Talk 1: Graph Mining —
patterns and generators

Christos Faloutsos
CMU



Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining
System)

* www.cs.cmu.edu/~pegasus

* code and papers

KAIST-2011 (C) 2011, C. Faloutsos 2
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k#1: Patterns in graphs; generators
k#2: Tools (Ranking, proximity)

1k#3: Tools (Tensors, scalability)

Conclusions

KAIST-2011 (C) 2011, C. Faloutsos
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Graphs - why should we care?

Food Web of Smallmouth Bass
Little Rock Lake (Cannibal)
¥

1st Tropic Level

iy ; Mostly Phytoplankton :ﬂr;?‘;?;)::fam::]
Internet Map Food Web
[lumeta.com]

The Social Structure of “Countryside™ School District

\ | ™ «?M

Linked[[. -

O White
@ Black
® MixedOther

Friendship Network Protein Interactions
[Moody '01] [genomebiology.com]

KAIST-2011 (C) 2011, C. Faloutsos



Graphs - why should we care?

* IR: bi-partite graphs (doc-terms) 5

* web: hyper-text graph

e ... and more:

KAIST-2011 (C) 2011, C. Faloutsos



Carnegie Mellon

Graphs - why should we care?

* network of companies & board-of-directors
members

 ‘viral’ marketing
* web-log (‘blog’) news propagation

» computer network security: email/IP traffic
and anomaly detection

KAIST-2011 (C) 2011, C. Faloutsos



Outline

* Introduction — Motivation
) . Patterns in graphs

— Patterns 1n Static graphs

— Patterns in Weighted graphs

— Patterns in Time evolving graphs

e (Generators

KAIST-2011 (C) 2011, C. Faloutsos



Carnegie Mellon

Network and graph mining

e How does the Internet look like?
« How does FaceBook look like?

e What is ‘normal’/abnormal’?

* which patterns/laws hold?

KAIST-2011 (C) 2011, C. Faloutsos
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Network and graph mining

e How does the Internet look like?
« How does FaceBook look like?

e What is ‘normal’/abnormal’?

* which patterns/laws hold?

— To spot anomalies (rarities), we have to
discover patterns
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Carnegie Mellon

Network and graph mining

e How does the Internet look like?
« How does FaceBook look like?

e What is ‘normal’/abnormal’?

* which patterns/laws hold?

— To spot anomalies (rarities), we have to
discover patterns

— Large datasets reveal patterns/anomalies
that may be invisible otherwise...

KAIST-2011 (C) 2011, C. Faloutsos 10



Carnegie Mellon

Topology

How does the Internet look like? Any rules?

(Looks random — right?)

KAIST-2011 (C) 2011, C. Faloutsos 11



Carnegie Mellon

Are real graphs random?

* random (Erdos-Renyi) e e
graph — 100 nodes, avg i .
degree = 2

* before layout

e after layout

« No obvious patterns

(generated with: pajek

http://vlado.fmf.uni-lj.si/pub/networks/pajek/ )

KAIST-2011 (C) 2011, C. Faloutsos 12



Graph mining

» Are real graphs random?

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Laws and patterns

* Are real graphs random?
* A: NO!!
— Diameter

— 1n- and out- degree distributions
— other (surprising) patterns

e So, let’s look at the data

KAIST-2011 (C) 2011, C. Faloutsos
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Laws — degree distributions

* Q: avg degree is ~2 - what 1s the most
probable degree?

count 27

AN

2

degree

KAIST-2011 (C) 2011, C. Faloutsos



Carnegie Mellon

Laws — degree distributions

* Q: avg degree is ~2 - what 1s the most
probable degrip" J
count

AN \_

2 degree 2 degree

count

KAIST-2011 (C) 2011, C. Faloutsos 16
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Solution S1 .Power-law: outdegree O

10000 ¢

Fre UENC . ettt . .:-971'103'0“'1-';”
q y [ exp(7.68585) *x **( -2.15632) — Exponent —_ Slope

0=-215
\/-2.15

1 10 100

Outdegree

1000

Nov'97

The plot 1s linear 1in log-log scale
[FFEF’99]

KAIST-2011 ©) 2011 Faloutsos 17
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Carnegie Mellon

Solution# S.1°

* Power law 1n the degree distribution
[SIGCOMMO99]

internet domains

~ att.com
log(degree) msmgmagnoneneas pereieuiegeesz ~—

log(rank)

1000 10000

KAIST-2011 (C) 2011, C. Faloutsos
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Solution# S.2: Eigen Exponent E

Eigenvalue
100

' 'P3.0regon’ +
exp(4.3031) *x*“(-0.47734) ——

Exponent = slope

E=-048

10 }

May 2001

1 10 100

Rank of decreasing eigenvalue

« A2: power law 1n the eigenvalues of the adjacency

matrix
KAIST-2011 (C) 2011, C. Faloutsos 19
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Solution# S.2: Eigen Exponent E

Eigenvalue
100

' 'P3.0regon’ +
exp(4.3031) *x*“(-0.47734) ——

Exponent = slope

E=-048

10 }

May 2001

1 1l0 100
Rank of decreasing eigenvalue

e [Mihail, Papadimitriou ’02]: slope 1s 2 of rank

exponent
KAIST-2011 (C) 2011, C. Faloutsos 20



But:

How about graphs from other domains?

