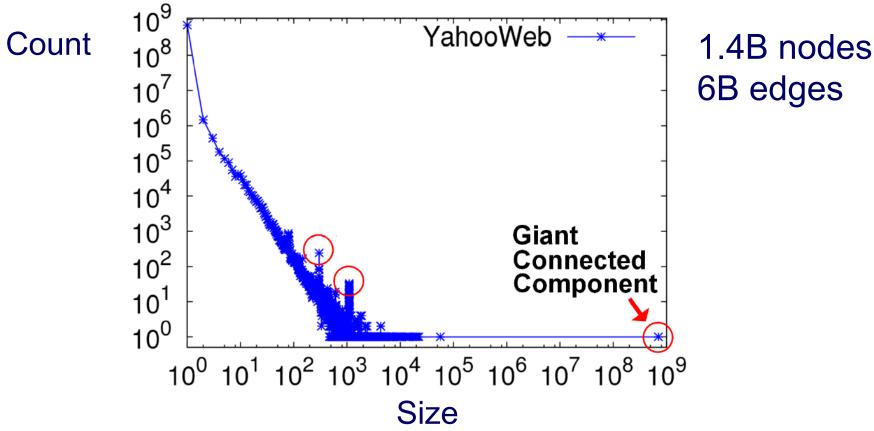
internet domains



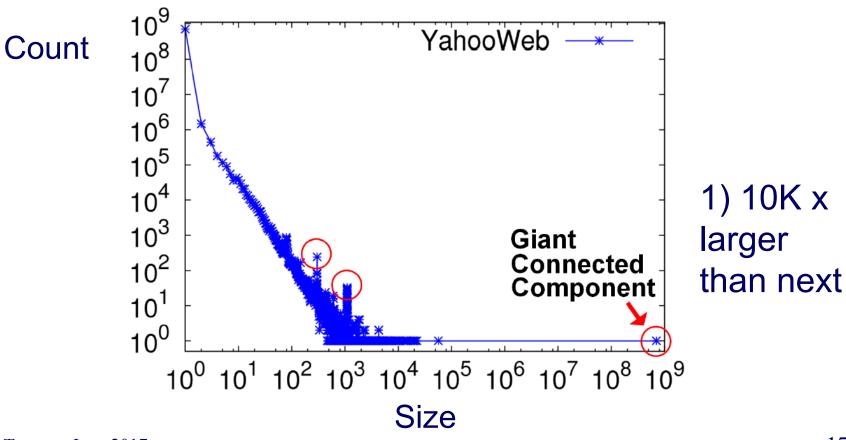
Tencent, June 2017

(c) C. Faloutsos, 2017

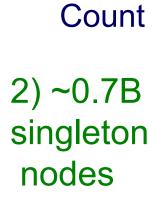
• Connected Components – 4 observations:

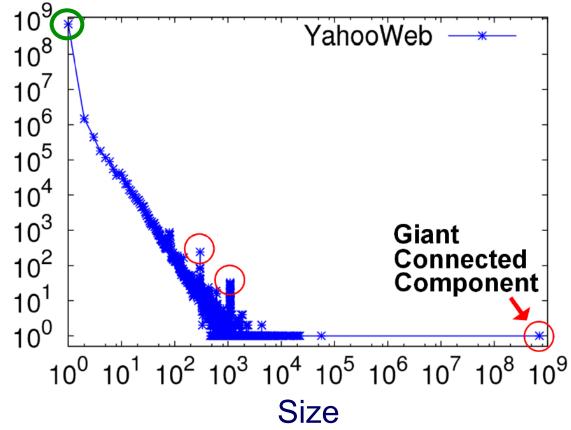


Connected Components

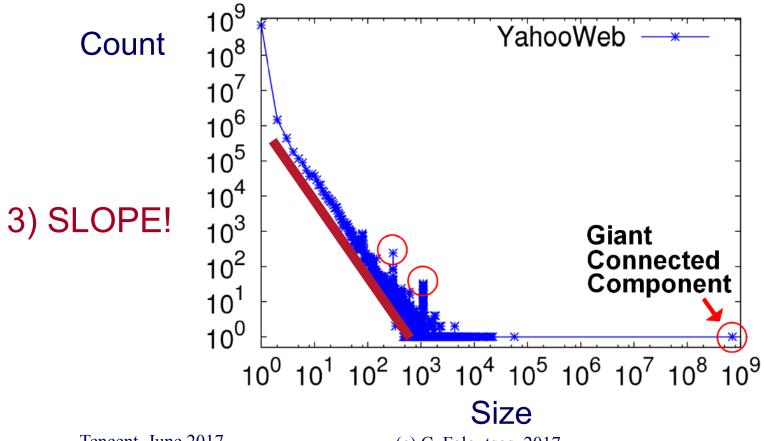


Connected Components

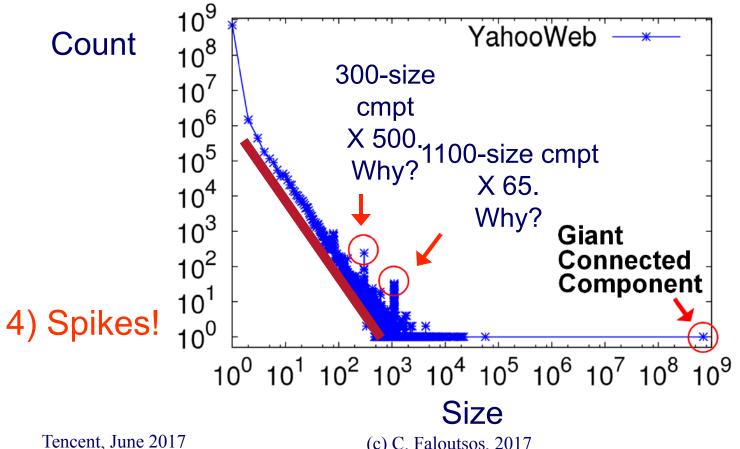




Connected Components

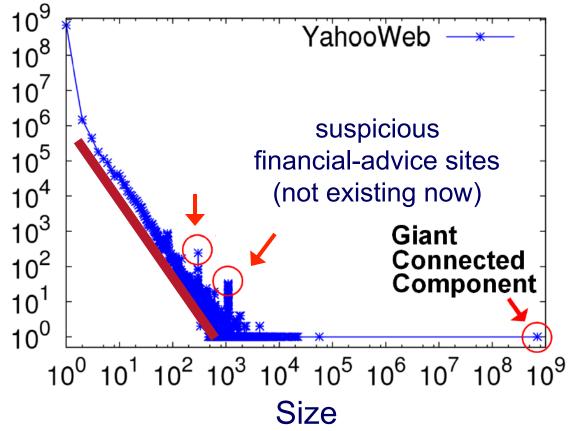


Connected Components



20 (c) C. Faloutsos, 2017

Connected Components



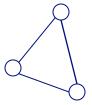
Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- P1.1: Patterns: Degree; Triangles
- P1.2: Anomaly/fraud detection
- Part#2: time-evolving graphs; tensors
- Conclusions

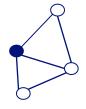
Solution# S.3: Triangle 'Laws'

Real social networks have a lot of triangles

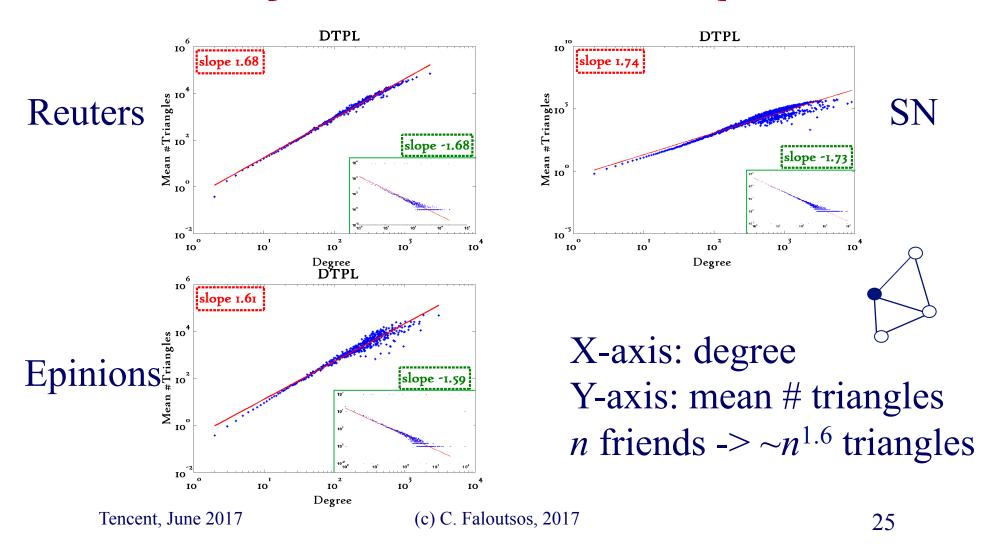
Solution# S.3: Triangle 'Laws'

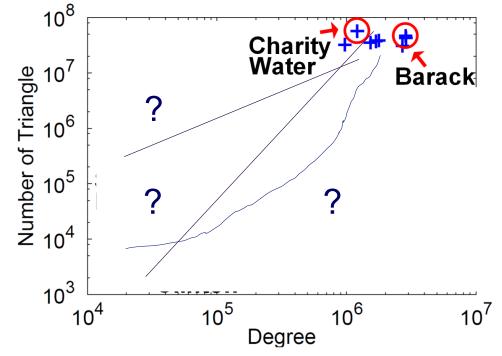


- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles?



