Talk 1: Graph Mining – patterns and generators

Christos Faloutsos
CMU

Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

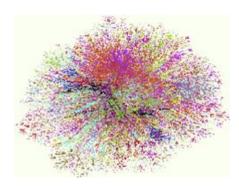
- www.cs.cmu.edu/~pegasus
- code and papers

Project Pegasus

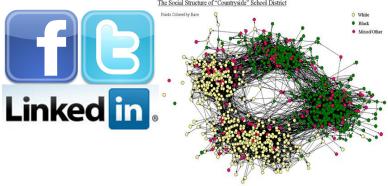
Outline

- Introduction Motivation
 - Talk#1: Patterns in graphs; generators
 - Talk#2: Tools (Ranking, proximity)
 - Talk#3: Tools (Tensors, scalability)
 - Conclusions

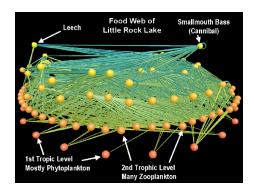
Graphs - why should we care?



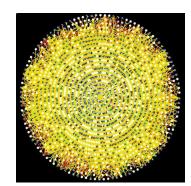
Internet Map [lumeta.com]



Friendship Network [Moody '01]



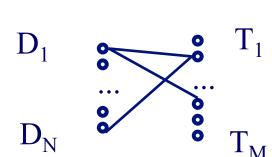
Food Web [Martinez '91]



Protein Interactions [genomebiology.com]

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)



web: hyper-text graph

• ... and more:

Graphs - why should we care?

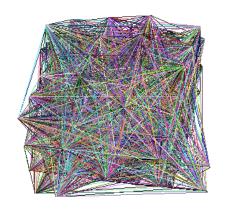
- network of companies & board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

•

Outline

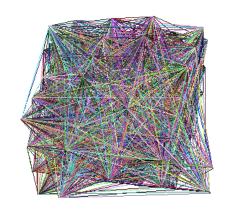
- Introduction Motivation
- Patterns in graphs
 - Patterns in Static graphs
 - Patterns in Weighted graphs
 - Patterns in Time evolving graphs
 - Generators

Network and graph mining



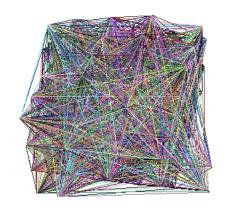
- How does the Internet look like?
- How does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Network and graph mining

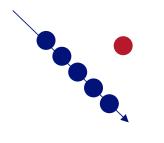


- How does the Internet look like?
- How does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns

Network and graph mining



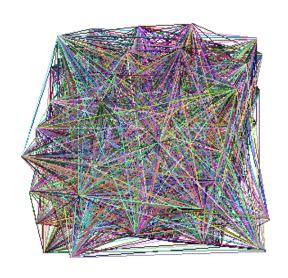
- How does the Internet look like?
- How does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns
 - Large datasets reveal patterns/anomalies that may be invisible otherwise...



KAIST-2011

Topology

How does the Internet look like? Any rules?



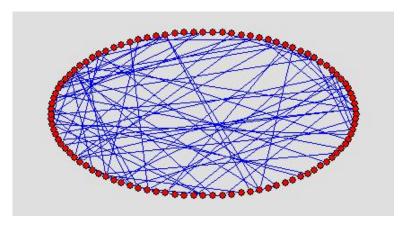
(Looks random – right?)

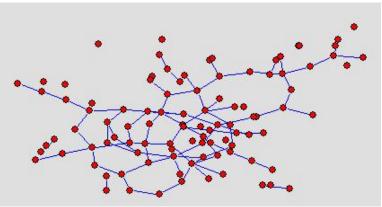
Are real graphs random?

- random (Erdos-Renyi)
 graph 100 nodes, avg
 degree = 2
- before layout
- after layout
- No obvious patterns

(generated with: pajek

http://vlado.fmf.uni-lj.si/pub/networks/pajek/





Graph mining

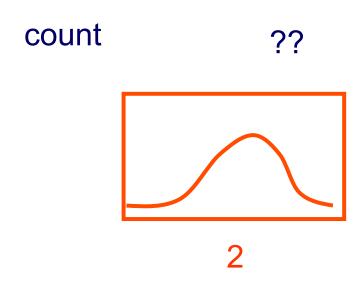
• Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Laws – degree distributions

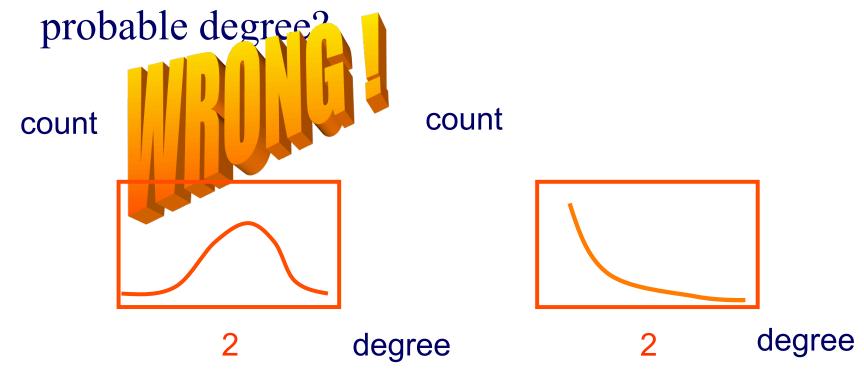
• Q: avg degree is ~2 - what is the most probable degree?



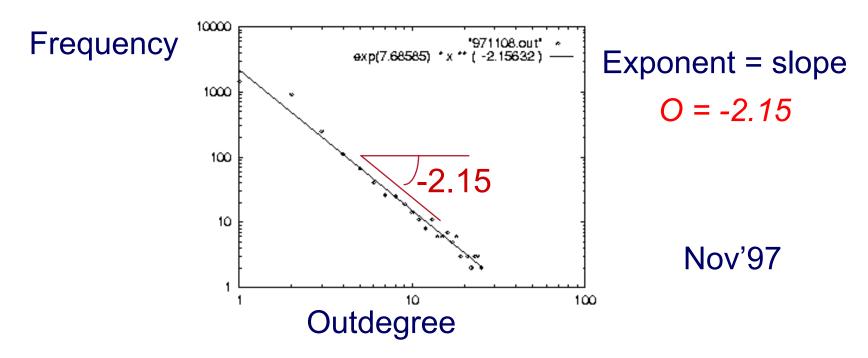
degree

Laws – degree distributions

• Q: avg degree is ~ 2 - what is the most



Solution S1 .Power-law: outdegree O



The plot is linear in log-log scale [FFF'99]

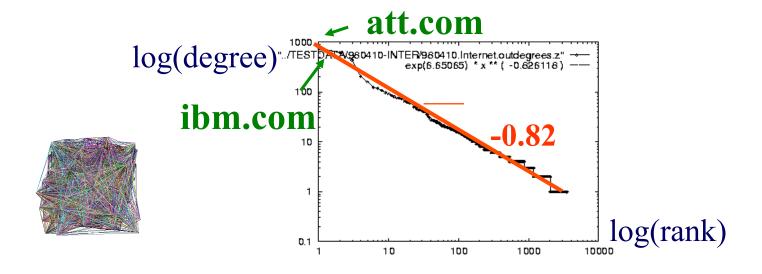
KAIST-2011

$$freq^{(C)} \stackrel{\text{2011, C}}{=} degree^{(-2.15)}$$

Solution# S.1'

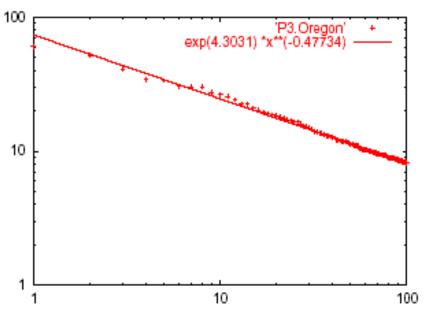
• Power law in the degree distribution [SIGCOMM99]

internet domains



KAIST-2011

Solution# S.2: Eigen Exponent *E*



Exponent = slope

E = -0.48

May 2001

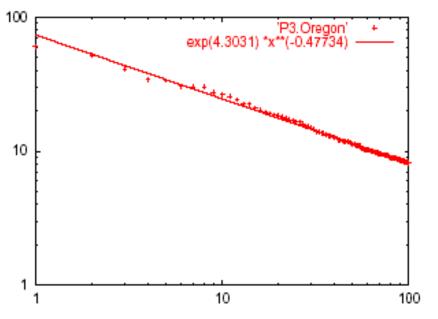
Rank of decreasing eigenvalue

• A2: power law in the eigenvalues of the adjacency matrix

KAIST-2011

(C) 2011, C. Faloutsos

Solution# S.2: Eigen Exponent *E*



Exponent = slope

E = -0.48

May 2001

Rank of decreasing eigenvalue

• [Mihail, Papadimitriou '02]: slope is ½ of rank exponent

KAIST-2011

(C) 2011, C. Faloutsos

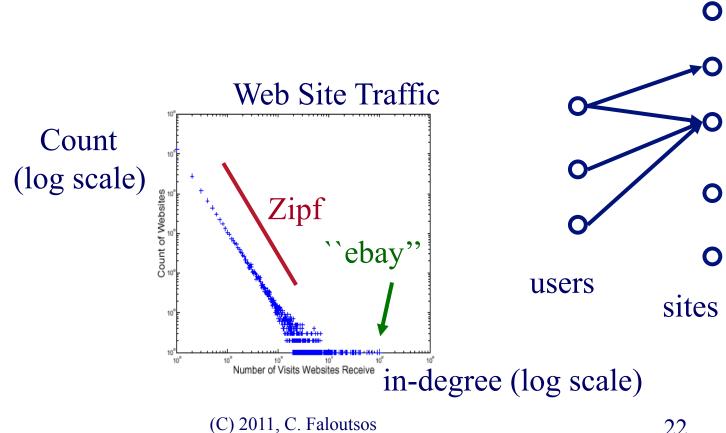
20

But:

How about graphs from other domains?