KAIST-2011 (C) 2011, C. Faloutsos
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More power laws:

» web hit counts [w/ A. Montgomery]

O
Web Site Traffic
Count
(log scale) o
O
o users ,
sites

10" 10" 10"
Number of Visits Websites Receive

mlin-cifegree (log scale)

KAIST-2011 (C) 2011, C. Faloutsos 22
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epinions.com
* who-trusts-whom
- [Richardson +
100000 ' " OrgraigE Domingos, KDD
! ‘ 2001]
= b ‘. |
8 ol
0} S ’
| | = L trusts-2000-people user
Y o

(out) degree

KAIST-2011 (C) 2011, C. Faloutsos
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And numerous more

 # of sexual contacts
* Income [Pareto] —80-20 distribution’
* Duration of downloads [Bestavros+]

* Duration of UNIX jobs (‘mice and
elephants’)

o Size of files of a user

 ‘Black swans’

KAIST-2011 (C) 2011, C. Faloutsos
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Outline

e Introduction — Motivation

 Patterns in graphs

— Patterns 1n Static graphs
* Degree

=) e Triangles

— Patterns in Weighted graphs
— Patterns in Time evolving graphs
* (enerators

KAIST-2011 (C) 2011, C. Faloutsos
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Solution# S.3: Triangle ‘Laws’

<

» Real social networks have a lot of triangles

KAIST-2011 (C) 2011, C. Faloutsos 26



Solution# S.3: Triangle ‘Laws’

<}

» Real social networks have a lot of triangles
— Friends of friends are friends

* Any patterns?

KAIST-2011 (C) 2011, C. Faloutsos 27



Carnegie Mellon

Epinions

lo° "
KAIST-2011

Triangle Law: #S.3
[Tsourakakis ICDM 2008]

X-axis: # of Triangles
a node participates in
Y-axis: count of such nodes

10° Faloutsos 28



Carnegie Mellon

Triangle Law: #S.3
[Tsourakakis ICDM 2008]

X-axis: # of Triangles
a node participates in
Y-axis: count of such nodes

Epinions

lOc o * _
KAIST-2011 1o Faloutsos 29



Carnegie Mellon

I

Triangle Law: #S.4
[Tsourakakis ICDM 2008]

DTPL 0 DTPL

Reuters : SN

slope -1.68i|

Mean #Triangl
o

—
©
°
s

X-axis: degree
Y-axis: mean # triangles
n friends -> ~n'!-° triangles

EplIllOIlS

\~T/ =v

KAIST-2011 Degree . .., C. Faloutsos 30



Carnegie Mellon W

Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

KAIST-2011 (C) 2011, C. Faloutsos 31



Carnegie Mellon %

Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!
#triangles = 1/6 Sum (A.° )
(and, because of skewness, we only need
the top few eigenvalues!

KAIST-2011 (C) 2011, C. Faloutsos 32



Carnegie Mellon W

Triangle Law: Computations

[Tsourakakis ICDM 2008]
Wikipedia graph 2006-Nov-o4
~ 3,IM nodes = 37M edges

100
(1021x, 97.4%)
98/
~ Feee .
R (1277x, 94.7%)
N
= 96 Tl /
ool T
o %,
D 94
9] \s‘
< (1329x, 92.80%) %
92

\ | | | | | |
18 1060 1100 1150 1200 1250 1300 1350
Speedup

1000x+ speed-up, >90% accuracy

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Triangle counting for large graphs?

Anomalous nodes 1in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

KAIST-2011 (C) 2011, C. Faloutsos 34
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Triangle counting for large graphs?

8
10° - =
. Mi Charit?-@-ll- @K |
%107 TAd 7[t Water BN ack
Adv Obama
§ 100 | Advertiser @")( __
% | John
© 105 .—Sar_ah McCain
= 'Palgl
2 10* | @
Hillar _ ]
10° KClintoyn [ Twitter  + | {
10° 10° 10° 107

Degree

Anomalous nodes 1in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

KAIST-2011 (C) 2011, C. Faloutsos 35



Carnegie Mellon

KAIST-2011

How about cliques?

(C) 2011, C. Faloutsos
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Large Human Communication Networks
Patterns and a Utility-Driven Generator

Nan Du, Christos Faloutsos, Ba1 Wang, Leman Akoglu
KDD 2009
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Cliques

* Clique 1s a complete subgraph.

 If a clique can not be
contained by any larger
clique, it 1s called the
maximal clique.