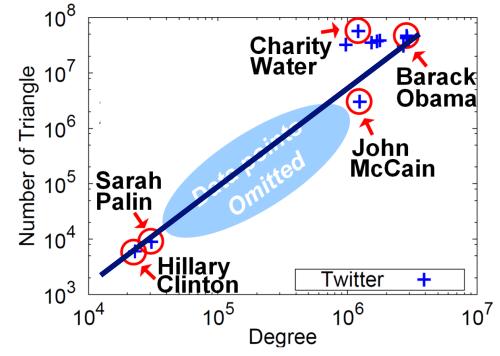
Triangle Law: #S.3 [Tsourakakis ICDM 2008]



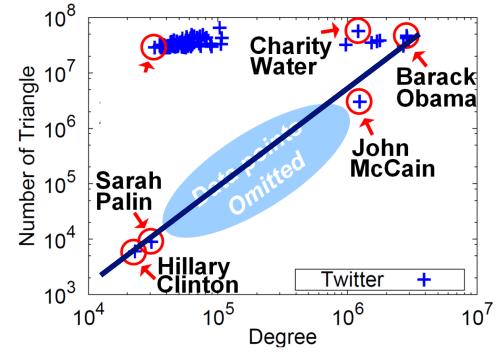


Anomalous nodes in Twitter(~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD'11]



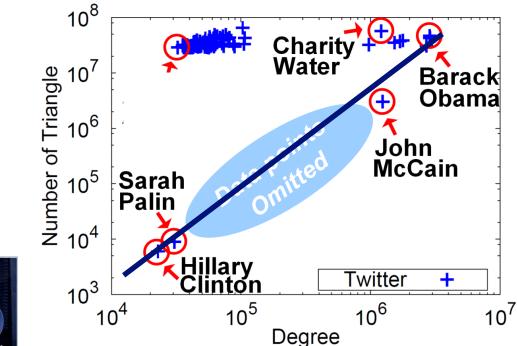
Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]



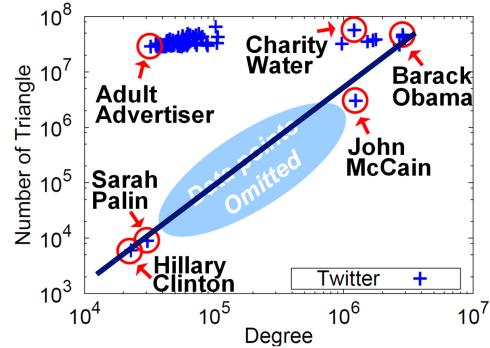
Yahoo! Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD'11]



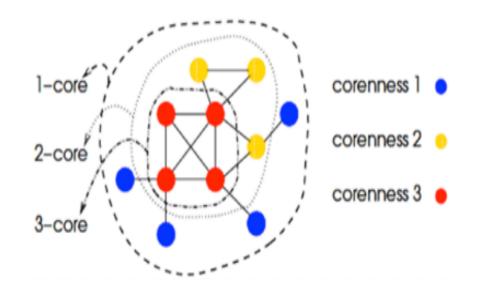
Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]



Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

S4: k-core patterns - dfn

- k-core (of a graph)
- degeneracy (of a graph)
- coreness (of a vertex)



Tencent, June 2017

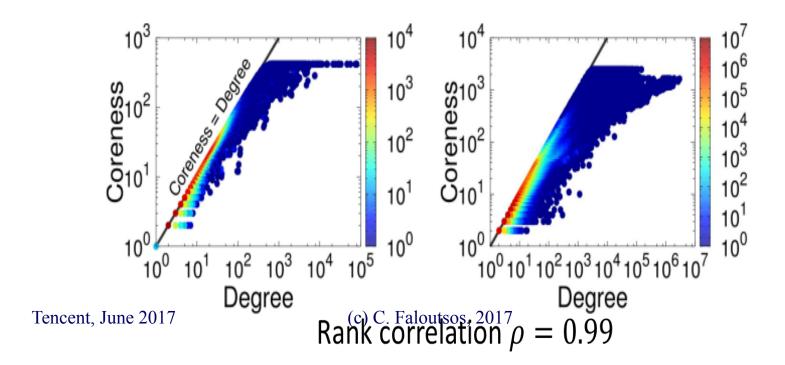
(c) C. Faloutsos, 2017

CoreScope: Graph Mining Using k-Core Analysis -Patterns, Anomalies, and Algorithms

ICDM'16 (to appear)
Kijung Shin, Tina Eliassi-Rad and CF

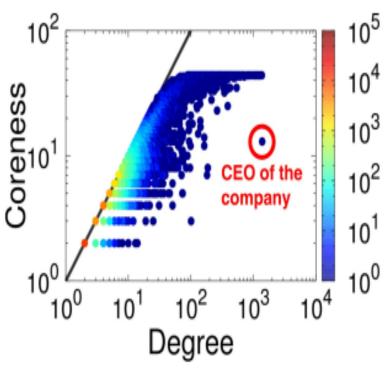
Mirror Pattern: Observation

- coreness (of a vertex): maximum k such that the
 vertex belongs to the k-core
- Definition: [Mirror Pattern] degree ~ coreness

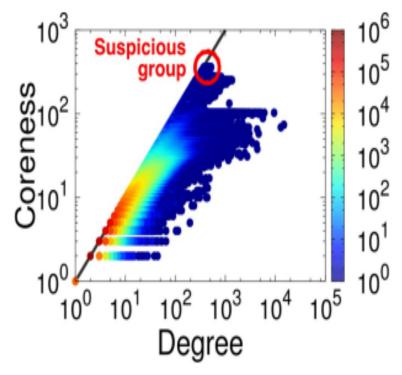


Mirror Pattern: Application

• Exceptions are 'strange'



Email (
$$\rho = 0.98$$
)



LiveJournal (
$$\rho = 0.99$$
)

Tencent, June 2017

(c) C. Faloutsos, 2017

34

MORE Graph Patterns

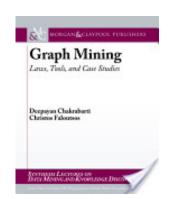
	Unweighted	Weighted
Static	Ca. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] Ca. Triangle Power Law (TPL) [Tsourakakis '08] Ca. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	 L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2nd and 3rd connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and 	L11. Weight Power Law (WPL) [McGlohon et al. `08]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	L05. Densification Power Law (DPL) [Leskovec et al. '05] L06. Small and shrinking diameter [Albert and Barabási '99, Leskovec et al. '05] L07. Constant size 2 nd and 3 nd connected components [McGlohon et al. '08] L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. '08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et al. '98, Crovella and Bestavros '99, McGlohon et al. '08]	L11. Weight Power Law (WPL) [McGlohon et al. `08]

- Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.:
 Charu Aggarwal)
- Deepayan Chakrabarti and Christos Faloutsos,
 <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.



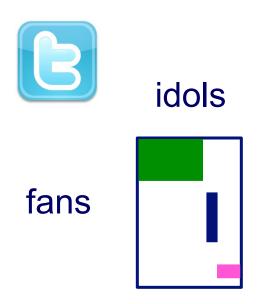
Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
- P1.2: Anomaly / fraud detection
 - No labels spectral
 Patterns
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

anomalies

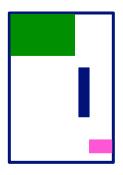
How to find 'suspicious' groups?

• 'blocks' are normal, right?



Except that:

- 'blocks' are normal, ig
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]



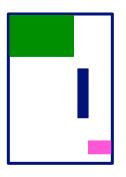
Tencent, June 2017

(c) C. Faloutsos, 2017

Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

Q: Can we spot blocks, easily?

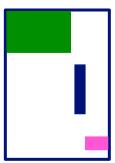


Except that:

- 'blocks' are usually suspicious
- 'hyperbolic' communities are more realistic [Araujo+, PKDD'14]

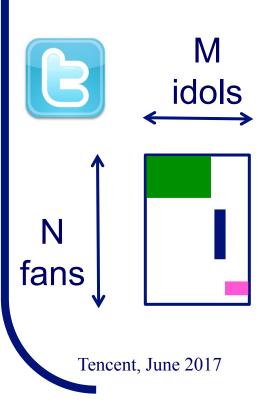
Q: Can we spot blocks, easily?

A: Silver bullet: SVD!



Crush intro to SVD

Recall: (SVD) matrix factorization: finds blocks

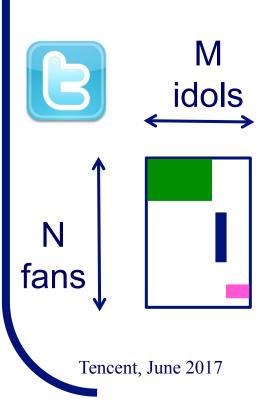


'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians' \vec{v}_1 + \vec{u}_1 + \vec{u}_1 \vec{u}_1 \vec{u}_1 \vec{u}_2 \vec{u}_3

Crush intro to SVD

(c) C. Faloutsos, 2017

Recall: (SVD) matrix factorization: finds blocks

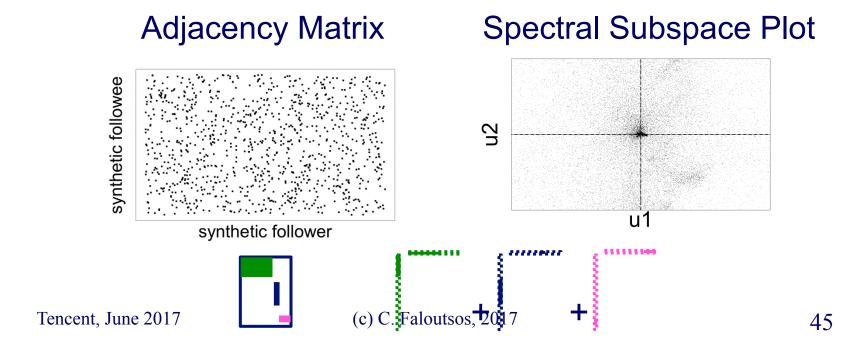


'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians' $\vec{v_1}$ + +

Inferring Strange Behavior from Connectivity Pattern in Social Networks PAKDD'14

Meng Jiang, Peng Cui, Shiqiang Yang (Tsinghua) Alex Beutel, Christos Faloutsos (CMU)

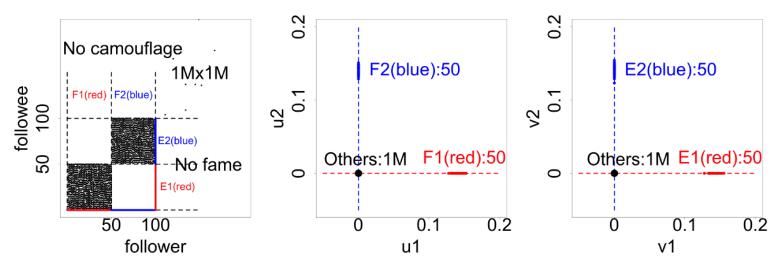
- Case #0: No lockstep behavior in random power law graph of 1M nodes, 3M edges
- Random "Scatter"



- Case #1: non-overlapping lockstep
- "Blocks"←→ "Rays"

Adjacency Matrix

Spectral Subspace Plot

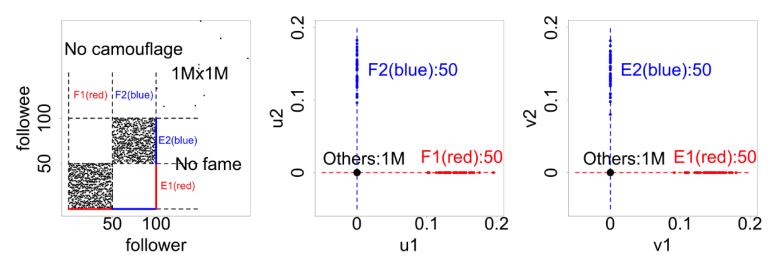


Rule 1 (short "rays"): two blocks, high density (90%), no "camouflage", no "fame" Tencent, June 2017 (c) C. Faloutsos, 2017 46