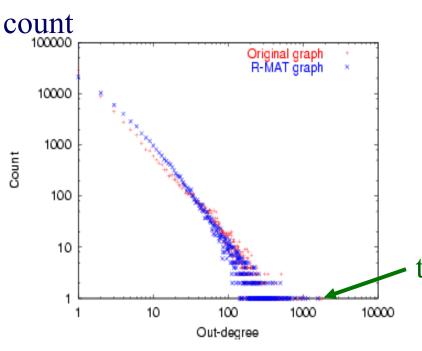
More power laws:

• web hit counts [w/ A. Montgomery]



KAIST-2011 22

epinions.com



who-trusts-whom
 [Richardson +
 Domingos, KDD
 2001]

trusts-2000-people user

(out) degree

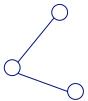
And numerous more

- # of sexual contacts
- Income [Pareto] –'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- •
- 'Black swans'

Outline

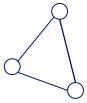
- Introduction Motivation
- Patterns in graphs
 - Patterns in Static graphs
 - Degree
 - Triangles
 - •
 - Patterns in Weighted graphs
 - Patterns in Time evolving graphs
- Generators

Solution# S.3: Triangle 'Laws'



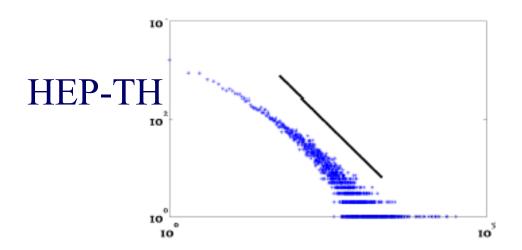
Real social networks have a lot of triangles

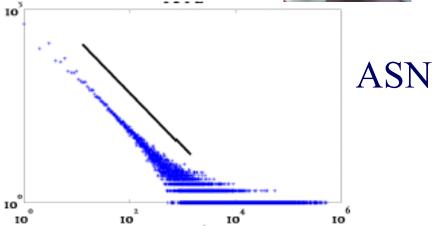
Solution# S.3: Triangle 'Laws'

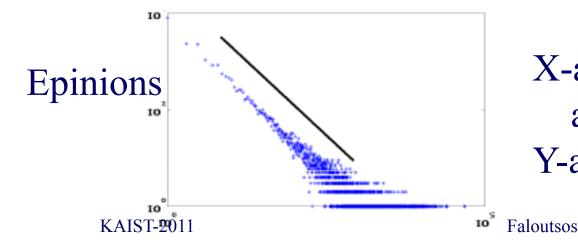


- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]



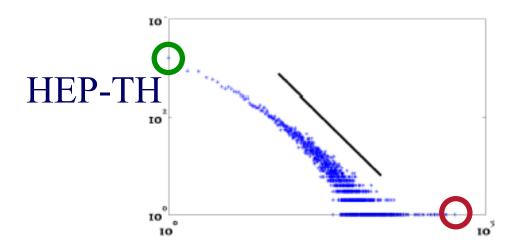


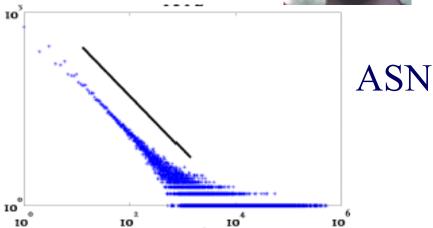


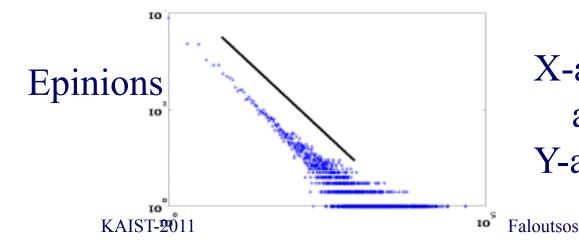
X-axis: # of Triangles a node participates in Y-axis: count of such nodes

28

Triangle Law: #S.3 [Tsourakakis ICDM 2008]



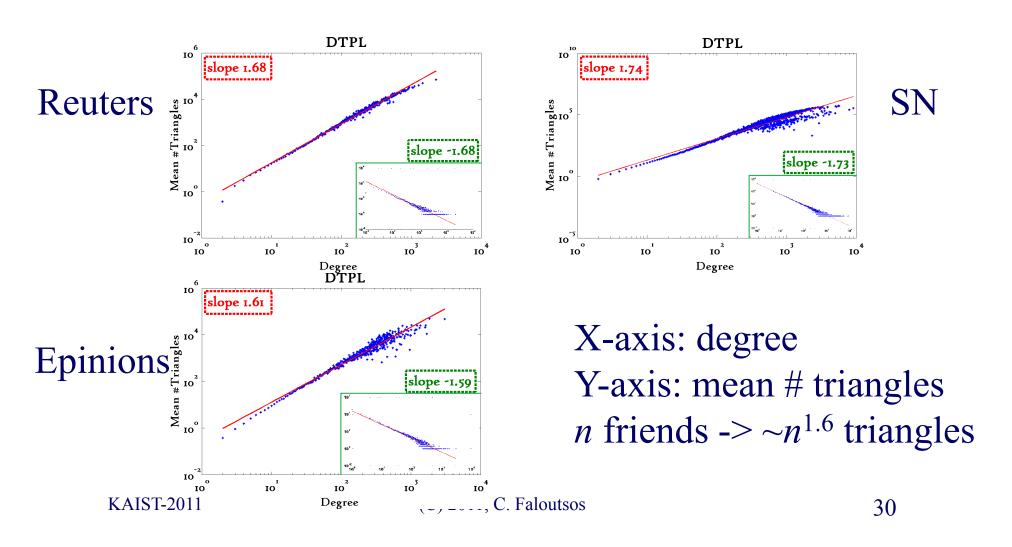




X-axis: # of Triangles a node participates in Y-axis: count of such nodes

29

Triangle Law: #S.4 [Tsourakakis ICDM 2008]



Triangle Law: Computations [Tsourakakis ICDM 2008]

details

But: triangles are expensive to compute (3-way join; several approx. algos) Q: Can we do that quickly?

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)

Q: Can we do that quickly?

A: Yes!

#triangles = 1/6 Sum (λ_i^3)

(and, because of skewness, we only need the top few eigenvalues!

KAIST-2011

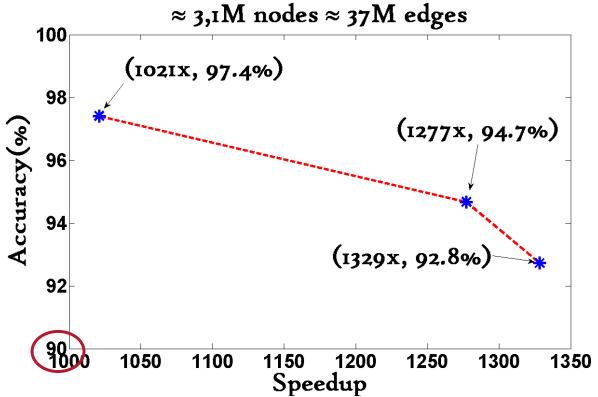
(C) 2011, C. Faloutsos

details

Triangle Law: Computations

[Tsourakakis ICDM 2008]

Wikipedia graph 2006-Nov-04

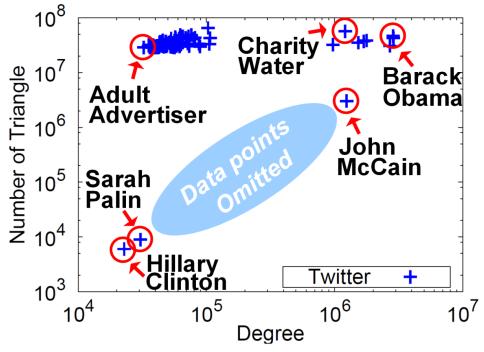


KAIST-2011

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?



Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

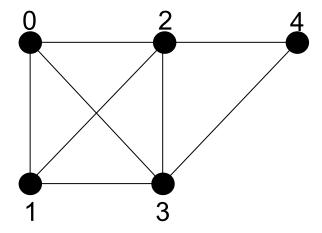
How about cliques?