KAIST-2011 (C) 2011, C. Faloutsos
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Clique

* Clique 1s a complete subgraph.

 If a clique can not be
contained by any larger
clique, it 1s called the
maximal clique.
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Carnegie Mellon

Clique

* Clique 1s a complete subgraph.

 If a clique can not be
contained by any larger
clique, it 1s called the
maximal clique.

KAIST-2011 (C) 2011, C. Faloutsos
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Clique

* Clique 1s a complete subgraph.

 Ifa clique can not be 0 2
contained by any larger
clique, it 1s called the
maximal clique.

{0,1,2}, {0,1,3}, {1,2,3} 1 3
{2,3,4}, {0,1,2,3} are cliques;

10,1,2,3} and {2,3,4} are
the maximal cliques.

KAIST-2011 (C) 2011, C. Faloutsos 41
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S5: Clique-Degree Power-Law

GSZ
T1
* Power law: @ 10° -
-
o slope=2.14
C% o« d* O 10t |
avg ] ©
E
P 1
| degree G
# maximal J : -
. . of node i O .o
cliques of node | o 10
o o
> -1
<E 10 : *
10° 10’ 10° 10°
#Partners
a is the power law exponent  pore friends, even more
a 6[18,22] fOF 81 ~S3 SOCial CirCleS I

KAIST-2011 (C) 2011, C. Faloutsos 42



S5: Clique-Degree Power-Law

° Sptlier Detectign
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S5: Clique-Degree Power-Law

o ()S}Jtlier Detectign
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Outline

e Introduction — Motivation

 Patterns in graphs
— Patterns 1n Static graphs

* Degree, eigenvalues
 Triangles, cliques
#  Other observations
— Patterns in Weighted graphs

— Patterns in Time evolving graphs

 (Generators

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Yes!

KAIST-2011

Any other ‘laws’?

(C) 2011, C. Faloutsos
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Carnegie Mellon

Any other ‘laws’?
Yes!

* Small diameter (~ constant!) —
— six degrees of separation / ‘Kevin Bacon’

— small worlds [Watts and Strogatz]

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Any other ‘laws’?

* Bow-tie, for the web [Kumar+ ‘99]
* IN, SCC, OUT, ‘tendrils’

* disconnected components
0
A

KAIST-2011 (C) 2011, C. Faloutsos 48




Carnegie Mellon

Any other ‘laws’?

* power-laws 1n communities (bi-partite cores)
| Kumar+, ‘99]

Log(count)

n:1

n:3 n:2 2:3 core
(m:n core)

Log(m)

KAIST-2011 (C) 2011, C. Faloutsos 49



Carnegie Mellon

Any other ‘laws’?

» “Jellyfish” for Internet [Tauro+ *01]
 core: ~clique
» ~5 concentric layers

* many 1-degree nodes

>

KAIST-2011 (C) 2011, C. Faloutsos 50
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Outline

e Introduction — Motivation

 Patterns in graphs
— Patterns 1n Static graphs

* Degree, eigenvalues
 Triangles, cliques
#  Other observations
— Patterns in Weighted graphs

— Patterns in Time evolving graphs

 (Generators

KAIST-2011 (C) 2011, C. Faloutsos

51



EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin
Sridharan, Sridhar Machiraju and Christos
Faloutsos: EigenSpokes.: Surprising
Patterns and Scalable Community Chipping
in Large Graphs, PAKDD 2010,
Hyderabad, India, 21-24 June 2010.

KAIST-2011 (C) 2011, C. Faloutsos 52



Carnegie Mellon

EigenSpokes

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

A=UXU"!

KAIST-2011 (C) 2011, C. Faloutsos
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EigenSpokes

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

. A=UXU"!

— —>

v

Uy Us

KAIST-2011 (C) 2011, C. Faloutsos
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EigenSpokes

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

. A=UXU"!

— —>

v

Uy Us

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

EigenSpokes

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

. A=UXU" A

< — o o°

v

Uy Us

KAIST-2011 (C) 2011, C. Faloutsos 56



Carnegie Mellon

EigenSpokes

e Eigenvectors of adjacency matrix

= equivalent to singular vectors
(symmetric, undirected graph)

. A=UXU"!