- Case #2: non-overlapping lockstep
- "Blocks; low density" ← → Elongation

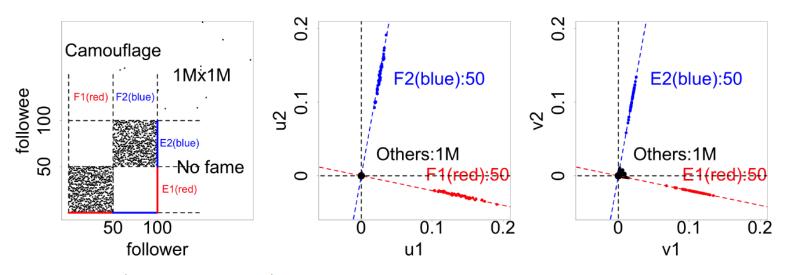
Adjacency Matrix

Spectral Subspace Plot



Rule 2 (long "rays"): two blocks, low density (50%), no "camouflage", no "fame" Tencent, June 2017 (c) C. Faloutsos, 2017 47

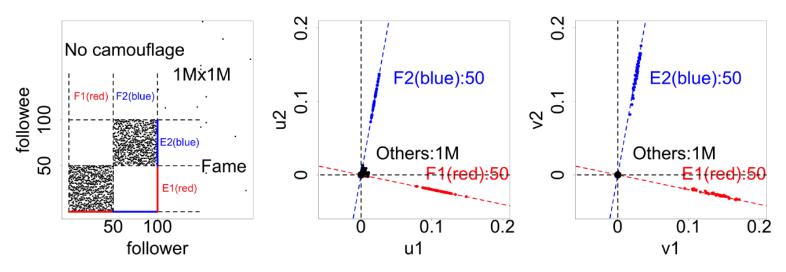
- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← Tilting
 "Rays"
 Adjacency Matrix
 Spectral Subspace Plot



Rule 3 (tilting "rays"): two blocks, with "camouflage", no "fame" Tencent, June 2017 (c) C. Faloutsos, 2017

48

- Case #3: non-overlapping lockstep
- "Camouflage" (or "Fame") ← Tilting "Rays" Adjacency Matrix Spectral Subspace Plot



Rule 3 (tilting "rays"): two blocks, no "camouflage", with "fame"

Tencent, June 2017 (c) C. Faloutsos, 2017 49

• Case #4:

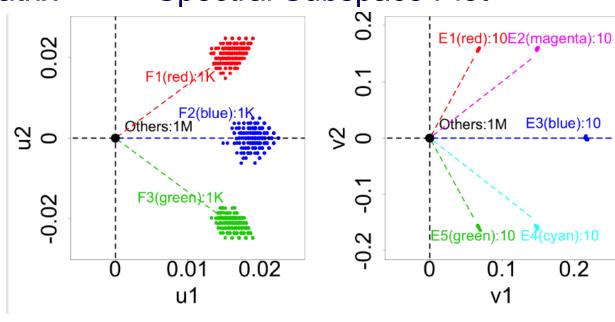
? lockstep

• "?"

"Pearls"

Adjacency Matrix

Spectral Subspace Plot

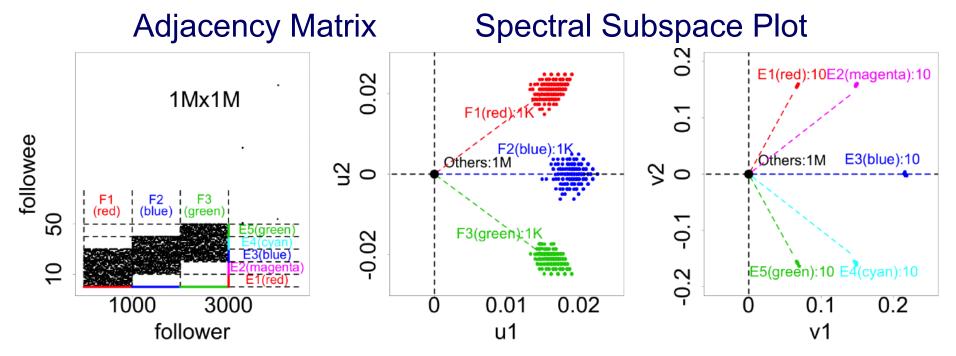


Tencent, June 2017

(c) C. Faloutsos, 2017

50

- Case #4: overlapping lockstep
- "Staircase" "Pearls"



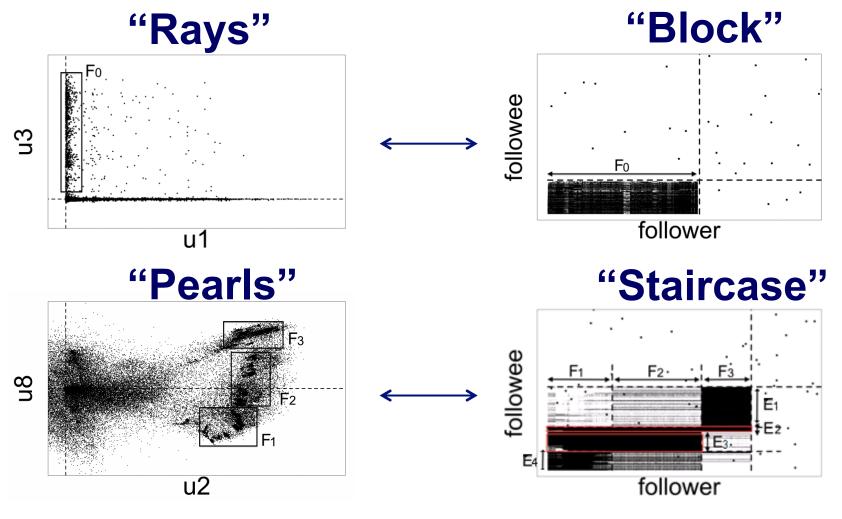
Rule 4 ("pearls"): a "staircase" of three partially overlapping blocks.

Dataset

Tencent Weibo

- 117 million nodes (with profile and UGC data)
- 3.33 billion directed edges

Real Data

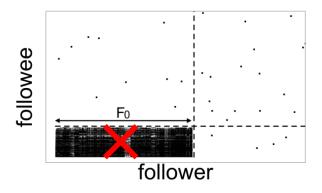


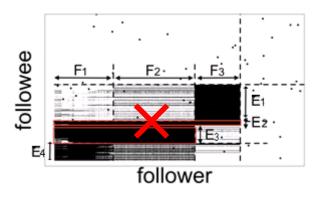
Tencent, June 2017

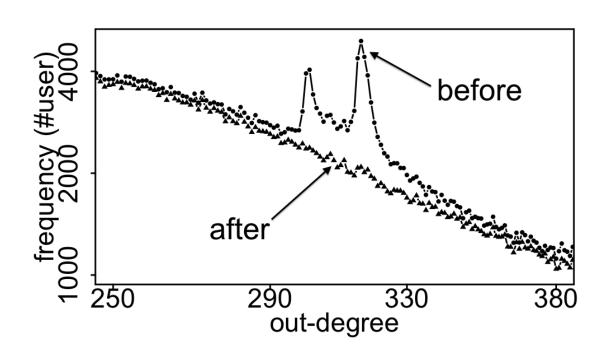
(c) C. Faloutsos, 2017

Real Data

• Spikes on the out-degree distribution







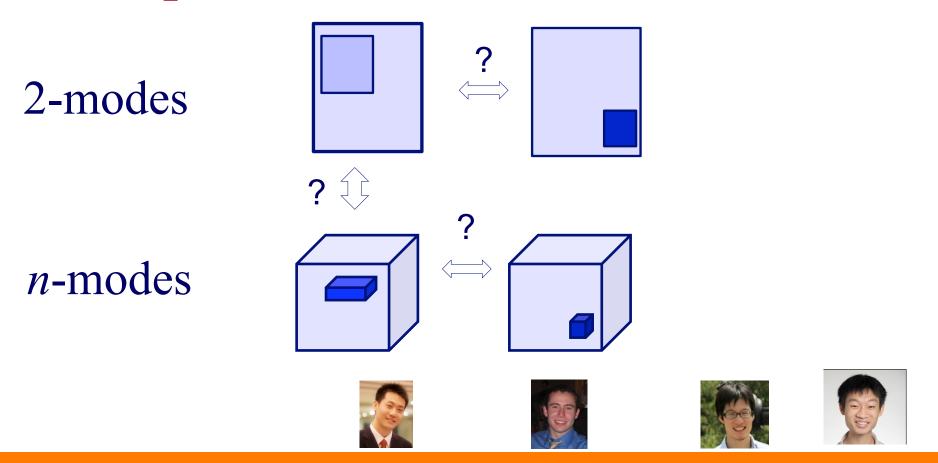
Tencent, June 2017

(c) C. Faloutsos, 2017

54

Roadmap

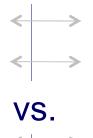
- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
 - P1.2: Anomaly / fraud detection
 - No labels spectral methods
 - Suspiciousness
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions



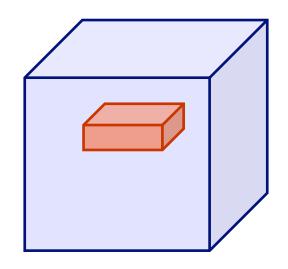
A General Suspiciousness Metric for Dense Blocks in Multimodal Data, Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos, *ICDM*, 2015.

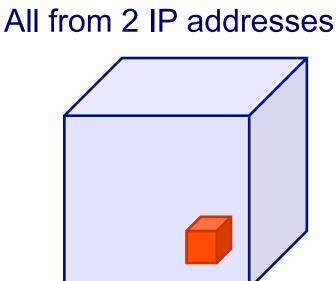
Which is more suspicious?