Large Human Communication Networks Patterns and a Utility-Driven Generator

Nan Du, Christos Faloutsos, Bai Wang, Leman Akoglu KDD 2009

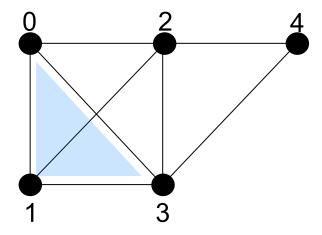
Cliques

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.



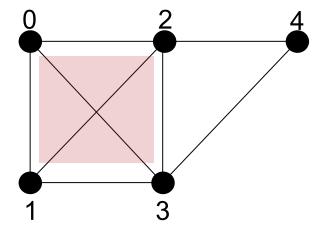
Clique

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.



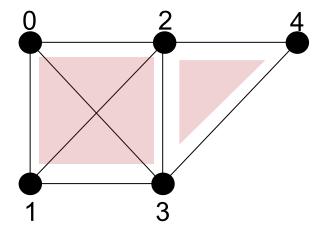
Clique

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.



Clique

- Clique is a complete subgraph.
- If a clique can not be contained by any larger clique, it is called the maximal clique.
- {0,1,2}, {0,1,3}, {1,2,3} {2,3,4}, {0,1,2,3} are cliques;
- {0,1,2,3} and {2,3,4} are the maximal cliques.



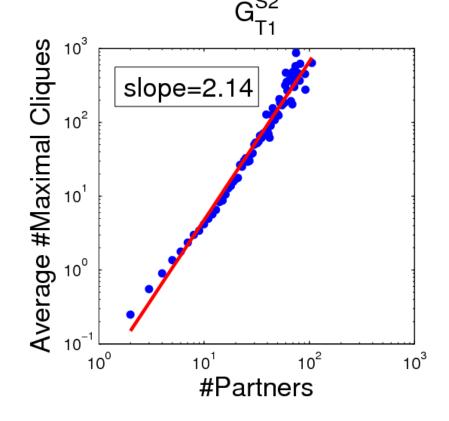
S5: Clique-Degree Power-Law

• Power law:

$$C_{avq}^{d_i} \propto d_i^{\alpha}$$

maximal cliques of node i

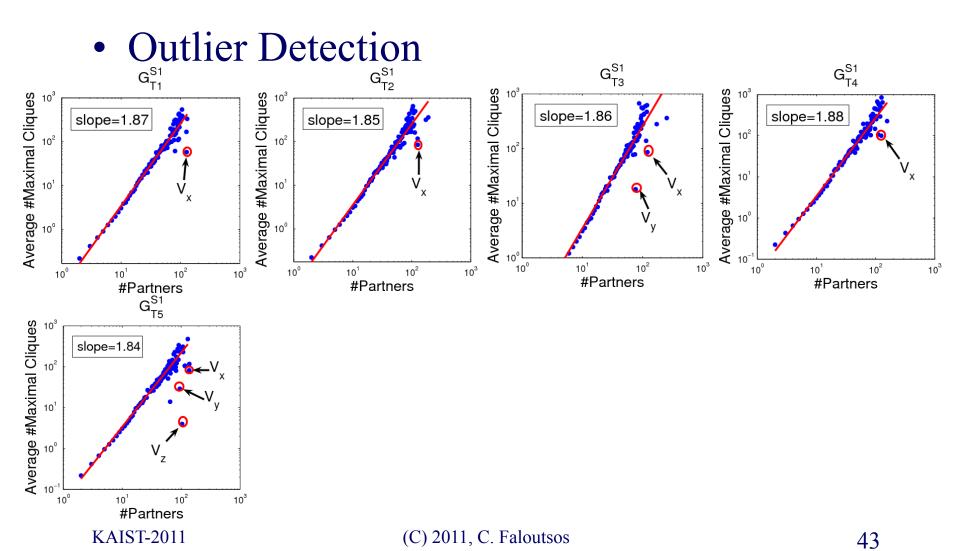
degree of node i



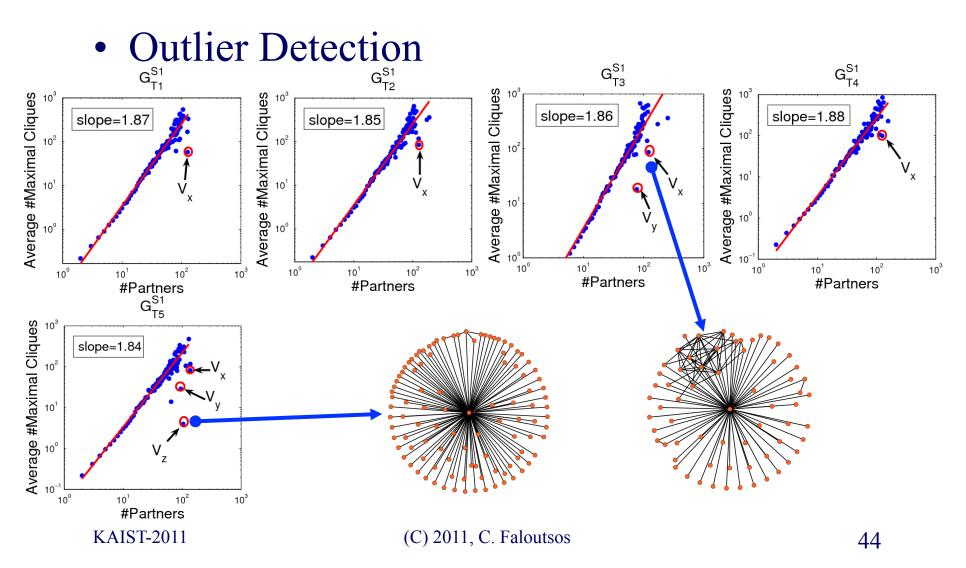
 α is the power law exponent $\alpha \in [1.8, 2.2]$ for S1~S3

More friends, even more social circles!

S5: Clique-Degree Power-Law



S5: Clique-Degree Power-Law



Outline

- Introduction Motivation
- Patterns in graphs
 - Patterns in Static graphs
 - Degree, eigenvalues
 - Triangles, cliques
 - Other observations
 - Patterns in Weighted graphs
 - Patterns in Time evolving graphs
- Generators

Yes!

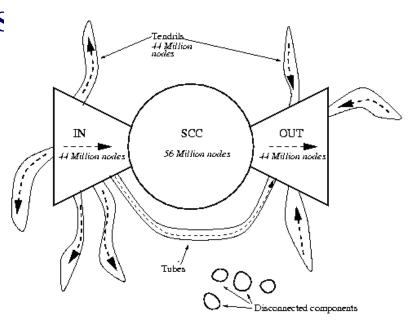
KAIST-2011 (C) 2011, C. Faloutsos 46

Yes!

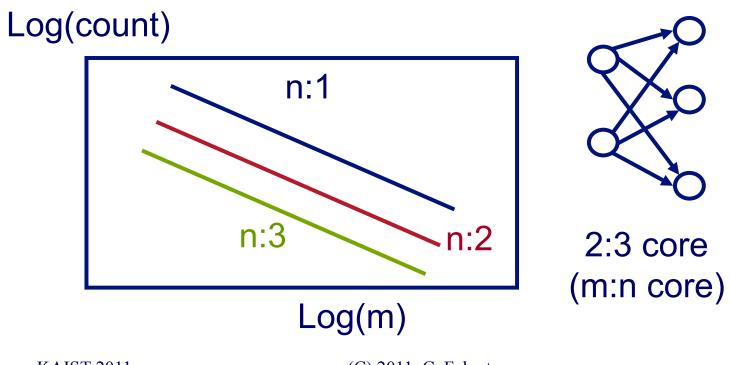
- Small diameter (~ constant!)
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

- Bow-tie, for the web [Kumar+ '99]
- IN, SCC, OUT, 'tendrils'

disconnected components

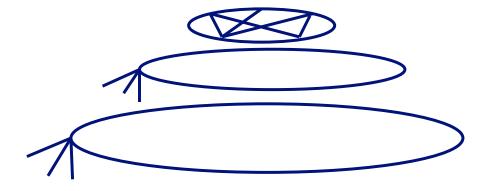


• power-laws in communities (bi-partite cores) [Kumar+, '99]



KAIST-2011 (C) 2011, C. Faloutsos 49

- "Jellyfish" for Internet [Tauro+ '01]
- core: ~clique
- ~5 concentric layers
- many 1-degree nodes



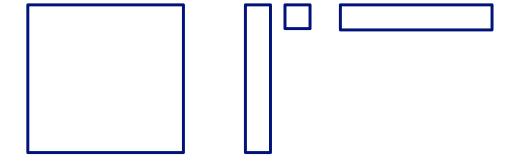
Outline

- Introduction Motivation
- Patterns in graphs
 - Patterns in Static graphs
 - Degree, eigenvalues
 - Triangles, cliques
 - Other observations
 - Patterns in Weighted graphs
 - Patterns in Time evolving graphs
- Generators