— —>

v

Uy U

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

EigenSpokes
T D
+ EE plot: 2"% Principal
component
* Scatter plot of u2 o
scores of ul vs u2 * e T
* One would expect °0
— Many points @
origin
— A few scattered
ui
~randomly
18t Principal
component

KAIST-2011 (C) 2011, C. Faloutsos 58



Carnegie Mellon

EigenSpokes
* EE plot:
e Scatter plot of u2 I‘é 000
scores of ul vs u2 ¥ b_
* One would expect oy
— Many points @
origin
— A ered
ui

~~

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

I

EigenSpokes - pervasiveness

¢ Present 1n mobile social graph

" across time and space

ol
WW

1

¢ Patent citation graph v

KAIST-2011 (C) 2011, C. Faloutsos 60



Carnegie Mellon

EigenSpokes - explanation

Near-cliques, or near-
bipartite-cores, loosely
connected

_K

KAIST-2011 (C) 2011, C. Faloutsos 61
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EigenSpokes - explanation

Near-cliques, or near- iﬁ)

bipartite-cores, loosely
connected

_K

KAIST-2011 (C) 2011, C. Faloutsos 62



Carnegie Mellon

EigenSpokes - explanation

Near-cliques, or near- UED

bipartite-cores, loosely
connected

_K

KAIST-2011 (C) 2011, C. Faloutsos 63



Carnegie Mellon

I

EigenSpokes - explanation

Near-cliques, or near- ) D
bipartite-cores, loosely

connected spy plot of top 20 nodes

R [
Fod, F L R,
So what? v, v, v,
1 T DY [OEET
= Extract nodes with high M-s."* L e
EAEC B EEESS
scores e S Fope
" high connectivity Gy B RSy
ik e g | o o
o o % H ‘ii‘f.- o* .:: . :i....: .:.;
» Good “communities” GO P ki
V7 VB V9

KAIST-2011 (C) 2011, C. Faloutsos 64



Carnegie Mellon

Bipartite Communities!

patents from { .
same inventor(s)

cut-and-paste
bibliography! <

magnified bipartite community

KAIST-2011 (C) 2011, C. Faloutsos 65



Carnegie Mellon

=)

Outline

* Introduction — Motivation
 Patterns in graphs

— Patterns 1n Static graphs

— Patterns in Weighted graphs

— Patterns in Time evolving graphs

e (Generators

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Observations on weighted
oraphs?

* A:yes-even more ‘laws’!
<@r ‘(

M. McGlohon, L. Akoglu, and C. Faloutsos

Weighted Graphs and Disconnected

Components: Patterns and a Generator.
SIG-KDD 2008

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Observation W.1: Fortification

Q: How do the weights

of nodes relate to degree?

KAIST-2011 (C) 2011, C. Faloutsos
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Observation W.1: Fortification

More donors,
more $ ?

510 Reagan
$5 o 1 . b)
$7~><> Clinton

o ¢

KAIST-2011 (C) 2011, C. Faloutsos
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)
.

Observation W.1: fortification:

Snapshot Power Law
« Weight: super-linear on in-degree

e exponent ‘iw’: 1.01 <1w < 1.26

More donors,

even more $

Orgs-Candidates

[ ()I

e.g. John Kerry,
N 4 $10M received,

$10 In-weights i, | from 1K donors
$5 :
o ——
o o Edges (# donors)
KAIST-2011 (C) 2011, C. Faloutsos 70



Carnegie Mellon

=)

Outline

* Introduction — Motivation
 Patterns in graphs

— Patterns 1n Static graphs

— Patterns in Weighted graphs

— Patterns in Time evolving graphs

e (Generators

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Problem: Time evolution

e with Jure Leskovec (CMU ->
Stanford)

* and Jon Kleinberg (Cornell —
sabb. (@ CMU)

KAIST-2011 (C) 2011, C. Faloutsos 72



T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

— diameter ~ O(log N)
— diameter ~ O(log log N)
* What 1s happening in real data?

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

T.1 Evolution of the Diameter

* Prior work on Power Law graphs hints

at slowly growing diameter:
— diameter ~ (@:\;’
— diameter ~ O og N)

D I

* What 1s happening in real data?

e Diameter shrinks over time

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

T.1 Diameter — “Patents”

C 35c dlameter —
e Patent citation hah
network 307 =—-'Post ‘85 subgraph, no past
» 25 years of data £
. @1999 :
— 2.9 M nodes -
— 16.5 M edges

1%75 1 9180 1 9185 1 9190 1 9195 20100
time [years]

KAIST-2011 (C) 2011, C. Faloutsos 75



T.2 Temporal Evolution of the

Graphs

* N(t) ... nodes at time t

* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

* Q: what 1s your guess for
B(t+1) =2 2 * E(t)

KAIST-2011 (C) 2011, C. Faloutsos
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T.2 Temporal Evolution of the

Graphs

* N(t) ... nodes at time t
* E(t) ... edges at time t
* Suppose that
N(t+1) = 2 * N(t)
* Q: what 1s your guess for

B(t+1) @ E(t)

 A: over-doubled!