20,000 Users
Retweeting same 20 tweets
6 times each
All in 10 hours



225 Users
Retweeting same 1 tweet
15 times each
All in 3 hours





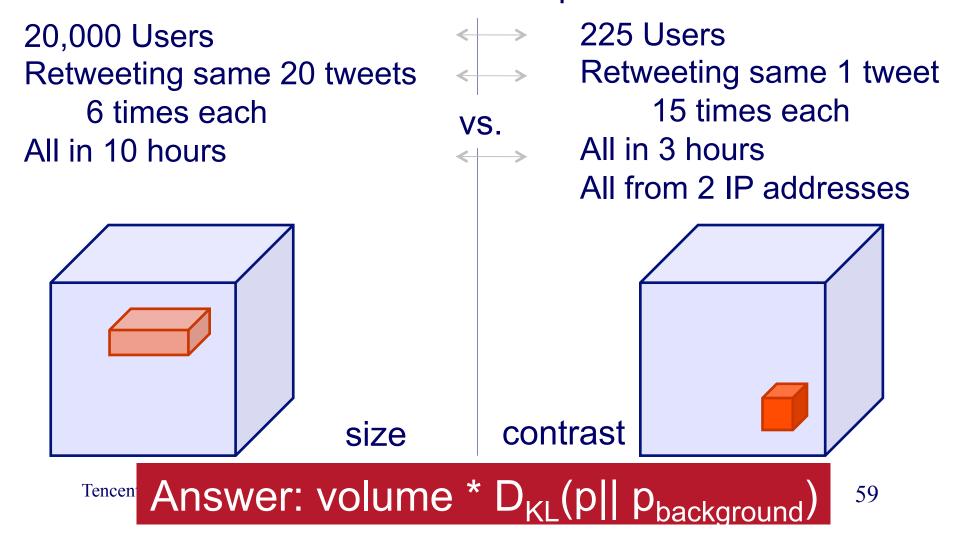
Tencent, June 2017

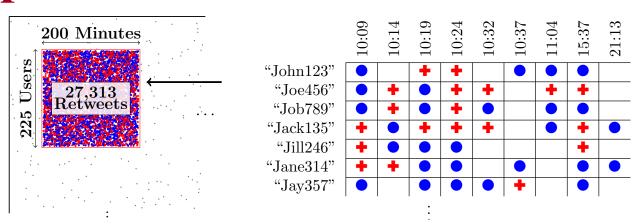
(c) C. Faloutsos, 2017

Which is more suspicious?

225 Users 20,000 Users Retweeting same 1 tweet Retweeting same 20 tweets 15 times each 6 times each VS. All in 3 hours All in 10 hours All from 2 IP addresses Answer: volume * D_{KL}(p|| p_{background}) 58

Which is more suspicious?





Retweeting: "Galaxy Note Dream Project: Happy Happy Life Traveling the World"

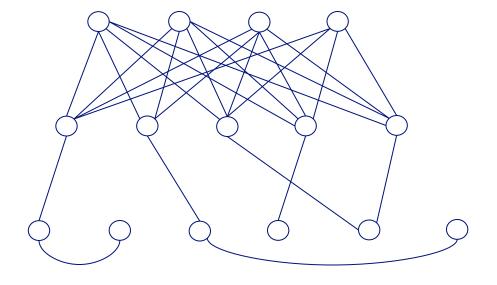
	#	User × tweet × IP × minute	Mass c	Suspiciousness
CROSSSPOT	1	$14 \times 1 \times 2 \times 1,114$	41,396	1,239,865
	2	$225 \times 1 \times 2 \times 200$	27,313	777,781
	3	8×2×4×1,872	17,701	491,323
HOSVD	1	$24\times6\times11\times439$	3,582	131,113
	2	$18\times4\times5\times223$	1,942	74,087
	3	$14 \times 2 \times 1 \times 265$	9,061	381,211

Roadmap

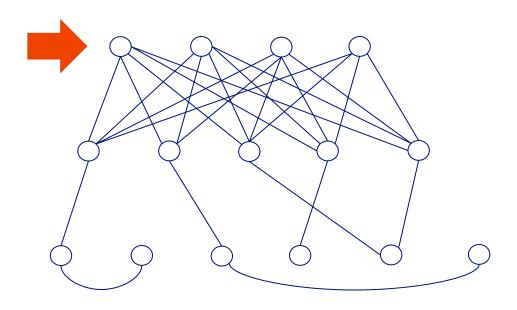
- Introduction Motivation
- Part#1: Patterns in graphs
 - P1.1: Patterns
 - P1.2: Anomaly / fraud detection
 - No labels spectral methods
 - With labels: Belief Propagation
- Part#2: time-evolving graphs; tensors
- Conclusions

E-bay Fraud detection

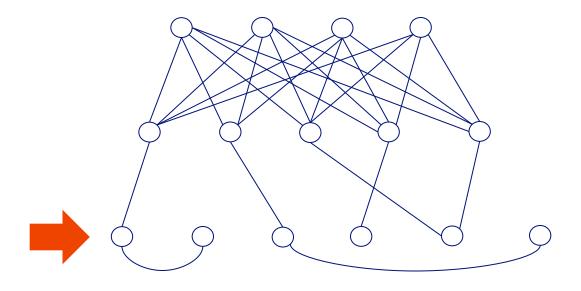
w/ Polo Chau & Shashank Pandit, CMU [www'07]



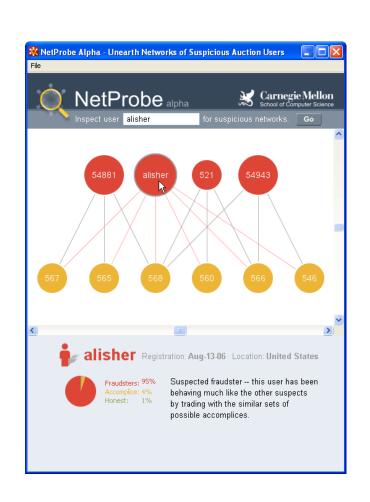
E-bay Fraud detection

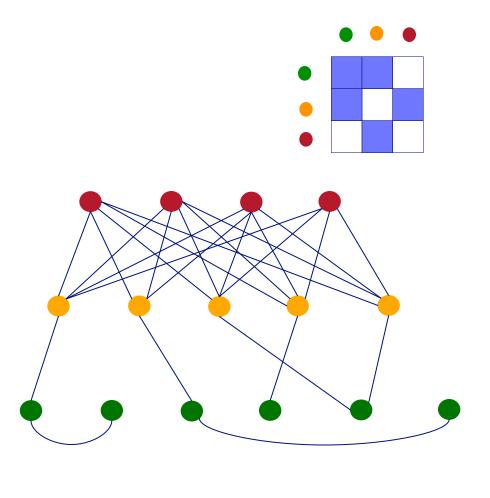


E-bay Fraud detection



E-bay Fraud detection - NetProbe





Popular press

The Washington Post

Los Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Patterns
 - Anomaly / fraud detection
 - No labels Spectral methods
 - w/ labels: Belief Propagation closed formulas
- Part#2: time-evolving graphs; tensors
- Conclusions

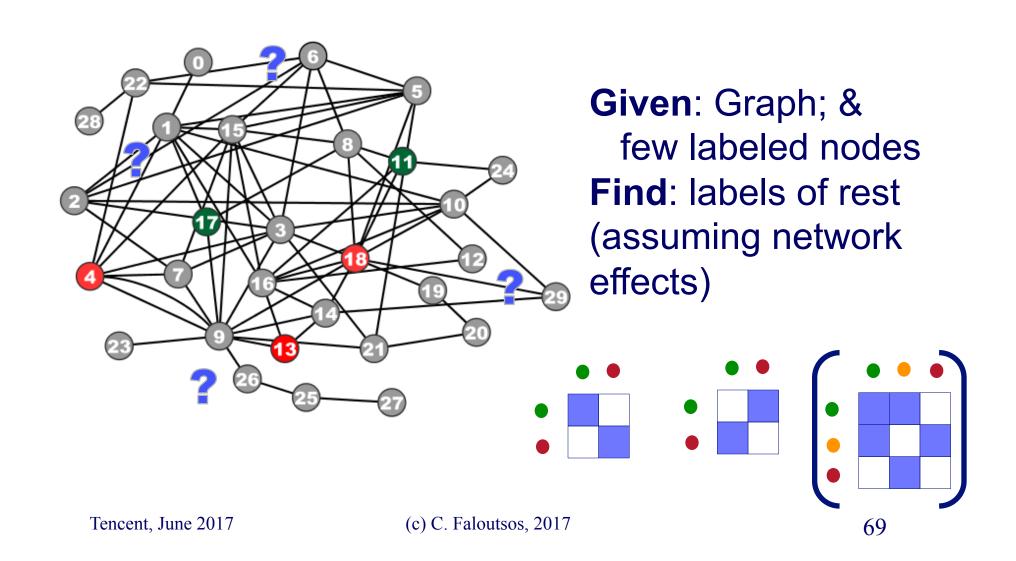
Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms

Danai Koutra
U Kang
Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau
Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece

Problem Definition: GBA techniques



Are they related?

- RWR (Random Walk with Restarts)
 - google's pageRank ('if my friends are important, I'm important, too')
- SSL (Semi-supervised learning)
 - minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

Are they related? YES!

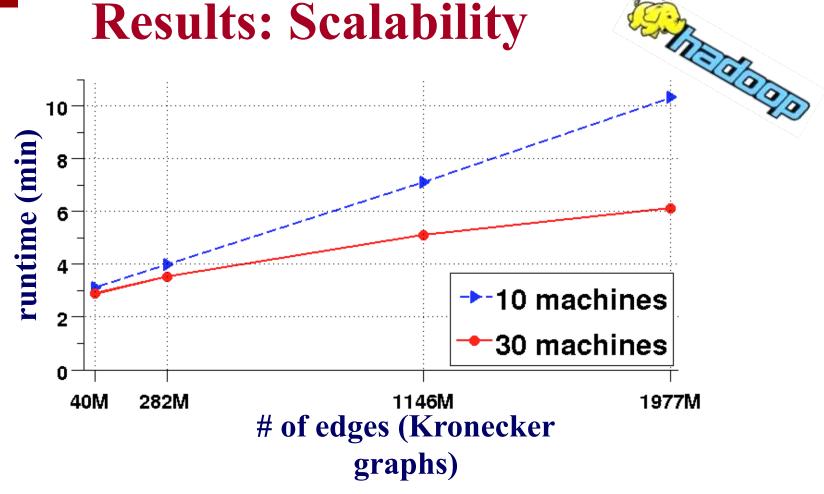
- RWR (Random Walk with Restarts)
 - google's pageRank ('if my friends are important, I'm important, too')
- SSL (Semi-supervised learning)
 - minimize the differences among neighbors
- BP (Belief propagation)
 - send messages to neighbors, on what you believe about them

Correspondence of Methods

Method	Matrix	Unknown	known	
RWR	$[\mathbf{I} - \mathbf{c} \ \underline{\mathbf{A}}\mathbf{D}^{-1}]$	× x	=	(1-c)y
SSL	$[\mathbf{I} + \mathbf{a}(\mathbf{D} - \underline{\mathbf{A}})]$	× x	=	\mathbf{y}
FABP	$[\mathbf{I} + a \mathbf{D} - c' \mathbf{A}]$	\times b _h	=	$\Phi_{\mathbf{h}}$

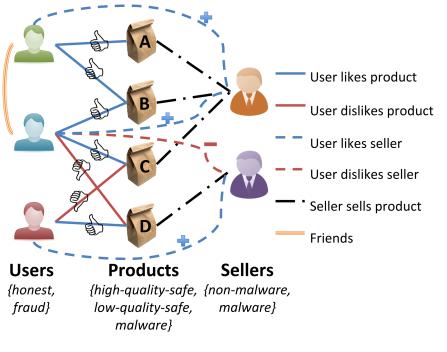
adjacency matrix

prior labels/beliefs



FABP is linear on the number of edges.