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

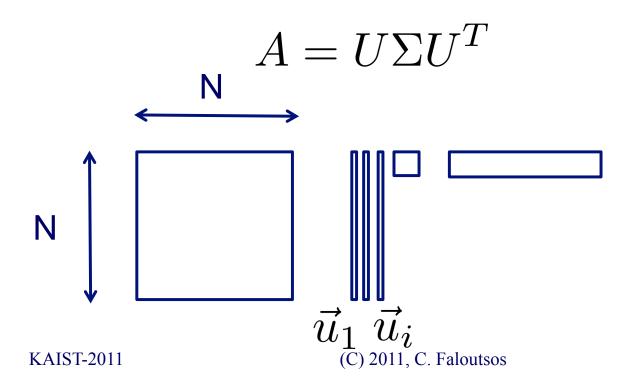
- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$$A = U\Sigma U^T$$

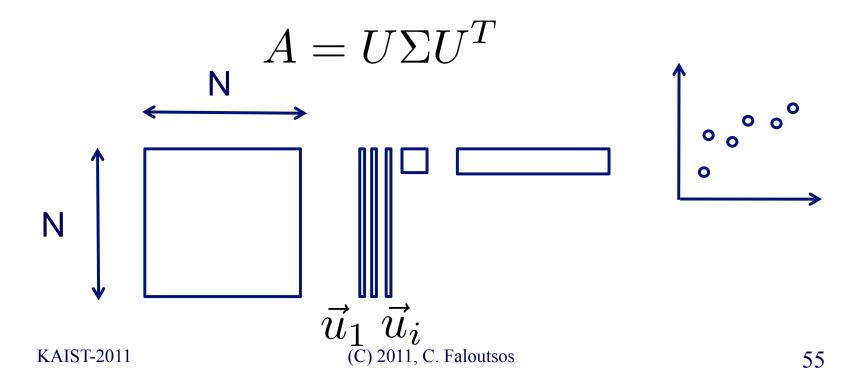


KAIST-2011

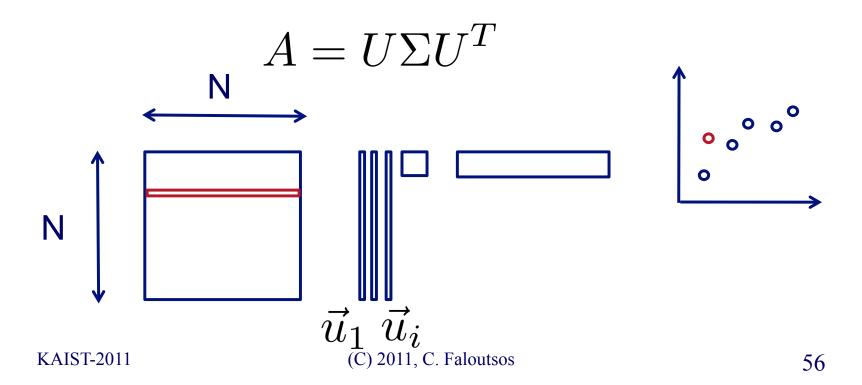
- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



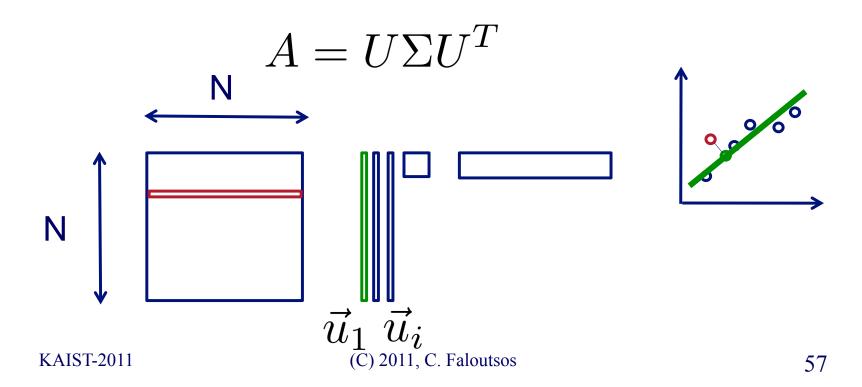
- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



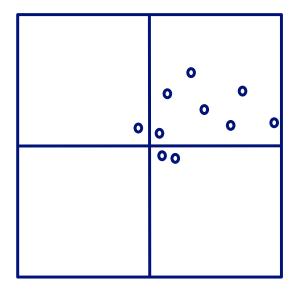
Carnegie Mellon

EigenSpokes

• EE plot:

2nd Principal component u2

- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @origin
 - A few scattered~randomly



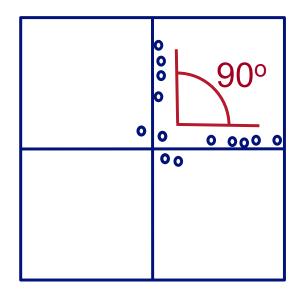
u1 1st Principal

component

u2

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @origin

- A few tered



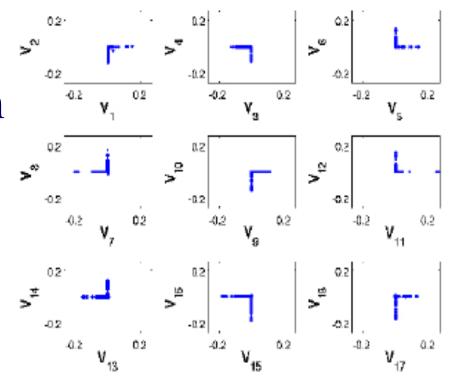
u1

KAIST-2011 (C) 2011, C. Faloutsos 59

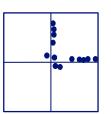
EigenSpokes - pervasiveness

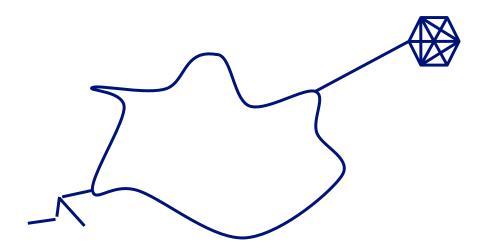
- Present in mobile social graph
 - across time and space

Patent citation graph

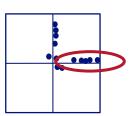


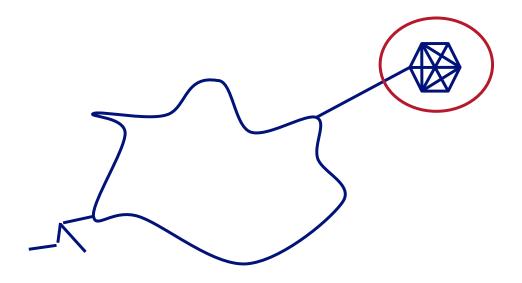
Near-cliques, or nearbipartite-cores, loosely connected





Near-cliques, or nearbipartite-cores, loosely connected

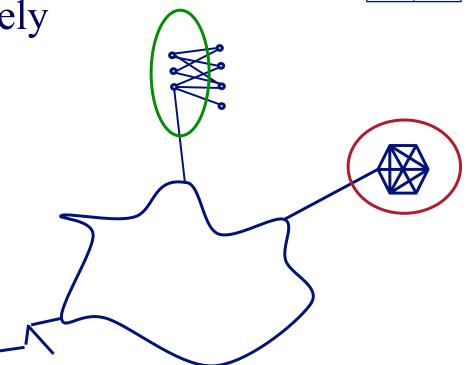




Near-cliques, or near-

bipartite-cores, loosely

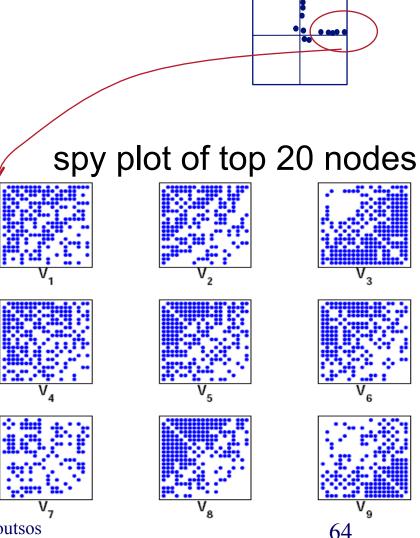
connected



Near-cliques, or nearbipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"

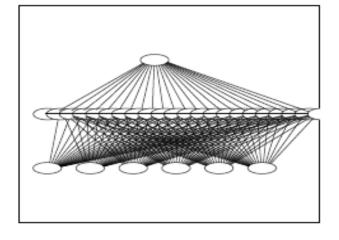


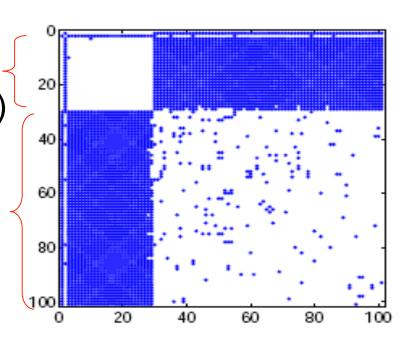
Bipartite Communities!

patents from same inventor(s)

cut-and-paste bibliography!

magnified bipartite community





KAIST-2011 (C) 2011, C. Faloutsos 65

Outline

- Introduction Motivation
- Patterns in graphs
 - Patterns in Static graphs

- Patterns in Weighted graphs
- Patterns in Time evolving graphs
- Generators

Observations on weighted graphs?