— But obeying the "~ Densification Power Law’”
KAIST-2011 (C) 2011, C. Faloutsos 77



Carnegie Mellon

T.2 Densification — Patent
Citations

» Citations among
patents granted

* @1999
— 2.9 M nodes
— 16.5 M edges

* Each yearis a
datapoint

KAIST-2011

10°¢

E(t)

-
O_‘l

(]
T

Number of edges
S

1975 *

199

1.66

+ Edges

—=0.0002 x"-% R?=0 99

10°

10°

(C) 2011, C. Faloutsos

10°

1
Number of nodes N (t)
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Carnegie Mellon

=)

Outline

* Introduction — Motivation
 Patterns in graphs

— Patterns 1n Static graphs

— Patterns in Weighted graphs

— Patterns in Time evolving graphs

e (Generators

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected

Components: Patterns and a Generator.
SIG-KDD 2008

KAIST-2011 (C) 2011, C. Faloutsos
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Carnegie Mellon

Observation T.3: NLCC behavior

Q: How do NLCC'’s emerge and join with
the GCC?

(""NLCC”” = non-largest conn. components)

—Do they continue to grow 1n size?

— or do they shrink?

— or stabilize? O O
o
o

KAIST-2011 (C) 2011, C. Faloutsos 81



Carnegie Mellon

Observation T.3: NLCC behavior

Q: How do NLCC'’s emerge and join with
the GCC?

(""NLCC”” = non-largest conn. components)

—Do they continue to grow 1n size?

— or do they shrink?

— or stabilize? /O\C)
o

KAIST-2011 (C) 2011, C. Faloutsos 82




Carnegie Mellon

Observation T.3: NLCC behavior

Q: How do NLCC'’s emerge and join with
the GCC?

(" "NLCC’’ = non-largest conn. components)
YES —Do they continue to grow in size?
YES — or do they shrink?
YES — or stabilize?

KAIST-2011 (C) 2011, C. Faloutsos 83



Carnegie Mellon

Observation T.3: NLCC behavior

 After the gelling point, the GCC takes off, but
NLCC’s remain ~constant (actually, oscillate).

IMDB

—w— CC2|| Time = 1914
—e—CC3

CC size

Time-stamp
KAIST-2011 (C) 2011, C. Faloutsos R4



Carnegie Mellon

Timing for Blogs

with Mary McGlohon (CMU)

Jure

Nata

_eskovec (CMU->Stanford)

1e Glance (now at Google)

Mat

Hurst (now at MSR)

[SDM’07]

KAIST-2011

(C) 2011, C. Faloutsos

85



Carnegie Mellon

T.4 : popularity over time

# in links \

|
3 lag: days after post

—
N

O

Post popularity drops-off — exponentially? @t

O

@t + lag

KAIST-2011 (C) 2011, C. Faloutsos 86




Carnegie Mellon

T.4 : popularity over time

# in links
(log)

6
10 10°

5
10° 405
10" 0%,
10" 10%

10% 10%}

10' 10’

32N
@
o

o Posts
—— = 541905.74 I R2_1 ¢

1 10

10’ 10°

days after post
(log)

Post popularity drops-off — expm@ally?
POWER LAW!

Exponent?

KAIST-2011

(C) 2011, C. Faloutsos
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T.4 : popularity over time

6
10 10°

# in links 5
(log) "
10" 0%,
10° 10°
10° 107}
10" 10’

o Posts

—=541905.74 x_'°° R?=1.00

1 10

Post popularity drops-off — expor@ally?

POWER LAW!
Exponent? -1.6

10"

10°

days after post
(log)

Bromn Noise

4 y
e close to -1.5: Barabasi’s stack model B WN\NM/

» and like the zero-crossings of a random walk ™

KAIST-2011

(C) 2011, C. Faloutsos
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-1.5 slope

J. G. Oliverra & A.-L. Barabast Human Dynamics: The
Correspondence Patterns of Darwin and Einstein.
Nature 437, 1251 (2005) . [PDF]

b c
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Figure 1| The correspondence patterns of Darwin and Einstein.

Response time t (days)
k

89




Carnegie Mellon

Darwin %o

10
10° 0 10 0 10 0° »

102 03 100 0
Response time t (days)

Response time t (days)
Figure 1| The correspondence patterns of Darwin and Einstein.
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T.5: duration of phonecalls

Surprising Patterns for the Call
Duration Distribution of Mobile
Phone Users

Pedro O. S. Vaz de Melo, Leman

Akoglu, Christos Faloutsos, Antonio
A. F. Loureiro

PKDD 2010

KAIST-2011 (C) 2011, C. Faloutsos 01
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Probably, power law (?)

10° |
o
(o]
(o]
o ??
OO
count 10° | °_
oO
(o]
(o]
(o]
-2
10° 10" 10° 10°

KAIST-2011

Duration (s)

(C) 2011, C. Faloutsos
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No Power Law!

count 10°
* data
—TLAC
log-normal
| |~—-exponential
10 L
10 10 10 10

Duration (s)

KAIST-2011 (C) 2011, C. Faloutsos



‘TLaC: Lazy Contractor’

* The longer a task (phonecall) has taken,
* The even longer 1t will take

Odds ratio= 10

N

\i Casualties(<x):
count 10° — h- SUfViVOfS(>=X) 100 _

10°

_I):éri)rmal ¢ data
| |~—exponential “‘ _ -
10100 10 10° 10° 1 0 2- TLAC
Duration (s) |Og-n0rma|
—_— -4 —exponential
== power law 10"/  [-—SXponemiay

