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Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

KAIST-2011 
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Outline 

•  Introduction – Motivation 
•  Talk#1: Patterns in graphs; generators 
•  Talk#2: Tools (Ranking, proximity) 
•  Talk#3: Tools (Tensors, scalability) 
•  Conclusions 

KAIST-2011 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Protein Interactions 
[genomebiology.com] 

Friendship Network 
[Moody ’01] 

KAIST-2011 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

KAIST-2011 
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Graphs - why should we care? 
•  network of companies & board-of-directors 

members 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

KAIST-2011 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 

– Patterns in Static graphs 
– Patterns in Weighted graphs 
– Patterns in Time evolving graphs 

•  Generators 

KAIST-2011 
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Network and graph mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

KAIST-2011 (C) 2011, C. Faloutsos 8 
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Network and graph mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

KAIST-2011 
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Network and graph mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

KAIST-2011 
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Topology 

How does the Internet look like? Any rules? 

(Looks random – right?) 

KAIST-2011 (C) 2011, C. Faloutsos 
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Are real graphs random? 

•  random (Erdos-Renyi) 
graph – 100 nodes, avg 
degree = 2 

•  before layout 
•  after layout 
•  No obvious patterns 

(generated with: pajek 
http://vlado.fmf.uni-lj.si/pub/networks/pajek/ ) 

KAIST-2011 (C) 2011, C. Faloutsos 
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Graph mining 
•  Are real graphs random? 

KAIST-2011 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

KAIST-2011 
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Laws – degree distributions 
•  Q: avg degree is ~2 - what is the most 

probable degree? 

degree 

count ?? 

2 

KAIST-2011 (C) 2011, C. Faloutsos 
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Laws – degree distributions 
•  Q: avg degree is ~2 - what is the most 

probable degree? 

degree degree 

count ?? count 

KAIST-2011 (C) 2011, C. Faloutsos 

2 2 
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Solution S1 .Power-law: outdegree O 

The plot is linear in log-log scale 
[FFF’99] 

freq = degree (-2.15) 

O = -2.15 
Exponent = slope 

Outdegree 

Frequency 

Nov’97 

-2.15 

KAIST-2011 (C) 2011, C. Faloutsos 
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Solution# S.1’ 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

KAIST-2011 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

KAIST-2011 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

KAIST-2011 
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But: 
How about graphs from other domains? 

KAIST-2011 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

KAIST-2011 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

KAIST-2011 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
KAIST-2011 (C) 2011, C. Faloutsos 24 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 

– Patterns in Static graphs 
•  Degree 
•  Triangles 
•  … 

– Patterns in Weighted graphs 
– Patterns in Time evolving graphs 

•  Generators 
KAIST-2011 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

KAIST-2011 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

KAIST-2011 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of Triangles 
    a node participates in 
Y-axis: count of such nodes 

KAIST-2011 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of Triangles 
    a node participates in 
Y-axis: count of such nodes 

KAIST-2011 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

KAIST-2011 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

KAIST-2011 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness, we only need  
       the top few eigenvalues! 

details 

KAIST-2011 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

KAIST-2011 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

34 KAIST-2011 34 (C) 2011, C. Faloutsos 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

35 KAIST-2011 35 (C) 2011, C. Faloutsos 
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How about cliques? 

KAIST-2011 (C) 2011, C. Faloutsos 36 
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Large Human Communication Networks 
Patterns and a Utility-Driven Generator 

Nan Du,  Christos Faloutsos,  Bai Wang, Leman Akoglu 
KDD 2009 
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Cliques 
•  Clique is a complete subgraph. 
•  If a clique can not be  

contained by any larger 
clique, it is called the  
maximal clique. 

2 0 

1 3 

4 
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Clique 
•  Clique is a complete subgraph. 
•  If a clique can not be  

contained by any larger 
clique, it is called the  
maximal clique. 

2 0 

1 3 

4 
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Clique 
•  Clique is a complete subgraph. 
•  If a clique can not be  

contained by any larger 
clique, it is called the  
maximal clique. 

2 0 

1 3 

4 
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Clique 
•  Clique is a complete subgraph. 
•  If a clique can not be  

contained by any larger 
clique, it is called the  
maximal clique. 