A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

KAIST-2011

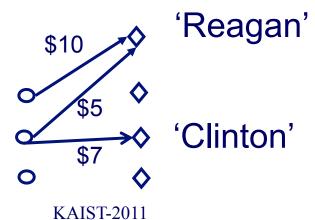
Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

KAIST-2011 (C) 2011, C. Faloutsos 68

Observation W.1: Fortification

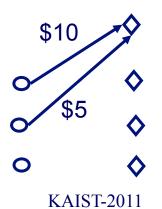
More donors, more \$?



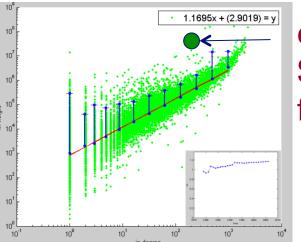
Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': 1.01 < iw < 1.26

More donors, even more \$



In-weights (\$)



Edges (# donors)

e.g. John Kerry, \$10M received, from 1K donors

(C) 2011, C. Faloutsos

70

Orgs-Candidates

Outline

- Introduction Motivation
- Patterns in graphs
 - Patterns in Static graphs
 - Patterns in Weighted graphs

- Patterns in Time evolving graphs
- Generators

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell – sabb. @ CMU)

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter \sim O(log N)
 - diameter \sim O(log log N)
- What is happening in real data?

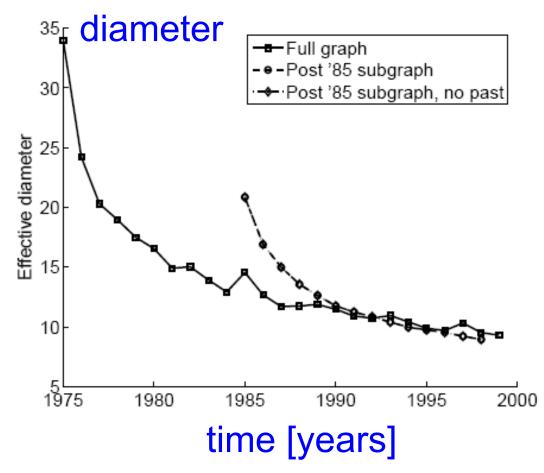
T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - diameter ~ ((leg))
 - diameter ~ O(105 log N)

• Diameter shrinks over time

T.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - -2.9 M nodes
 - 16.5 M edges



T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for

$$E(t+1) = ?2 * E(t)$$

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

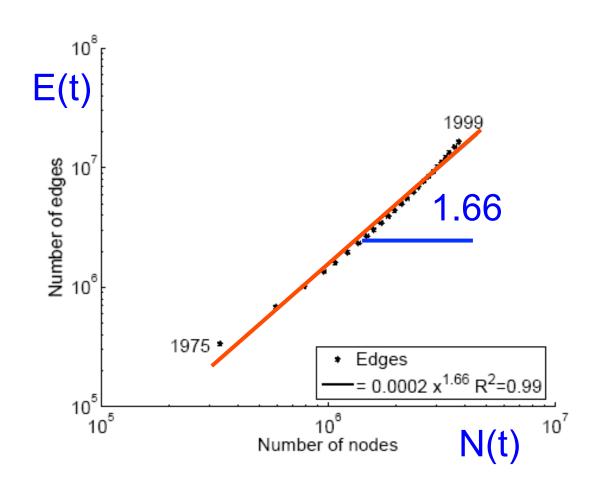
$$N(t+1) = 2 * N(t)$$

- Q: what is your guess for E(t+1) = (t+1) * E(t)
- A: over-doubled!
 - But obeying the ``Densification Power Law''

KAIST-2011

T.2 Densification – Patent Citations

- Citations among patents granted
- *@*1999
 - -2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint



KAIST-2011

(C) 2011, C. Faloutsos

Outline

- Introduction Motivation
- Patterns in graphs
 - Patterns in Static graphs
 - Patterns in Weighted graphs

- Patterns in Time evolving graphs
- Generators

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Q: How do NLCC's emerge and join with the GCC?

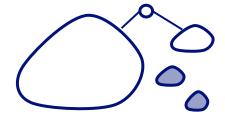
(``NLCC'' = non-largest conn. components)

- −Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Q: How do NLCC's emerge and join with the GCC?

(``NLCC'' = non-largest conn. components)

- −Do they continue to grow in size?
- or do they <u>shrink</u>?
- or stabilize?



Q: How do NLCC's emerge and join with the GCC?

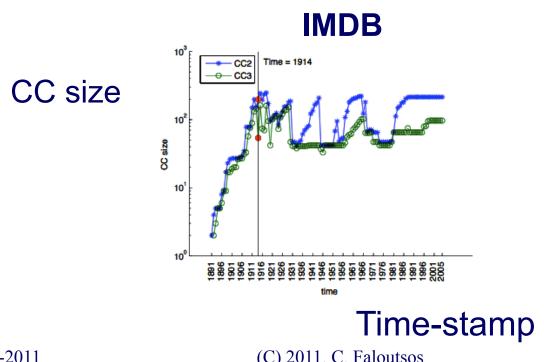
(``NLCC'' = non-largest conn. components)

YES – Do they continue to grow in size?

YES – or do they shrink?

YES – or stabilize?

• After the gelling point, the GCC takes off, but NLCC's remain ~constant (actually, oscillate).



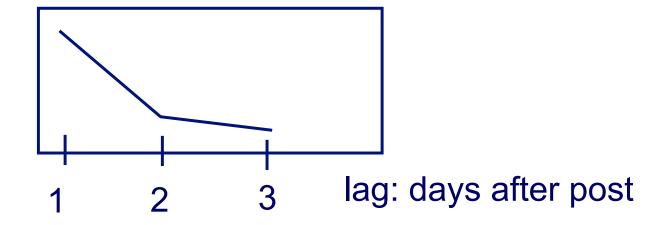
Timing for Blogs

- with Mary McGlohon (CMU)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)

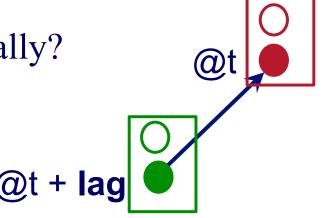
[SDM'07]

T.4: popularity over time

in links

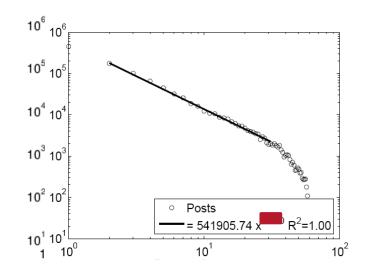


Post popularity drops-off – exponentially?



T.4: popularity over time

in links (log)



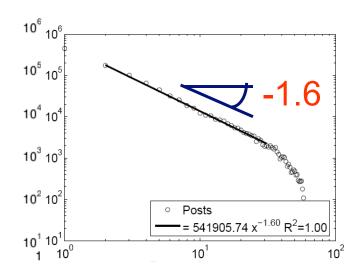
days after post (log)

Post popularity drops-off – exporentally? POWER LAW!

Exponent?

T.4: popularity over time

in links (log)

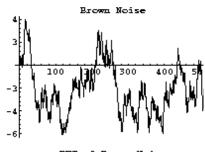


days after post (log)

Post popularity drops-off – exportentially? POWER LAW!

Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk KAIST-2011 (C) 2011, C. Faloutsos



DFT of Brown Noise

-1.5 slope

J. G. Oliveira & A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein.

Nature 437, 1251 (2005). [PDF]

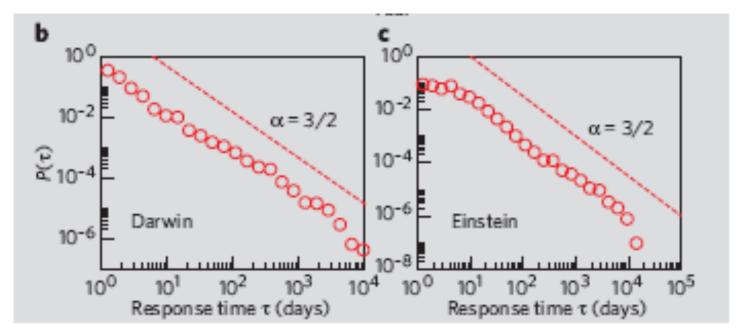


Figure 1 | The correspondence patterns of Darwin and Einstein.

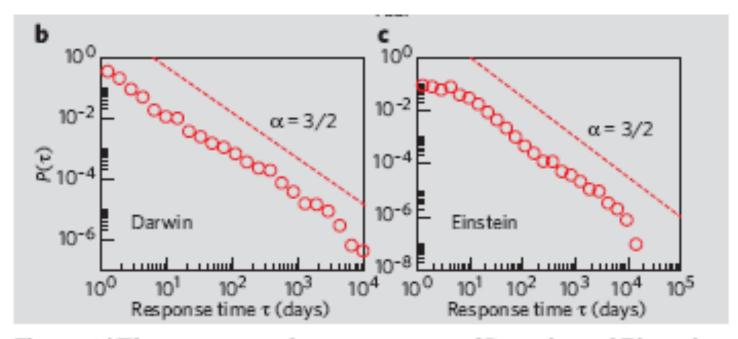


Figure 1 | The correspondence patterns of Darwin and Einstein.