10° 10’ 10° 10

duration (s)
KAIST-2011 (C) 2011, C. Faloutsos 04
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Data Description

= Data from a private mobile operator of a large
City
= 4 months of data
= 3.1 million users

= more than 1 billion phone records

» Over 96% of ‘talkative’ users obeyed a TLAC
distribution (‘talkative’: >30 calls)

KAIST-2011 (C) 2011, C. Faloutsos 05



Outline

 Introduction — Motivation
 Patterns in graphs
* (Generators
- Erdos-Reny1
— Degree based

— Process based

— Kronecker

KAIST-2011 (C) 2011, C. Faloutsos
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Generators

 How to generate random, realistic graphs?
— Erdos-Reny1 model: beautiful, but unrealistic
— degree-based generators
— process-based generators

— recursive/self-similar generators

KAIST-2011 (C) 2011, C. Faloutsos
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Erdos-Renyi

e random graph — 100
nodes, avg degree = 2

 Fascinating properties
(phase transition)

* But: unrealistic
(Poisson degree
distribution != power
law)

KAIST-2011 (C) 2011, C. Faloutsos
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e

E-R model & Phase transition

* vary avg degree D
* watch Pc =
Prob( there 1s a giant

connected component) 1

 How do you expect it

to be?

KAIST-2011

Pc

??

(C) 2011, C. Faloutsos
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E-R model & Phase transition

* vary avg degree D Pe

 watch Pc =

Prob( there 1s a giant
connected component) 1

 How do you expect it
to be?

KAIST-2011 (C) 2011, C. Faloutsos 100



Degree-based

* Figure out the degree distribution (eg.,
‘Zipt)
» Assign degrees to nodes

» Put edges, so that they match the original
degree distribution

¥-¥ ¥ 4§ 4§ ¢

KAIST-2011 (C) 2011, C. Faloutsos 101



Process-based

 Barabasi; Barabasi-Albert: Preferential
attachment -> power-law tails!

— ‘rich get richer’
» [Kumar+]: preferential attachment +
mimick

— Create ‘communities’

KAIST-2011 (C) 2011, C. Faloutsos 102
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Process-based (cont’d)

» [Fabrikant+, ‘02]: H.O.T.: connect to
closest, high connectivity neighbor

* [Pennock+, ‘02]: Winner does NOT take all

KAIST-2011 (C) 2011, C. Faloutsos 103



Outline

 Introduction — Motivation
 Patterns in graphs
* (Generators

— Erdos-Reny1

— Degree based

— Process based
q — Kronecker

KAIST-2011 (C) 2011, C. Faloutsos 104
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Recursive generators

* (RMAT [Chakrabarti+,’04])
» Kronecker product

KAIST-2011 (C) 2011, C. Faloutsos 105
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Wish list for a generator:

» Power-law-tail in- and out-degrees
* Power-law-tail scree plots

* shrinking/constant diameter

e Densification Power Law

e communities-within-communities

KAIST-2011 (C) 2011, C. Faloutsos 106
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Wish list for a generator:

» Power-law-tail in- and out-degrees
* Power-law-tail scree plots

* shrinking/constant diameter

 Densification Power Law
e communities-within-communities
Q: how to achieve all of them?

A: Selt-similarity - Kronecker matrix product
mLLeskovec+05b]

T-2011 (C) 2011, C. Faloutsos 107
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Kronecker product

i -\/)
D,

-~
)

\

(a) Graph Gy

KAIST-2011 (C) 2011, C. Faloutsos 108
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Kronecker product

(a) Graph Gy (b) Intermediate stage

KAIST-2011 (C) 2011, C. Faloutsos 109
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Kronecker product

29 33
3 L—

Central node is X 22

(a) Graph Gy (b) Intermediate stage (¢) Graph Gs = G @ G4

KAIST-2011 (C) 2011, C. Faloutsos 110
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Kronecker product

Central node is X 22

(a) Graph G4 (b) Intermediate stage (¢) Graph Ga = G @ G4

11110 GG o
1)1 GGG
0] 1] 1 0|G |G
(d) Adjacency matrix (e) Adjacency matrix (f) Plot of G4
of GG1 of Go = G1 @ G4
M M
M

N N*N N**4

KAIST-2011 (C) 2011, C. Faloutsos 111
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Kronecker Product — a Graph

 Continuing multiplying with G, we obtain G, and
so on ...

G, adjacency matrix
KAIST-2011 (C) 2011, C. Faloutsos 112
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Kronecker Product — a Graph

 Continuing multiplying with G, we obtain G, and
so on ...

G, adjacency matrix
KAIST-2011 (C) 2011, C. Faloutsos 113
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Kronecker Product — a Graph

 Continuing multiplying with G, we obtain G, and
so on ...