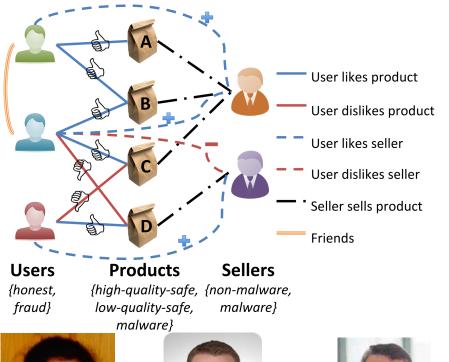
Problem: e-commerce ratings fraud



- Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"
- **Find** the top *k* most fraudulent users, products and sellers

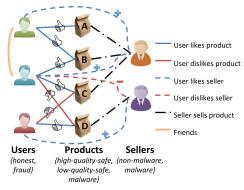
Tencent, June 2017 (c) C. Faloutsos, 2017 74

Problem: e-commerce ratings fraud



- Given a heterogeneous graph on users, products, sellers and positive/negative ratings with "seed labels"
- **Find** the top *k* most fraudulent users, products and sellers

Problem: e-commerce ratings fraud

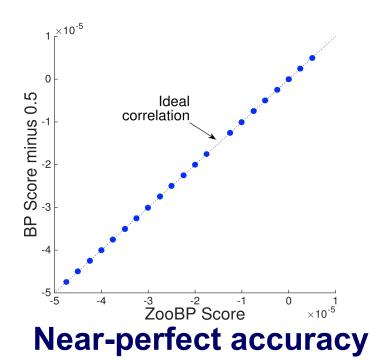


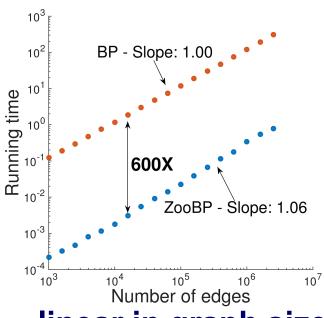
Theorem 1 (ZooBP). If **b**, **e**, **P**, **Q** are constructed as described above, the linear equation system approximating the final node beliefs given by BP is:

$$\mathbf{b} = \mathbf{e} + (\mathbf{P} - \mathbf{Q})\mathbf{b} \qquad (ZooBP) \tag{10}$$

ZooBP: features

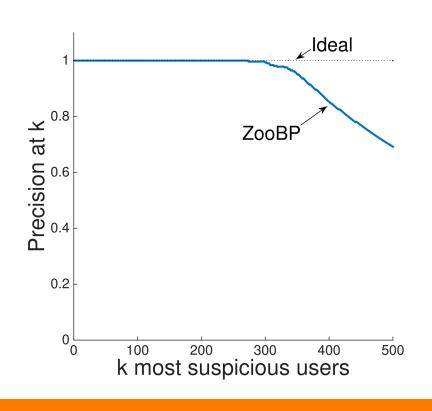
Fast; convergence guarantees.





linear in graph size

ZooBP in the real world



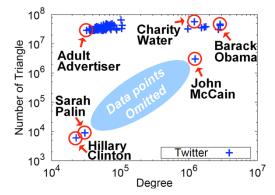
- Near 100% precision on top 300 users (Flipkart)
- Flagged users: suspicious
 - 400 ratings in 1 sec
 - 5000 good ratings and no bad ratings

Summary of Part#1

- *many* patterns in real graphs
 - Power-laws everywhere

Long (and growing) list of tools for anomaly/

fraud detection



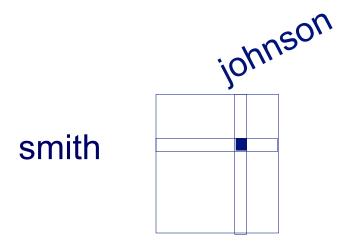
Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
- P2.1: tools/tensors
- P2.2: other patterns
- Conclusions

Part 2: Time evolving graphs; tensors

Tencent, June 2017 (c) C. Faloutsos, 2017 81

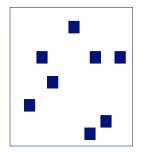
- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



Tencent, June 2017

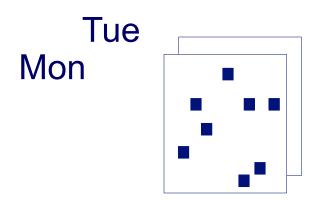
(c) C. Faloutsos, 2017

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



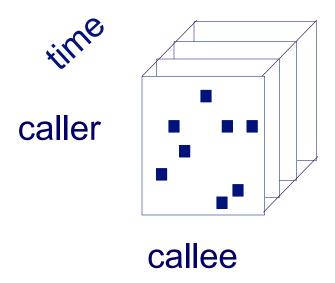
Tencent, June 2017 (c) C. Falou

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



Tencent, June 2017

- Problem #2.1:
 - Given who calls whom, and when
 - Find patterns / anomalies



Tencent, June 2017

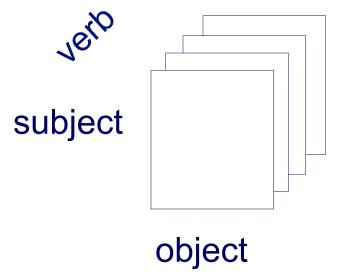
(c) C. Faloutsos, 2017

- Problem #2.1':
 - Given author-keyword-date
 - Find patterns / anomalies

MANY more settings, with >2 'modes'

keyword

- Problem #2.1'':
 - Given subject verb object facts
 - Find patterns / anomalies

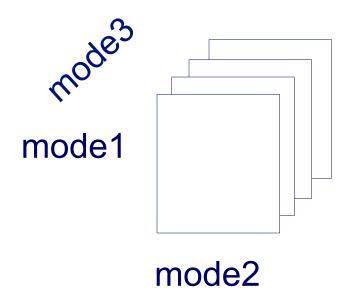


MANY more settings, with >2 'modes'

Tencent, June 2017

(c) C. Faloutsos, 2017

- Problem #2.1'':
 - Given <triplets>
 - Find patterns / anomalies



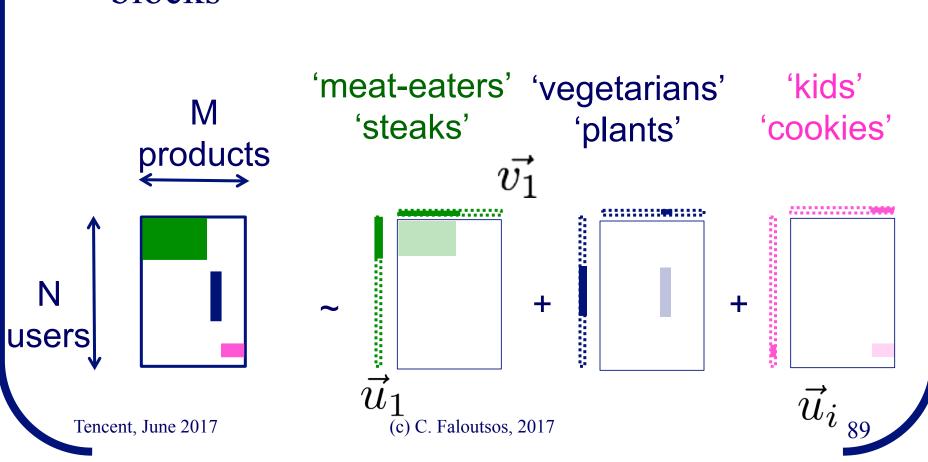
MANY more settings, with >2 'modes' (and 4, 5, etc modes)

Tencent, June 2017

(c) C. Faloutsos, 2017

Answer: tensor factorization

 Recall: (SVD) matrix factorization: finds blocks

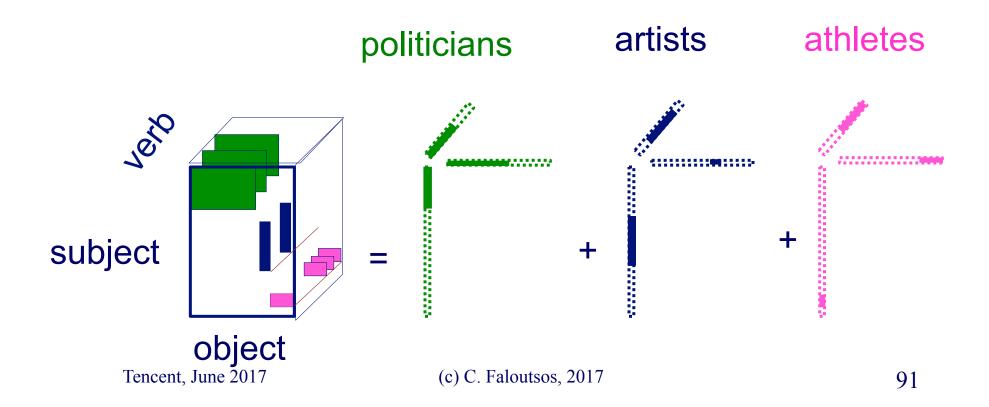


Crush intro to SVD

Recall: (SVD) matrix factorization: finds blocks 'music lovers' 'sports lovers' 'citizens' 'singers' 'athletes' 'politicians' $\vec{v_1}$ fans Tencent, June 2017 (c) C. Faloutsos, 2017