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

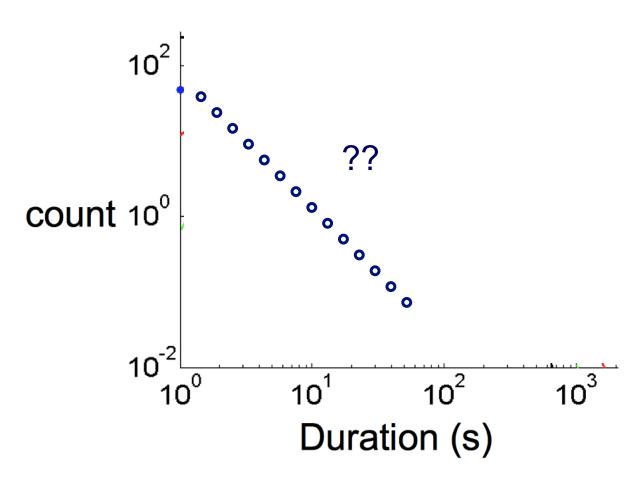
Pedro O. S. Vaz de Melo, Leman

Akoglu, Christos Faloutsos, Antonio

A. F. Loureiro

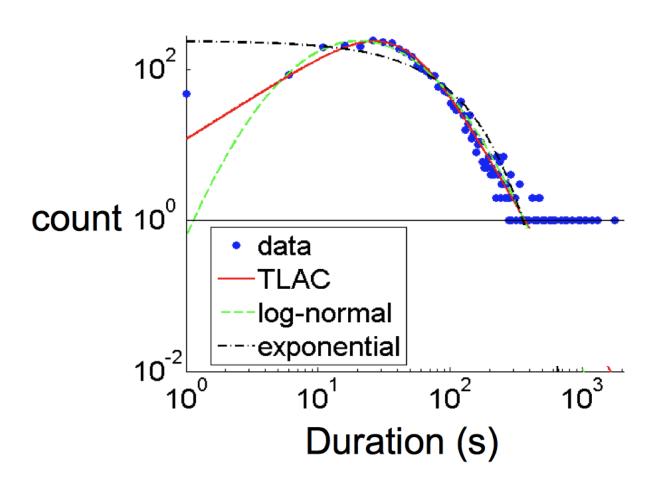
PKDD 2010

Probably, power law (?)



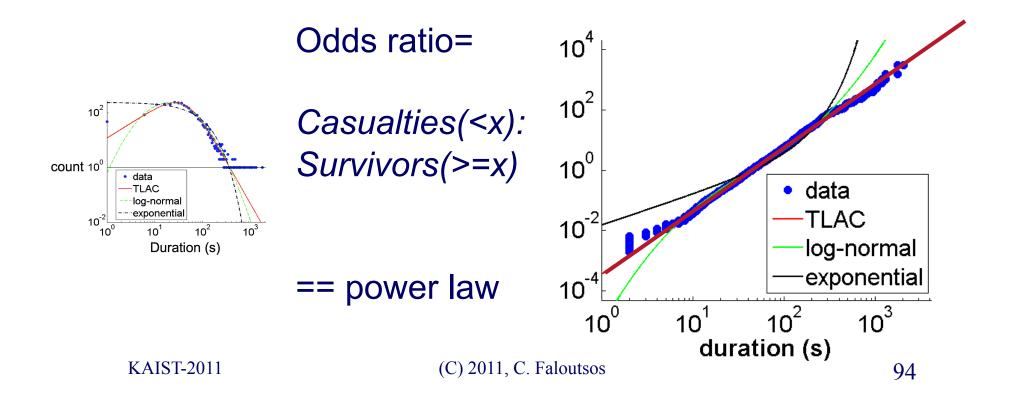
KAIST-2011

No Power Law!



'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take



Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative': >30 calls)

Outline

- Introduction Motivation
- Patterns in graphs
- Generators

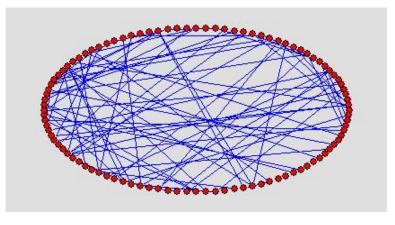
- Erdos-Renyi
- Degree based
- Process based
- Kronecker

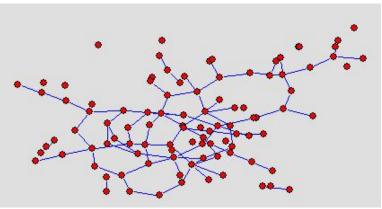
Generators

- How to generate random, realistic graphs?
 - Erdos-Renyi model: beautiful, but unrealistic
 - degree-based generators
 - process-based generators
 - recursive/self-similar generators

Erdos-Renyi

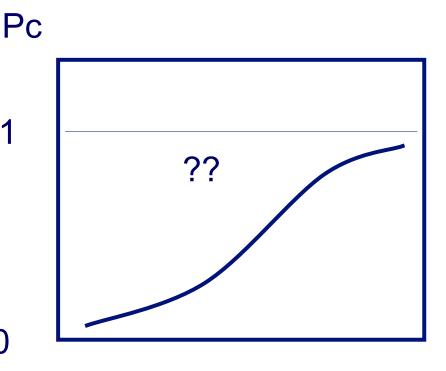
- random graph 100
 nodes, avg degree = 2
- Fascinating properties (phase transition)
- But: unrealistic
 (Poisson degree distribution != power law)





E-R model & Phase transition

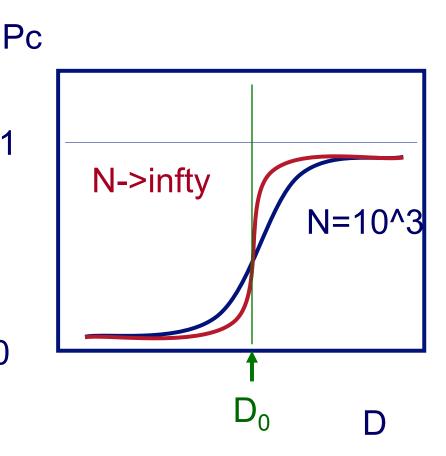
- vary avg degree D
- watch Pc =
 Prob(there is a giant connected component)
- How do you expect it to be?



D

E-R model & Phase transition

- vary avg degree D
- watch Pc =
 Prob(there is a giant connected component)
- How do you expect it to be?



Degree-based

- Figure out the degree distribution (eg., 'Zipf')
- Assign degrees to nodes
- Put edges, so that they match the original degree distribution

Process-based

- Barabasi; Barabasi-Albert: Preferential attachment -> power-law tails!
 - 'rich get richer'
- [Kumar+]: preferential attachment + mimick
 - Create 'communities'

Process-based (cont'd)

- [Fabrikant+, '02]: H.O.T.: connect to closest, high connectivity neighbor
- [Pennock+, '02]: Winner does NOT take all

Outline

- Introduction Motivation
- Patterns in graphs
- Generators
 - Erdos-Renyi
 - Degree based
 - Process based

- Kronecker

Recursive generators

- (RMAT [Chakrabarti+,'04])
- Kronecker product

Wish list for a generator:

- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- shrinking/constant diameter
- Densification Power Law
- communities-within-communities

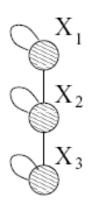
Wish list for a generator:

- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- shrinking/constant diameter
- Densification Power Law
- communities-within-communities

Q: how to achieve all of them?

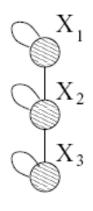
A: Self-similarity - Kronecker matrix product [Leskovec+05b]
(C) 2011, C. Faloutsos

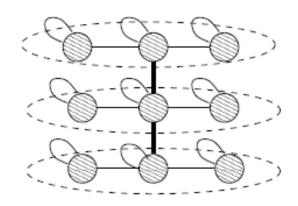
Kronecker product



(a) Graph G_1

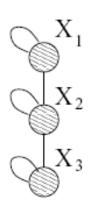
Kronecker product

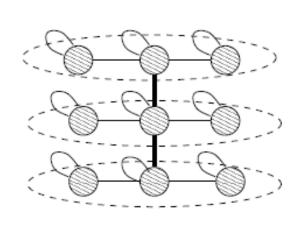


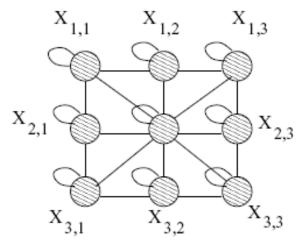


- (a) Graph G_1 (b) Intermediate stage

Kronecker product



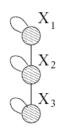


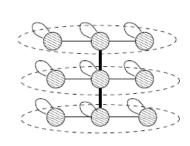


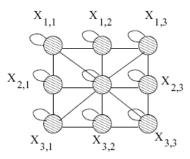
Central node is $X_{2,2}$

- (a) Graph G_1 (b) Intermediate stage (c) Graph $G_2 = G_1 \otimes G_1$

Kronecker product







Central node is X 2.2

- (a) Graph G_1
- 1
 1
 0

 1
 1
 1

 0
 1
 1

(b) Intermediate stage (c) Graph $G_2 = G_1 \otimes G_1$

G_1	G_1	0
G_1	G_1	G_1
0	G_1	G_1



(d) Adjacency matrix of G_1

(e) Adjacency matrix (f) Plot of G_4 of $G_2 = G_1 \otimes G_1$

N**4

N*N

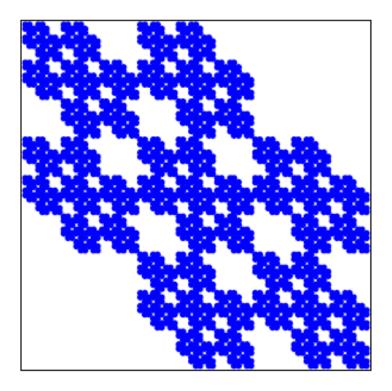
KAIST-2011

(C) 2011, C. Faloutsos

Kronecker Product – a Graph

• Continuing multiplying with G_1 we obtain G_4 and

so on ...