G, adjacency matrix
KAIST-2011 (C) 2011, C. Faloutsos 114
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Properties of Kronecker graphs:

v Power-law-tail in- and out-degrees
v Power-law-tail scree plots

v constant diameter

‘/perfect Densification Power Law

{ communities-within-communities

KAIST-2011 (C) 2011, C. Faloutsos 115
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Properties of Kronecker graphs:

'4 Power-law-tail in- and out-degrees
v Power-law-tail scree plots

v constant diameter

‘/perfect Densification Power Law
v communities-within-communities

and we can prove all of the above

(first generator that does that)

KAIST-2011 (C) 2011, C. Faloutsos 116



Stochastic Kronecker Graphs

* Create N,xN, probability matrix P,

« Compute the £ Kronecker power P,

* For each entry p,, of P, include an edge
(u,v) with probability p,,

0.4

0.2

0.1

0.3

P;

KAIST-2011

Kronecker
multiplication

>

0.16

0.08

0.08

0.04

0.04

0.12

0.02

0.06

0.04

0.02

0.12

0.06

0.01

0.03

0.03

0.09

Py

(C) 2011, C. Faloutsos
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skip »

Instance
Matrix G,

flip biased
coins
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Experiments

 How well can we match real graphs?

— Arxiv: physics citations:
* 30,000 papers, 350,000 citations
* 10 years of data

— U.S. Patent citation network
* 4 million patents, 16 million citations

» 37 years of data

— Autonomous systems — graph of internet

 Single snapshot from January 2002
e 6,400 nodes, 26,000 edges

* We show both static and temporal patterns

KAIST-2011 (C) 2011, C. Faloutsos 118
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(Q: how to fit the parm’s?)
A:

 Stochastic version of Kronecker graphs +
* Max likelithood +

* Metropolis sampling
* [Leskovec+, ICML’07]

KAIST-2011 (C) 2011, C. Faloutsos 119
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Experiments on real AS graph

Degree distribution Hop plot
10% g 10° ¢ | |
3 AS graph —e— | 2
107 Fm Kronecker —®-— — :
10% \ —-
10" & =
10° & =
107" —-
1072 =
107 - = AS graph —o—
104 Ll il il 4 | 1 l Kronecker |~
10° 10" 10° 10° 10% 07 5 3 4 5 5
2Adjacency matrix eigen values Network value
10 F T T T T T J T 0_ T T T T T T T T T T T T T T
- AS graph —e— 1 10 i | AS gréph —
(_ KroneCker ””” B : N Kronecker _____________
.
10! = 107 ¢
10° | D11, C. Falouts( -2

10° 10’ 10° 10’ 10° 103
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Conclusions

* Kronecker graphs have:

— All the static properties

v Heavy tailed degree distributions
v’ Small diameter

v Multinomial eigenvalues and eigenvectors

— All the temporal properties

v’ Densification Power Law
v~ Shrinking/Stabilizing Diameters

— We can formally prove these results

KAIST-2011 (C) 2011, C. Faloutsos
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OVERALL CONCLUSIONS

* Several new patterns (fortification,
triangle-laws, conn. components, etc)

* Recursive generators (Kronecker), with
provable properties

KAIST-2011 (C) 2011, C. Faloutsos 122
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Extra material — why so many
power laws?

KAIST-2011 (C) 2011, C. Faloutsos 134



At least 6-7 mechanisms (!)

* Power laws, Pareto distributions and Zipf's
law Contemporary Physics 46, 323-351
(2005)

KAIST-2011 (C) 2011, C. Faloutsos 135



Outline

e (@Generative mechanisms
=) — Random walk
— Yule distribution = CRP
— Percolation

— Self-organized criticality
— Other

KAIST-2011 (C) 2011, C. Faloutsos 136
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Random walks

i t=2m t=2n
»
- e o o .
S e o . s e
E 4 *— » L g -
2 . o e » ¢
bl » e o
e o o
"
Y

Inter-arrival times PDF: p(t) ~ ?? 2
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Random walks

A t=2m {=n
»
- o Q s} °
S e o . s e
E b ¢ *— » * -
e ¢ o e & t
- L e o
e o o
"
Y

Inter-arrival times PDF: p(t) ~ %7
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Random walks

J. G. Oliverra & A.-L. Barabast Human Dynamics: The

Correspondence Patterns of Darwin and Einstein.
Nature 437, 1251 (2005) . [PDF]

10
1000 ' w 1 10* 0° W 10?2 W 10! W
Response time t (days) Response time t (days)

" Figure 1| The correspondence patterns of Darwin and Einstein. 39



Outline

e (@Generative mechanisms
— Random walk
=) - Yule distribution = CRP
— Percolation

— Self-organized criticality
— Other

KAIST-2011 (C) 2011, C. Faloutsos 140



Yule distribution and CRP

Chinese Restaurant Process (CRP):