Answer: tensor factorization

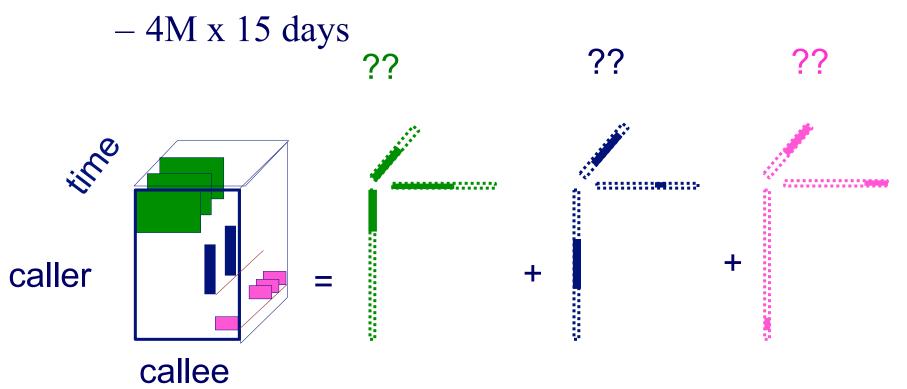
• PARAFAC decomposition



Tencent, June 2017

Answer: tensor factorization

- PARAFAC decomposition
- Results for who-calls-whom-when

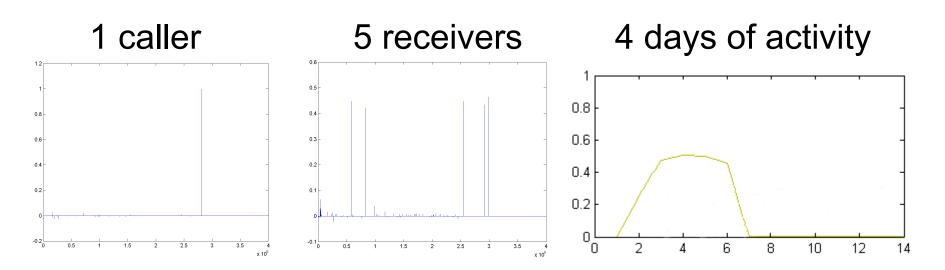


(c) C. Faloutsos, 2017

92

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



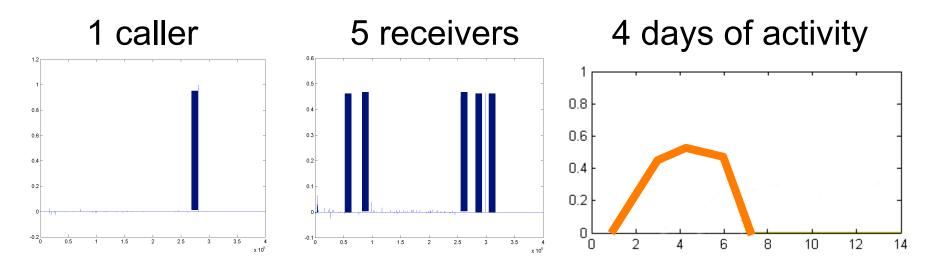
~200 calls to EACH receiver on EACH day!

Tencent, June 2017

(c) C. Faloutsos, 2017

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks



~200 calls to EACH receiver on EACH day!

Tencent, June 2017

(c) C. Faloutsos, 2017

Anomaly detection in timeevolving graphs =

- Anomalous communities in phone call data:
 - European country, 4M clients, data over 2 weeks

Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos Papalexakis, Danai Koutra. *Com2: Fast Automatic Discovery of Temporal (Comet) Communities*. PAKDD 2014, Tainan, Taiwan.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
 - P2.1: tools/tensors
- → P2.2: other patterns inter-arrival time
 - Conclusions

KDD 2015 – Sydney, Australia

RSC: Mining and Modeling Temporal Activity in Social Media

Alceu F. Costa* Yuto Yamaguchi Agma J. M. Traina
Caetano Traina Jr. Christos Faloutsos

^{*}alceufc@icmc.usp.br

Pattern Mining: Datasets

Reddit Dataset

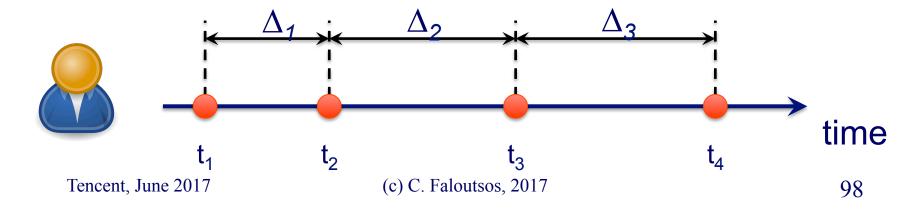
Time-stamp from comments 21,198 users 20 Million time-stamps

Twitter Dataset

Time-stamp from tweets 6,790 users 16 Million time-stamps

For each user we have:

Sequence of postings time-stamps: $T = (t_1, t_2, t_3, ...)$ Inter-arrival times (IAT) of postings: $(\Delta_1, \Delta_2, \Delta_3, ...)$

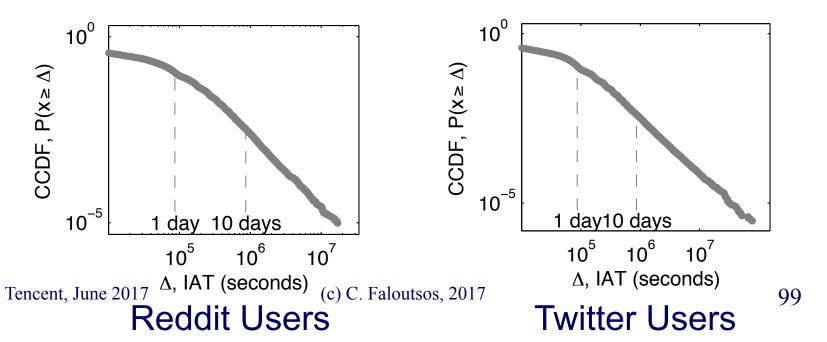


Pattern Mining

Pattern 1: Distribution of IAT is heavy-tailed

Users can be inactive for long periods of time before making new postings

IAT Complementary Cumulative Distribution Function (CCDF) (log-log axis)



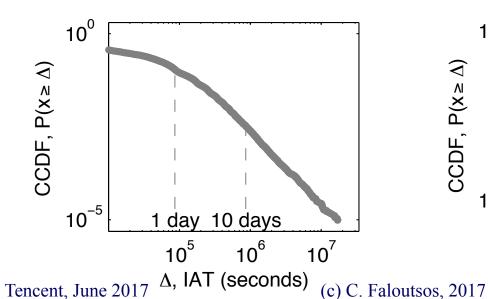
Pattern Mining

Pattern 1: Distribution of IAT is heavy-tailed

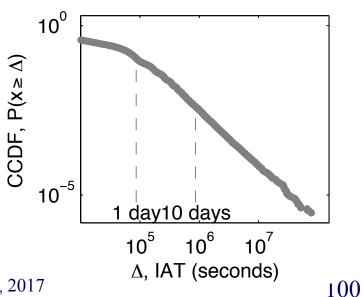
Users can be inactive for long periods of time before making new

postings

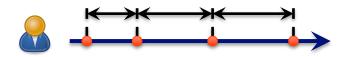
No surprises – Should we give up?



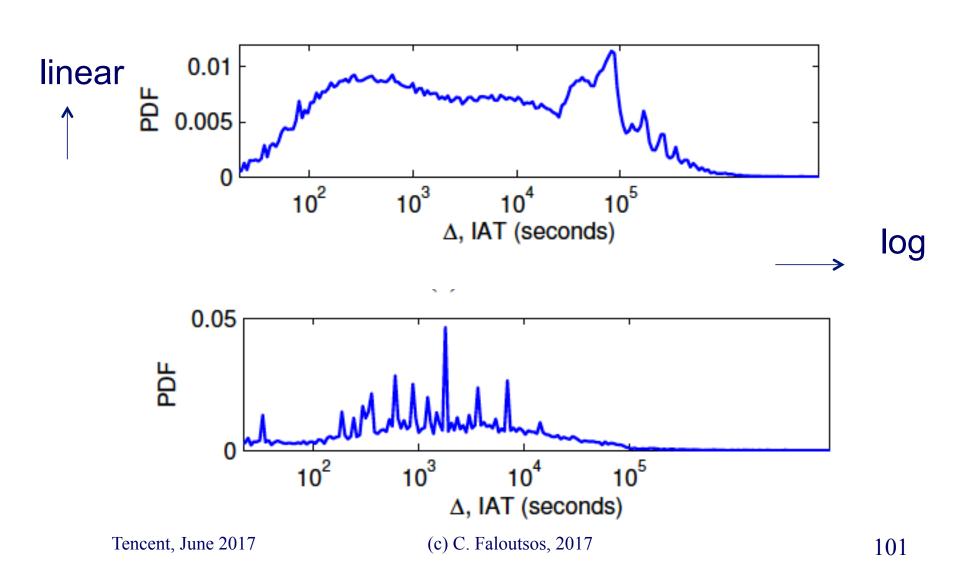
Reddit Users

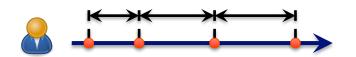


Twitter Users

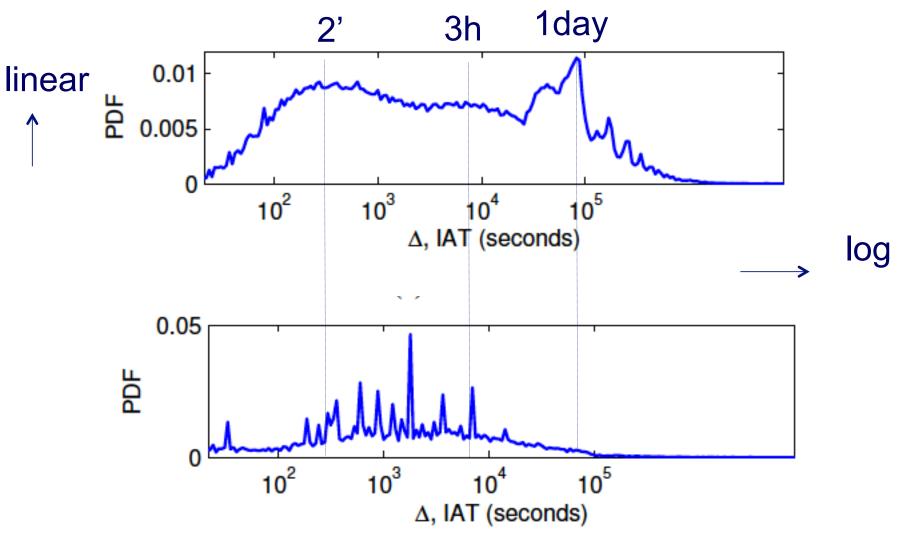


Human? Robots?





Human? Robots?