•  {0,1,2}, {0,1,3}, {1,2,3} 
{2,3,4}, {0,1,2,3} are cliques; 

•  {0,1,2,3} and {2,3,4} are  
the maximal cliques. 

2 0 

1 3 

4 
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S5: Clique-Degree Power-Law 
•  Power law: 

More friends, even more  
social circles ! 

# maximal 
cliques of node i 

degree 
of node i 
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S5: Clique-Degree Power-Law 
•  Outlier Detection 
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S5: Clique-Degree Power-Law 
•  Outlier Detection 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 

– Patterns in Static graphs 
•  Degree, eigenvalues 
•  Triangles, cliques 
•  Other observations 

– Patterns in Weighted graphs 
– Patterns in Time evolving graphs 

•  Generators 
KAIST-2011 (C) 2011, C. Faloutsos 45 
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Any other ‘laws’? 
Yes! 

KAIST-2011 (C) 2011, C. Faloutsos 
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Any other ‘laws’? 
Yes! 
•  Small diameter (~ constant!) – 

–  six degrees of separation / ‘Kevin Bacon’ 
–  small worlds [Watts and Strogatz] 

KAIST-2011 (C) 2011, C. Faloutsos 
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Any other ‘laws’? 

•  Bow-tie, for the web [Kumar+ ‘99] 
•  IN, SCC, OUT, ‘tendrils’ 
•  disconnected components 

KAIST-2011 (C) 2011, C. Faloutsos 
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Any other ‘laws’? 

•  power-laws in communities (bi-partite cores) 
[Kumar+, ‘99] 

2:3 core 
(m:n core) 

Log(m) 

Log(count) 

n:1 

n:2 n:3 

KAIST-2011 (C) 2011, C. Faloutsos 
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Any other ‘laws’? 

•  “Jellyfish” for Internet [Tauro+ ’01] 
•  core: ~clique 
•  ~5 concentric layers 
•  many 1-degree nodes 

KAIST-2011 (C) 2011, C. Faloutsos 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 

– Patterns in Static graphs 
•  Degree, eigenvalues 
•  Triangles, cliques 
•  Other observations 

– Patterns in Weighted graphs 
– Patterns in Time evolving graphs 

•  Generators 
KAIST-2011 (C) 2011, C. Faloutsos 51 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

(C) 2011, C. Faloutsos 52 KAIST-2011 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

53 (C) 2011, C. Faloutsos KAIST-2011 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

54 (C) 2011, C. Faloutsos KAIST-2011 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

55 (C) 2011, C. Faloutsos KAIST-2011 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

56 (C) 2011, C. Faloutsos KAIST-2011 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

57 (C) 2011, C. Faloutsos KAIST-2011 

N 

N 

details 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

(C) 2011, C. Faloutsos 58 

u1 

u2 

KAIST-2011 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 
90o 

KAIST-2011 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 

60 (C) 2011, C. Faloutsos KAIST-2011 



CMU SCS 

EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

61 (C) 2011, C. Faloutsos KAIST-2011 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

62 (C) 2011, C. Faloutsos KAIST-2011 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

63 (C) 2011, C. Faloutsos KAIST-2011 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 

64 (C) 2011, C. Faloutsos KAIST-2011 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

cut-and-paste 
bibliography! 

65 (C) 2011, C. Faloutsos KAIST-2011 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 

– Patterns in Static graphs 
– Patterns in Weighted graphs 
– Patterns in Time evolving graphs 

•  Generators 

KAIST-2011 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

KAIST-2011 



CMU SCS 

(C) 2011, C. Faloutsos 68 

Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

KAIST-2011 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

KAIST-2011 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 

(C) 2011, C. Faloutsos 70 

Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

KAIST-2011 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 

– Patterns in Static graphs 
– Patterns in Weighted graphs 
– Patterns in Time evolving graphs 

•  Generators 

KAIST-2011 (C) 2011, C. Faloutsos 71 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

KAIST-2011 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

KAIST-2011 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

KAIST-2011 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

KAIST-2011 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

KAIST-2011 



CMU SCS 

(C) 2011, C. Faloutsos 77 

T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
KAIST-2011 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

KAIST-2011 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 

– Patterns in Static graphs 
– Patterns in Weighted graphs 
– Patterns in Time evolving graphs 

•  Generators 

KAIST-2011 (C) 2011, C. Faloutsos 79 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

KAIST-2011 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

KAIST-2011 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

KAIST-2011 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

KAIST-2011 

YES 
YES 

YES 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
KAIST-2011 
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Timing for Blogs 

•  with Mary McGlohon (CMU) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

KAIST-2011 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

KAIST-2011 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

KAIST-2011 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

KAIST-2011 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  
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T.5: duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
KAIST-2011 (C) 2011, C. Faloutsos 91 
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Probably, power law (?) 