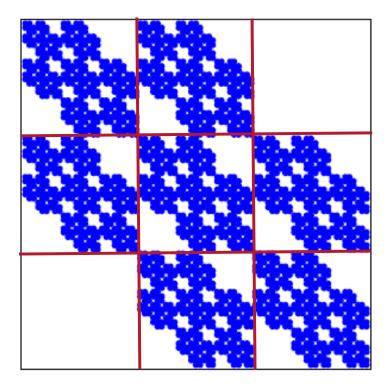


G₄ adjacency matrix (C) 2011, C. Faloutsos

Kronecker Product – a Graph

• Continuing multiplying with G_1 we obtain G_4 and

so on ...

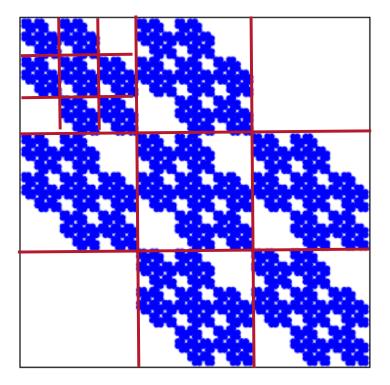


G₄ adjacency matrix (C) 2011, C. Faloutsos

Kronecker Product – a Graph

• Continuing multiplying with G_1 we obtain G_4 and

so on ...



G₄ adjacency matrix (C) 2011, C. Faloutsos

Properties of Kronecker graphs:

- Y Power-law-tail in- and out-degrees
- ✓ Power-law-tail scree plots
- ✓ constant diameter
- perfect Densification Power Law
- communities-within-communities

Properties of Kronecker graphs:

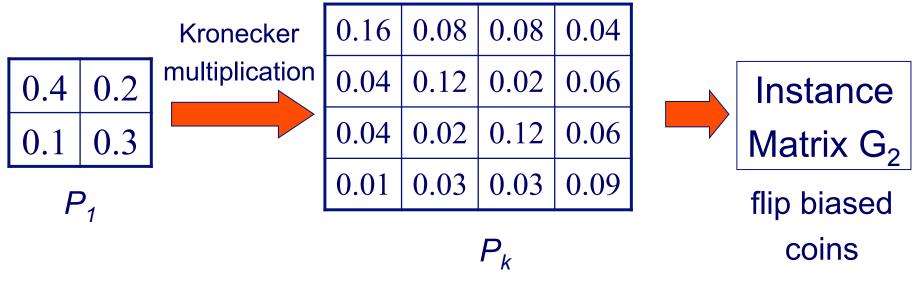
- Power-law-tail in- and out-degrees
- Power-law-tail scree plots
- **constant** diameter
- perfect Densification Power Law
- communities-within-communities

and we can prove all of the above

(first generator that does that)

Stochastic Kronecker Graphs

- Create $N_1 \times N_1$ probability matrix P_1
- Compute the k^{th} Kronecker power P_k
- For each entry p_{uv} of P_k include an edge (u,v) with probability p_{uv}



Experiments

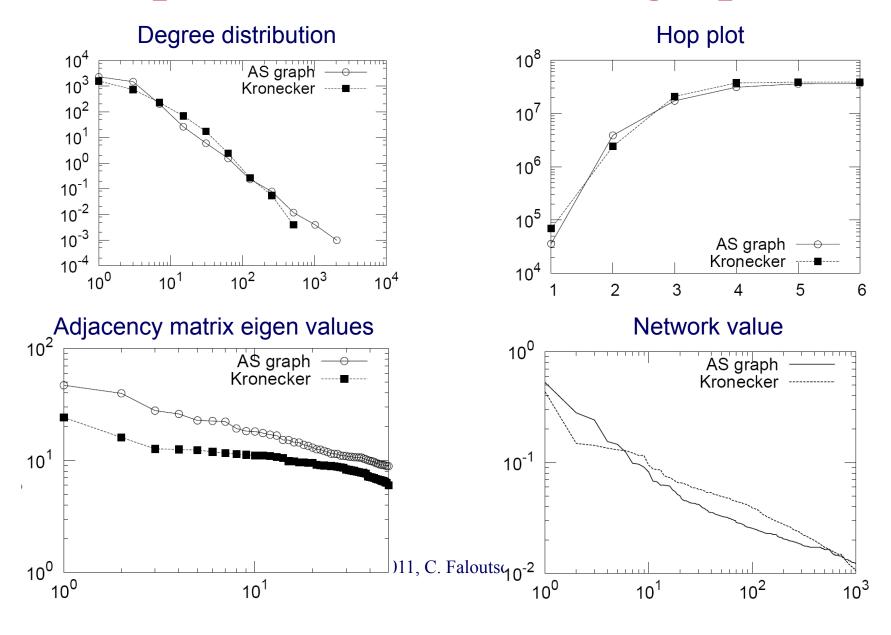
- How well can we match real graphs?
 - Arxiv: physics citations:
 - 30,000 papers, 350,000 citations
 - 10 years of data
 - U.S. Patent citation network
 - 4 million patents, 16 million citations
 - 37 years of data
 - Autonomous systems graph of internet
 - Single snapshot from January 2002
 - 6,400 nodes, 26,000 edges
- We show both static and temporal patterns

(Q: how to fit the parm's?)

A:

- Stochastic version of Kronecker graphs +
- Max likelihood +
- Metropolis sampling
- [Leskovec+, ICML'07]

Experiments on real AS graph



Conclusions

- Kronecker graphs have:
 - All the static properties
 - ✓ Heavy tailed degree distributions
 - ✓ Small diameter
 - ✓ Multinomial eigenvalues and eigenvectors
 - All the temporal properties
 - ✓ Densification Power Law
 - ✓ Shrinking/Stabilizing Diameters
 - We can formally prove these results

OVERALL CONCLUSIONS

- Several new **patterns** (fortification, triangle-laws, conn. components, etc)
- Recursive generators (Kronecker), with provable properties

• Leman Akoglu, Christos Faloutsos: *RTG: A Recursive Realistic Graph Generator Using Random Typing*. ECML/PKDD (1) 2009: 13-28

• Deepayan Chakrabarti, Christos Faloutsos: *Graph mining: Laws, generators, and algorithms*. ACM Comput. Surv. 38(1): (2006)

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: *Epidemic thresholds in real networks*. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: *Information Survival Threshold in Sensor and P2P Networks*. INFOCOM 2007: 1316-1324

• Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: *Mining large graphs and streams using matrix and tensor tools*. Tutorial, SIGMOD Conference 2007: 1174

• T. G. Kolda and J. Sun. *Scalable Tensor Decompositions for Multi-aspect Data Mining*. In: ICDM 2008, pp. 363-372, December 2008.

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos *Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations*, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: *Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication*. PKDD 2005: 133-145

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, *GraphScope: Parameter-free Mining of Large Time-evolving Graphs* ACM SIGKDD Conference, San Jose, CA, August 2007

• Jimeng Sun, Dacheng Tao, Christos Faloutsos: *Beyond streams and graphs: dynamic tensor analysis*. KDD 2006: 374-383

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, *Fast Random Walk with Restart and Its Applications*, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos,
 Center-Piece Subgraphs: Problem
 Definition and Fast Solutions, KDD 2006,
 Philadelphia, PA

 Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

Project info

www.cs.cmu.edu/~pegasus

Chau, Polo

McGlohon, Mary

Tsourakakis, **Babis**

Akoglu, Leman

Kang, U

Prakash, **Aditya**

Tong, Hanghang

Thanks to: NSF IIS-0705359, IIS-0534205,

CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT,

INTEL, HP

Extra material – why so many power laws?

At least 6-7 mechanisms (!)