Newcomer to a restaurant

 Joins an existing table (preferring large
groups

 Or starts a new table/group of 1ts own, with
prob 1/m

a.k.a.: rich get richer; Yule process

KAIST-2011 (C) 2011, C. Faloutsos 141



Yule distribution and CRP

Then:

Prob( k people in a group) = p,
= (1 +1/m) B(k, 2+1/m)
~ Jo -(2t1/m)

(since B(a,b) ~a ** (-b) : power law tail)

KAIST-2011 (C) 2011, C. Faloutsos 142



Yule distribution and CRP

* Yule process

* (ibrat principle

» Matthew effect

* Cumulative advantage

» Preferential attachement

* ‘rich get richer’

KAIST-2011 (C) 2011, C. Faloutsos 143



Outline

e (Generative mechanisms
— Random walk
— Yule distribution = CRP
=) — Percolation
— Self-organized criticality
— Other

KAIST-2011 (C) 2011, C. Faloutsos 144
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Percolation and forest fires

A burning tree will

* cause its neighbors
to

burn next.

l Which tree density p
* will cause the fire
to last longest?

AR

KAIST-2011 (C) 2011, C. Faloutsos 145



Carnegie Mellon

Percolation and forest fires

B
% %
**t
Burning
time
?
® 00
‘.
0 1

KAIST-2011

(C) 2011, C. Faloutsos
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Percolation and forest fires

*

»
% N

» s

Burning
time

— ooo

0 1 density
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Percolation and forest fires
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Percolation and forest fires

At pc ~ 0.593:
* No characteristic

N scale;
‘patches’ of all sizes;

Korcak-like ‘law’.

KAIST-2011 (C) 2011, C. Faloutsos 149



Outline

e (@Generative mechanisms
— Random walk
— Yule distribution = CRP
— Percolation
=) _ Self-organized criticality
— Other

KAIST-2011 (C) 2011, C. Faloutsos 150



Self-organized criticality

* Trees appear at random (eg., seeds, by the
wind)

 Fires start at random (eg., lightning)
* QI: What 1s the distribution of size of forest

fires?
*&
s
t SRR 3
KAIST-2011 (C) 2011, C. Faloutsos * * 151
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Self-organized criticality

 Al: Power law-like

CCDF

o

clusters with area s or greater

area of cluster s

KAIST-2011 (C) 2011, C. Falout Area Of CIUSter S 152



Self-organized criticality

* Trees appear at random (eg., seeds, by the
wind)

 Fires start at random (eg., lightning)
* Q2: what 1s the average density?

KAIST-2011 (C) 2011, C. Faloutsos * h 153
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Self-organized criticality

» A2: the critical density pc ~ 0.593

KAIST-2011 (C) 2011, C. Faloutsos 154
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Self-organized criticality

» [Bak]: size of avalanches ~ power law:

* Drop a grain randomly on a grid

[t causes an avalanche 1f height(x,y) 1s >1
higher than 1ts four neighbors

|Per Bak: How Nature works, 1996]

KAIST-2011 (C) 2011, C. Faloutsos 155



Outline

e (@Generative mechanisms
— Random walk
— Yule distribution = CRP
— Percolation
— Self-organized criticality

=) — Other

KAIST-2011 (C) 2011, C. Faloutsos 156



Other

* Random multiplication
* Fragmentation
-> ]lead to lognormals (~ look like power laws)

KAIST-2011 (C) 2011, C. Faloutsos 157



Others

Random multiplication:
 Start with C dollars; put in bank

 Random interest rate s(t) each year t
* Each year t: C(t) = C(t-1) * (1+ s(1))

* Log(C(t)) =log( C) +log(..) +log(..)... >
Gaussian

KAIST-2011 (C) 2011, C. Faloutsos 158



Others

Random multiplication:

* Log(C(t)) =1log( C) +log(..) +log(..)... >
Gaussian

* Thus C(t) = exp( Gaussian )
* By definition, this 1s Lognormal

KAIST-2011 (C) 2011, C. Faloutsos 159



Others

Lognormal:

pdf

KAIST-2011 (C) 2011, C. Faloutsos 160



Others

Lognormal:

log(pdf) bol
parabola

log ($)

KAIST-2011 (C) 2011, C. Faloutsos 161



Others

Lognormal:

log(pdf) bol
parabola

1c log ()
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Other

* Random multiplication
* Fragmentation
-> ]lead to lognormals (~ look like power laws)

KAIST-2011 (C) 2011, C. Faloutsos 163



Other

» Stick of length 1
* Break it at a random point x (0<x<1)

* Break each of the pieces at random

* Resulting distribution: lognormal (why?)

KAIST-2011 (C) 2011, C. Faloutsos 164



Conclusions

* Many, natural mechanisms, may yield
power-laws (or log-normals etc)

KAIST-2011 (C) 2011, C. Faloutsos 165
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Questions?

e www.cs.cmu.edu/~christos
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