KAIST-2011 (C) 2011, C. Faloutsos 92 

?? 
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No Power Law! 

KAIST-2011 (C) 2011, C. Faloutsos 93 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

KAIST-2011 (C) 2011, C. Faloutsos 94 

Odds ratio= 

Casualties(<x): 
Survivors(>=x) 

== power law 
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Data Description 

  Data from a private mobile operator of a large 
city 
  4 months of data 
  3.1 million users 
  more than 1 billion phone records 

  Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls) 

KAIST-2011 (C) 2011, C. Faloutsos 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 
•  Generators 

– Erdos-Renyi 
– Degree based 
– Process based 
– Kronecker 

KAIST-2011 (C) 2011, C. Faloutsos 96 
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Generators 
•  How to generate random, realistic graphs? 

– Erdos-Renyi model: beautiful, but unrealistic 
–  degree-based generators 
–  process-based generators 
–  recursive/self-similar generators 

KAIST-2011 (C) 2011, C. Faloutsos 
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Erdos-Renyi 

•  random graph – 100 
nodes, avg degree = 2 

•  Fascinating properties 
(phase transition) 

•  But: unrealistic 
(Poisson degree 
distribution != power 
law) 

KAIST-2011 (C) 2011, C. Faloutsos 
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E-R model & Phase transition 
•  vary avg degree D 
•  watch Pc = 

Prob( there is a giant 
connected component) 

•  How do you expect it 
to be? 

D 

Pc 

0 

1 
?? 

KAIST-2011 (C) 2011, C. Faloutsos 

details 
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E-R model & Phase transition 
•  vary avg degree D 
•  watch Pc = 

Prob( there is a giant 
connected component) 

•  How do you expect it 
to be? 

D 

Pc 

0 

1 

N=10^3 
N->infty 

D0 

KAIST-2011 (C) 2011, C. Faloutsos 

details 
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Degree-based 
•  Figure out the degree distribution (eg., 

‘Zipf’) 
•  Assign degrees to nodes 
•  Put edges, so that they match the original 

degree distribution 

KAIST-2011 (C) 2011, C. Faloutsos 
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Process-based 
•  Barabasi; Barabasi-Albert: Preferential 

attachment -> power-law tails! 
–  ‘rich get richer’ 

•  [Kumar+]: preferential attachment + 
mimick 
– Create ‘communities’ 

KAIST-2011 (C) 2011, C. Faloutsos 
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Process-based (cont’d) 
•  [Fabrikant+, ‘02]: H.O.T.: connect to 

closest, high connectivity neighbor 
•  [Pennock+, ‘02]: Winner does NOT take all 

KAIST-2011 (C) 2011, C. Faloutsos 
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Outline 

•  Introduction – Motivation 
•  Patterns in graphs 
•  Generators 

– Erdos-Renyi 
– Degree based 
– Process based 
– Kronecker 

KAIST-2011 (C) 2011, C. Faloutsos 104 
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Recursive generators 
•  (RMAT [Chakrabarti+,’04]) 
•  Kronecker product 

KAIST-2011 (C) 2011, C. Faloutsos 
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Wish list for a generator: 

•  Power-law-tail in- and out-degrees 
•  Power-law-tail scree plots 
•  shrinking/constant diameter 
•  Densification Power Law 
•  communities-within-communities 

KAIST-2011 (C) 2011, C. Faloutsos 
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Wish list for a generator: 

•  Power-law-tail in- and out-degrees 
•  Power-law-tail scree plots 
•  shrinking/constant diameter 
•  Densification Power Law 
•  communities-within-communities 
Q: how to achieve all of them? 
A: Self-similarity - Kronecker matrix product 