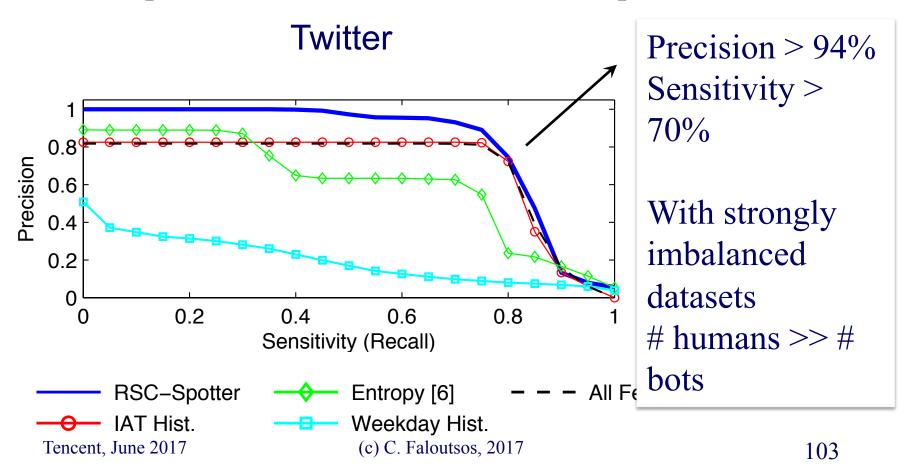
Tencent, June 2017

(c) C. Faloutsos, 2017

Experiments: Can RSC-Spotter Detect Bots?

Precision vs. Sensitivity Curves

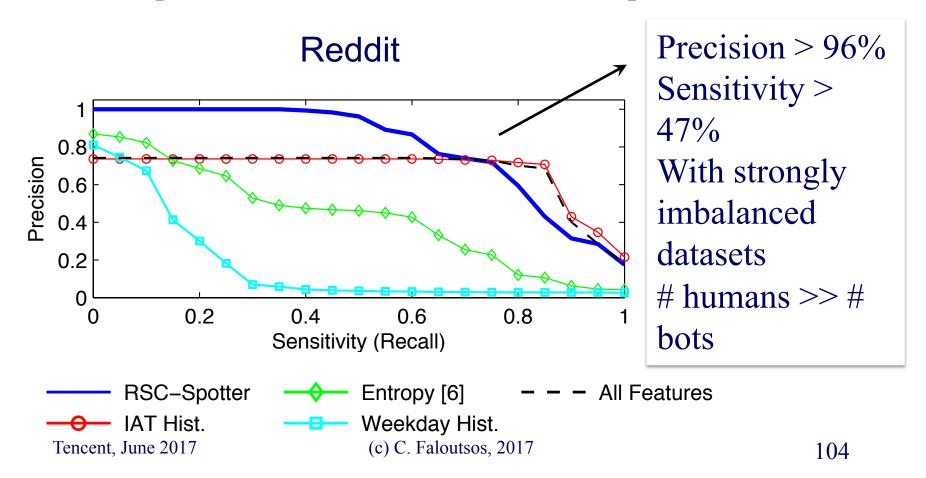
Good performance: curve close to the top



Experiments: Can RSC-Spotter Detect Bots?

Precision vs. Sensitivity Curves

Good performance: curve close to the top



Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs
 - P2.1: tools/tensors
 - P2.2: other patterns
 - inter-arrival time
 - Network growth
- Conclusions

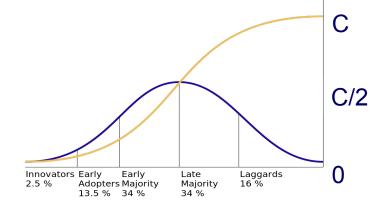
Beyond Sigmoids: the NetTide Model for Social Network Growth and its Applications KDD'16

Chengxi Zang 臧承熙, Peng Cui, CF

PROBLEM: n(t) and e(t), over time?

- n(t): the number of nodes.
- e(t): the number of edges.
- E.g.:
 - How many members will
 - How many friendship links will

- Linear?
- Exponential?
- Sigmoid?



Datasets

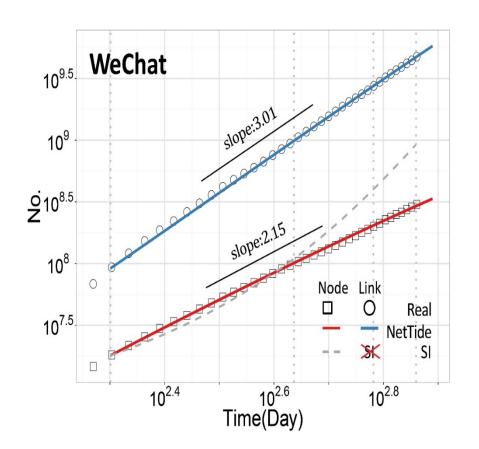
WeChat 2011/1-2013/1 300M nodes, 4.75B links

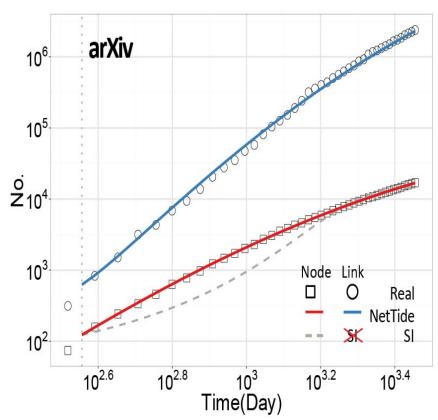
ArXiv 1992/3-2002/3 17k nodes, 2.4M links

Enron 1998/1-2002/7 86K nodes, 600K links

Weibo 2006 165K nodes, 331K links

A: Power Law Growth





Cumulative growth (Log-Log scale)

Proposed: NetTide Model

Nodes n(t)

$$\frac{dn(t)}{dt} = \frac{\beta}{t^{\theta}} n(t) (N - n(t))$$

Links e(t)

$$\frac{de(t)}{dt} = \frac{\beta'}{t^{\theta}} n(t) \left(\alpha (n(t) - 1)^{\gamma} - \frac{e(t)}{n(t)} \right) + 2 \frac{dn(t)}{dt}$$

NetTide-Node Model $dn(t)/dt = \beta/t 1\theta \ n(t)(N-n(t))$

- Intuition:
 - Rich-get-richer
 - Limitation
 - Fizzling nature

```
= SI; ~Bass
```

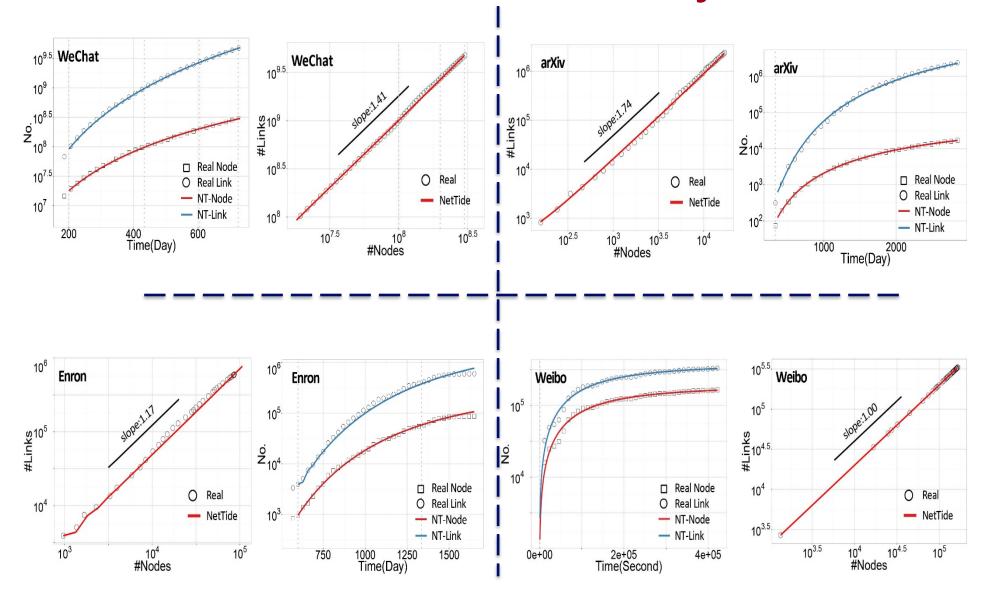

NetTide-Node Model

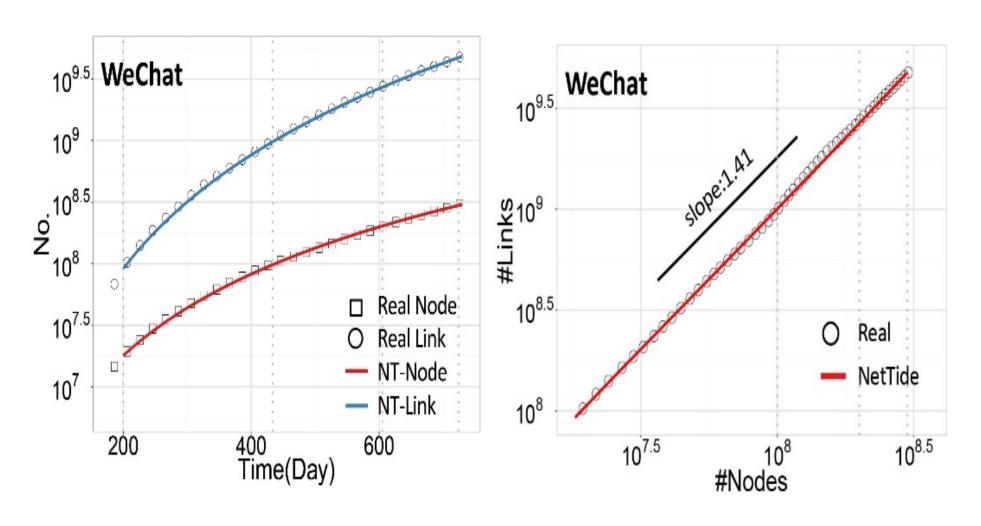
$$\frac{dn(t)}{dt} = \frac{\beta}{t^{\theta}} n(t) \left(N - n(t)\right)$$
#nodes(t)

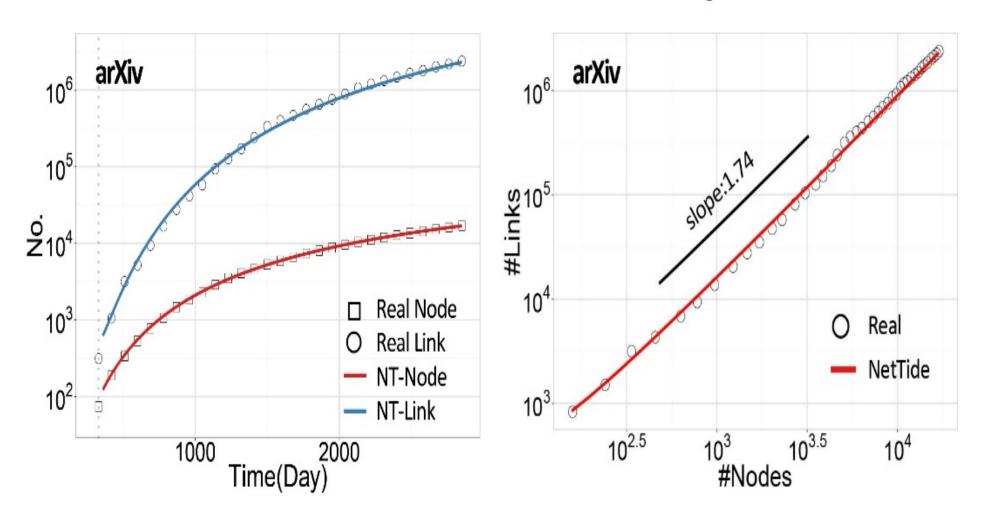
Intuition:

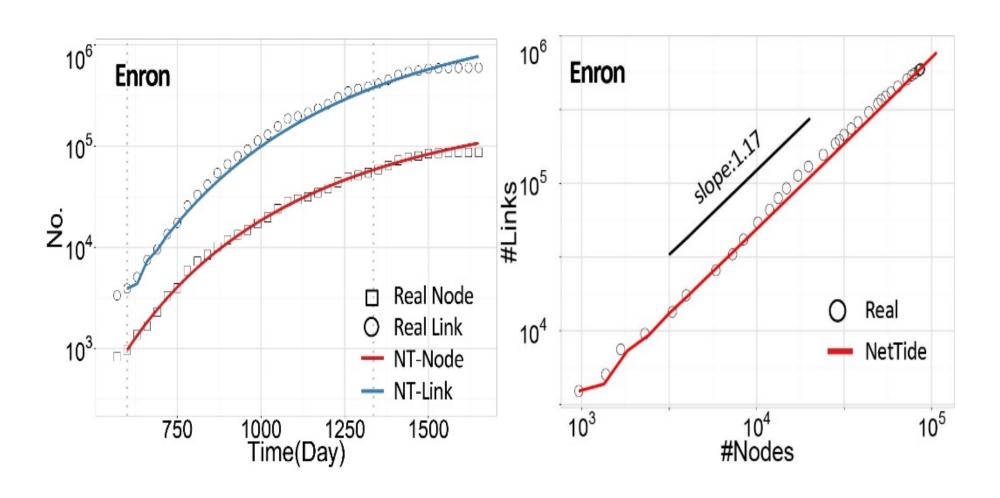
- Rich-get-richer
- Limitation
- Fizzling nature

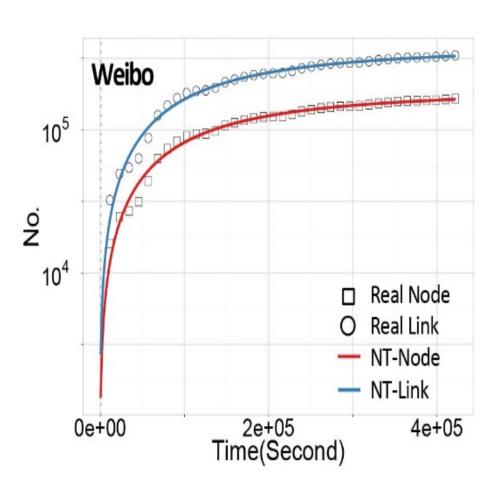
Total population

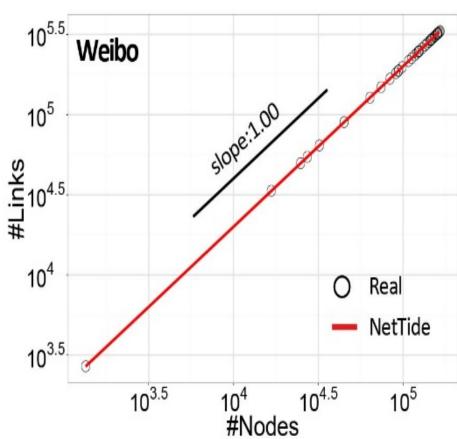






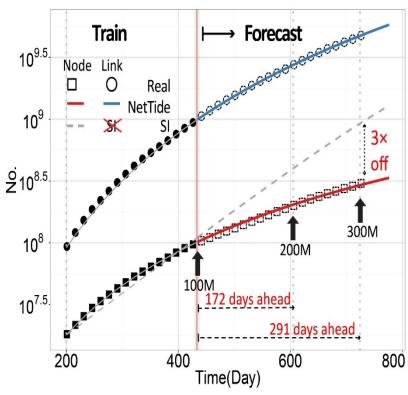


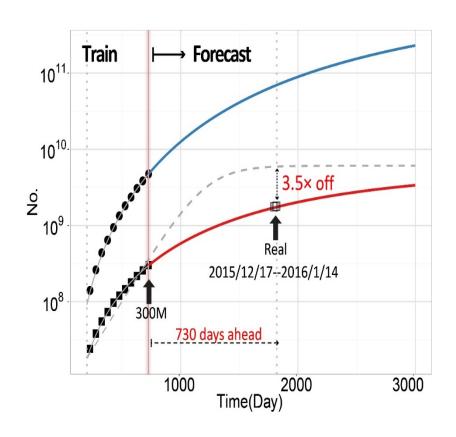




Results: Forecast

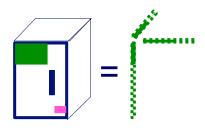
WeChat from 100 million to 300 million

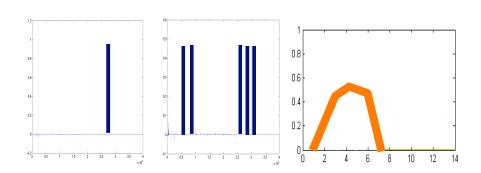




Part 2: Conclusions

- Time-evolving / heterogeneous graphs -> tensors
- PARAFAC finds patterns
- Surprising temporal patterns (P.L. growth)





Roadmap

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: time-evolving graphs; tensors

Acknowledgements and Conclusions

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Akoglu, Leman

Araujo, Miguel

Beutel, Alex

Chau, Polo

Eswaran, Dhivya

Hooi, Bryan

Kang, U

Koutra, Danai

Papalexakis, Vagelis

Shah, Neil

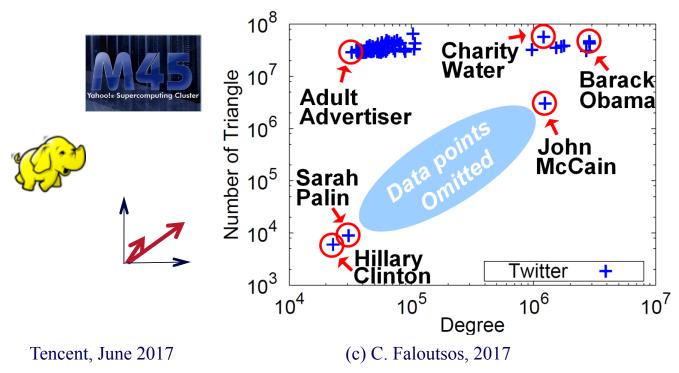
Shin, Kijung

Song, Hyun Ah

CONCLUSION#1 – Big data

Patterns Anomalies

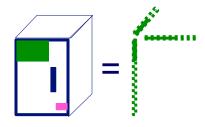
• Large datasets reveal patterns/outliers that are invisible otherwise

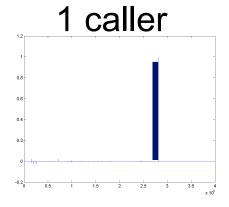


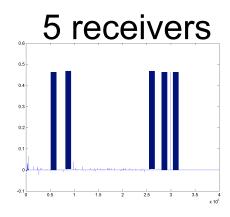
123

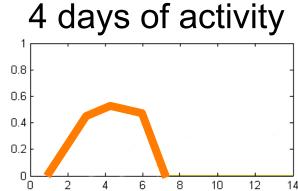
CONCLUSION#2 – tensors

powerful tool







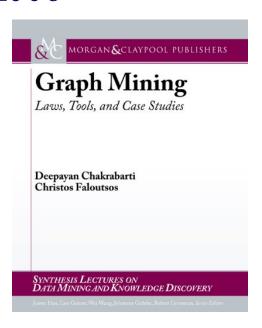


Tencent, June 2017

(c) C. Faloutsos, 2017

References

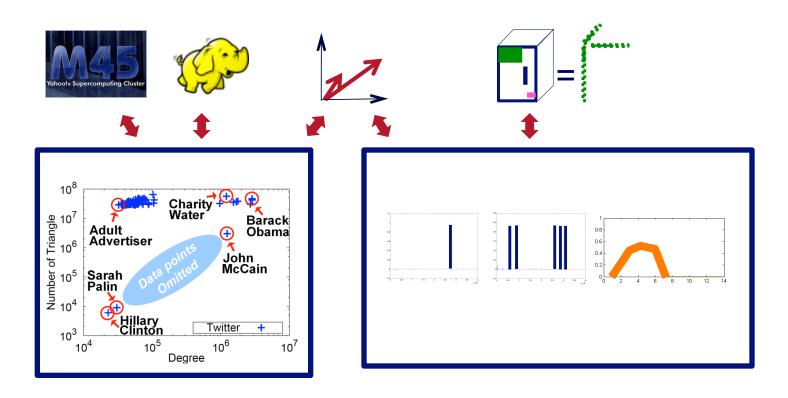
- D. Chakrabarti, C. Faloutsos: *Graph Mining Laws, Tools and Case Studies*, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006



Tencent, June 2017 (c) C. Faloutsos, 2017 125

TAKE HOME MESSAGE:

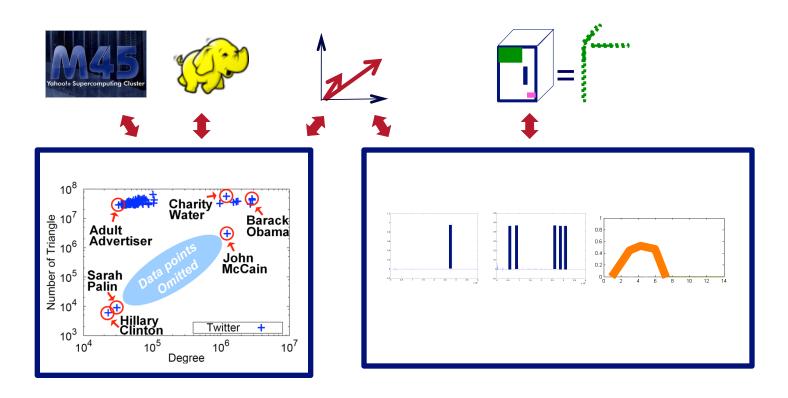
Cross-disciplinarity



Tencent, June 2017 (c) C. Faloutsos, 2017 126

Thank you!

Cross-disciplinarity



Tencent, June 2017 (c) C. Faloutsos, 2017 127