[Leskovec+05b] 
KAIST-2011 (C) 2011, C. Faloutsos 
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Kronecker product 

KAIST-2011 (C) 2011, C. Faloutsos 
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Kronecker product 

KAIST-2011 (C) 2011, C. Faloutsos 
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Kronecker product 

KAIST-2011 (C) 2011, C. Faloutsos 
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Kronecker product 

N N*N N**4 
KAIST-2011 (C) 2011, C. Faloutsos 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Properties of Kronecker graphs: 

•  Power-law-tail in- and out-degrees 
•  Power-law-tail scree plots 
•  constant diameter 
•  perfect Densification Power Law 
•  communities-within-communities 

KAIST-2011 (C) 2011, C. Faloutsos 



CMU SCS 

116 

Properties of Kronecker graphs: 

•  Power-law-tail in- and out-degrees 
•  Power-law-tail scree plots 
•  constant diameter 
•  perfect Densification Power Law 
•  communities-within-communities 
and we can prove all of the above 
(first generator that does that) 
KAIST-2011 (C) 2011, C. Faloutsos 
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Stochastic Kronecker Graphs 
•  Create N1×N1 probability matrix P1 

•  Compute the kth Kronecker power Pk 
•  For each entry puv of Pk include an edge 

(u,v) with probability puv 

0.4 0.2 
0.1 0.3 

P1 

Instance  
Matrix G2 

0.16 0.08 0.08 0.04 
0.04 0.12 0.02 0.06 
0.04 0.02 0.12 0.06 
0.01 0.03 0.03 0.09 

Pk 

flip biased 
coins 

Kronecker 
multiplication 

skip 
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Experiments 
•  How well can we match real graphs? 

–  Arxiv: physics citations: 
•  30,000 papers, 350,000 citations 
•  10 years of data 

–  U.S. Patent citation network 
•  4 million patents, 16 million citations 
•  37 years of data 

–  Autonomous systems – graph of internet 
•  Single snapshot from January 2002 
•  6,400 nodes, 26,000 edges 

•  We show both static and temporal patterns 
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(Q: how to fit the parm’s?) 
A: 
•  Stochastic version of Kronecker graphs + 
•  Max likelihood  + 
•  Metropolis sampling 
•  [Leskovec+, ICML’07] 
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Experiments on real AS graph 
Degree distribution Hop plot 

Network value Adjacency matrix eigen values 
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Conclusions 

•  Kronecker graphs have: 
– All the static properties  

 Heavy tailed degree distributions 
 Small diameter 
 Multinomial eigenvalues and eigenvectors 

– All the temporal properties 
 Densification Power Law 
 Shrinking/Stabilizing Diameters 

– We can formally prove these results 

 
 

 

 
 
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 OVERALL  CONCLUSIONS 

•  Several new patterns (fortification, 
triangle-laws, conn. components, etc) 

•  Recursive generators (Kronecker), with 
provable properties 

KAIST-2011 
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END 
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Extra material – why so many 

power laws? 

KAIST-2011 (C) 2011, C. Faloutsos 134 
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At least 6-7 mechanisms (!) 
•  Power laws, Pareto distributions and Zipf's 

law Contemporary Physics 46, 323-351 
(2005)  
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Outline 
•  Generative mechanisms 

–  Random walk 
–  Yule distribution = CRP 
–  Percolation 
–  Self-organized criticality 
–  Other 
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Random walks 

Inter-arrival times PDF: p(t) ~ t-3/2 ?? 
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Random walks 

Inter-arrival times PDF: p(t) ~ t-3/2 
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Random walks 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  
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Outline 
•  Generative mechanisms 

–  Random walk 
–  Yule distribution = CRP 
–  Percolation 
–  Self-organized criticality 
–  Other 

KAIST-2011 (C) 2011, C. Faloutsos 140 
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Yule distribution and CRP 
Chinese Restaurant Process (CRP): 
Newcomer to a restaurant 
•  Joins an existing table (preferring large 

groups 
•  Or starts a new table/group of its own, with 

prob 1/m 
a.k.a.: rich get richer; Yule process 
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Yule distribution and CRP 
Then:  
Prob( k people in a group) = pk  
   = (1 + 1/m) B( k, 2+1/m) 
   ~ k -(2+1/m) 
(since B(a,b) ~ a ** (-b) : power law tail) 
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Yule distribution and CRP 
•  Yule process 
•  Gibrat principle 
•  Matthew effect 
•  Cumulative advantage 
•  Preferential attachement 
•  ‘rich get richer’ 
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Outline 
•  Generative mechanisms 

–  Random walk 
–  Yule distribution = CRP 
–  Percolation 
–  Self-organized criticality 
–  Other 

KAIST-2011 (C) 2011, C. Faloutsos 144 
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Percolation and forest fires 

A burning tree will 
cause its neighbors 
to 
 burn next. 

Which tree density p 
will cause the fire  
to last longest? 
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Percolation and forest fires 

density 0 1 

Burning 
time 

N 

N 
? 
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Percolation and forest fires 

density 0 1 

Burning 
time 

N 

N 
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Percolation and forest fires 

density 0 1 

Burning 
time 

N 

N 

Percolation threshold, pc ~ 0.593 



CMU SCS 

KAIST-2011 (C) 2011, C. Faloutsos 149 

Percolation and forest fires 

At pc ~ 0.593: 
No characteristic 
scale; 
‘patches’ of all sizes; 
Korcak-like ‘law’. 
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Outline 
•  Generative mechanisms 

–  Random walk 
–  Yule distribution = CRP 
–  Percolation 
–  Self-organized criticality 
–  Other 

KAIST-2011 (C) 2011, C. Faloutsos 150 
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Self-organized criticality 
•  Trees appear at random (eg., seeds, by the 

wind) 
•  Fires start at random (eg., lightning) 
•  Q1: What is the distribution of size of forest 

fires? 



CMU SCS 

KAIST-2011 (C) 2011, C. Faloutsos 152 

Self-organized criticality 
•  A1: Power law-like 

Area of cluster s 

CCDF 
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Self-organized criticality 
•  Trees appear at random (eg., seeds, by the 

wind) 
•  Fires start at random (eg., lightning) 
•  Q2: what is the average density? 



CMU SCS 

KAIST-2011 (C) 2011, C. Faloutsos 154 

Self-organized criticality 
•  A2: the critical density pc ~ 0.593 
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Self-organized criticality 
•  [Bak]: size of avalanches ~ power law: 
•  Drop a grain randomly on a grid 
•  It causes an avalanche if  height(x,y)  is >1 

higher than its four neighbors 

[Per Bak: How Nature works, 1996] 
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Outline 
•  Generative mechanisms 

–  Random walk 
–  Yule distribution = CRP 
–  Percolation 
–  Self-organized criticality 
–  Other 

KAIST-2011 (C) 2011, C. Faloutsos 156 
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Other 
•  Random multiplication 
•  Fragmentation 
-> lead to lognormals (~ look like power laws) 
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Others 
Random multiplication: 
•  Start with C dollars; put in bank  
•  Random interest rate s(t) each year t 
•  Each year t: C(t) = C(t-1) * (1+ s(t)) 

•  Log(C(t)) = log( C ) + log(..) + log(..) … -> 
Gaussian 
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Others 
Random multiplication: 
•  Log(C(t)) = log( C ) + log(..) + log(..) … -> 

Gaussian 

•  Thus C(t) = exp( Gaussian )  
•  By definition, this is Lognormal 
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Others 
Lognormal: 

$ 

pdf 

0 
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Others 
Lognormal: 

log ($) 

log(pdf) 
parabola 
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Others 
Lognormal: 

log ($) 

log(pdf) 
parabola 

1c 
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Other 
•  Random multiplication 
•  Fragmentation 
-> lead to lognormals (~ look like power laws) 
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Other 
•  Stick of length 1 
•  Break it at a random point x (0<x<1) 
•  Break each of the pieces at random 

•  Resulting distribution: lognormal (why?) 
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Conclusions 
•  Many, natural mechanisms, may yield 

power-laws (or log-normals etc) 

KAIST-2011 (C) 2011, C. Faloutsos 165 
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Questions? 
•  www.cs.cmu.edu/~christos 
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