Power laws, Pareto distributions and Zipf's law Contemporary Physics 46, 323-351 (2005)

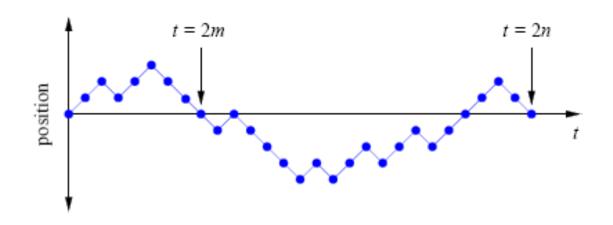
Outline

• Generative mechanisms

- Random walk
 - Yule distribution = CRP
 - Percolation
 - Self-organized criticality
 - Other

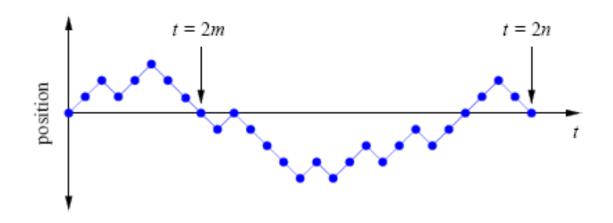
136

Random walks



Inter-arrival times PDF: $p(t) \sim ??^{2}$

Random walks



Inter-arrival times PDF: $p(t) \sim t^{-3/2}$

Random walks

J. G. Oliveira & A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. *Nature* **437**, 1251 (2005) . [PDF]

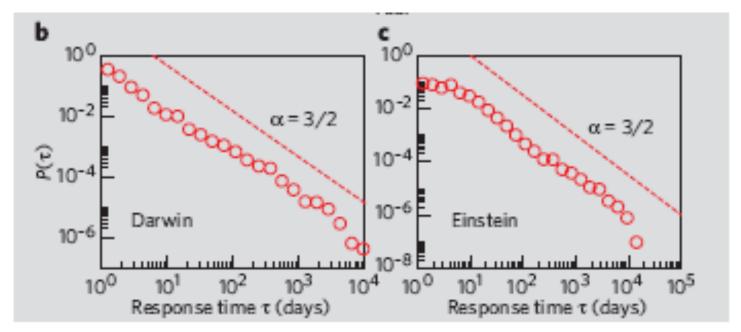


Figure 1 | The correspondence patterns of Darwin and Einstein.

Outline

- Generative mechanisms
 - Random walk
- Yule distribution = CRP
 - Percolation
 - Self-organized criticality
 - Other

Yule distribution and CRP

Chinese Restaurant Process (CRP):

Newcomer to a restaurant

- Joins an existing table (preferring large groups
- Or starts a new table/group of its own, with prob 1/m

a.k.a.: rich get richer; Yule process

Yule distribution and CRP

Then:

```
Prob( k people in a group) = p_k
= (1 + 1/m) B(k, 2+1/m)
\sim k^{-(2+1/m)}
(since B(a,b) \sim a ** (-b) : power law tail)
```


Yule distribution and CRP

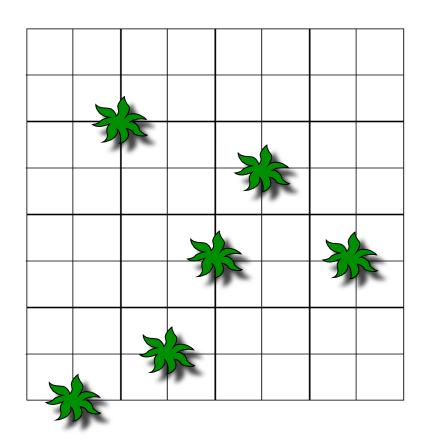
- Yule process
- Gibrat principle
- Matthew effect
- Cumulative advantage
- Preferential attachement
- 'rich get richer'

Outline

- Generative mechanisms
 - Random walk
 - Yule distribution = CRP

- Percolation
 - Self-organized criticality
 - Other

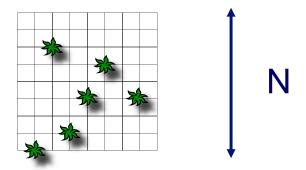
Percolation and forest fires



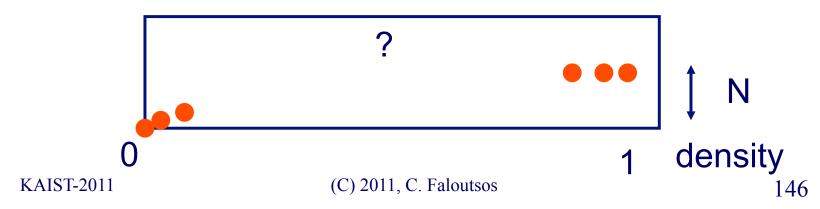
A burning tree will cause its neighbors to burn next.

Which tree density *p* will cause the fire to last longest?

Percolation and forest fires

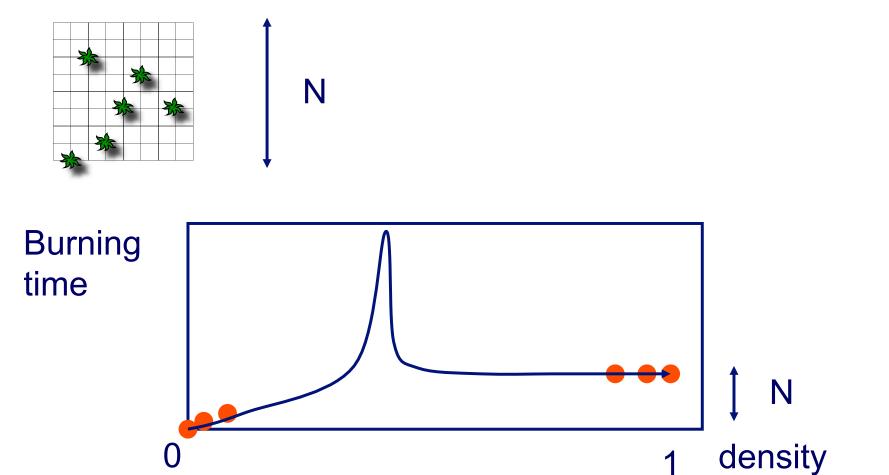


Burning time



KAIST-2011

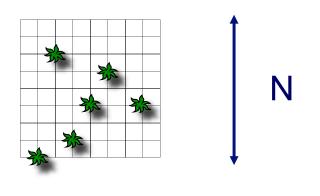
Percolation and forest fires

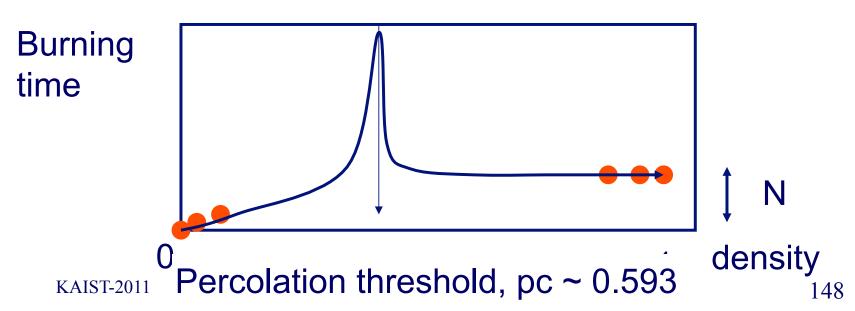


(C) 2011, C. Faloutsos

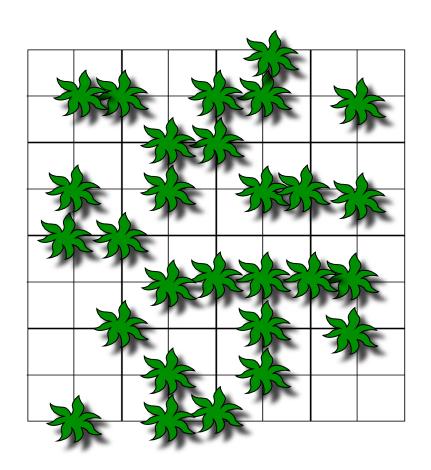
147

Percolation and forest fires





Percolation and forest fires

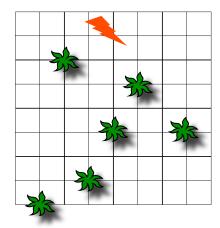


At pc ~ 0.593: No characteristic scale; 'patches' of all sizes; Korcak-like 'law'.

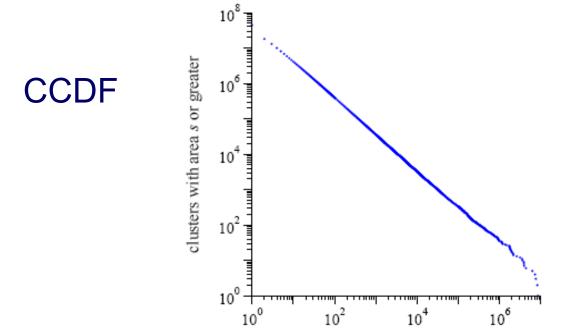
Outline

- Generative mechanisms
 - Random walk
 - Yule distribution = CRP
 - Percolation
- Self-organized criticality
 - Other

- Trees appear at random (eg., seeds, by the wind)
- Fires start at random (eg., lightning)
- Q1: What is the distribution of size of forest fires?



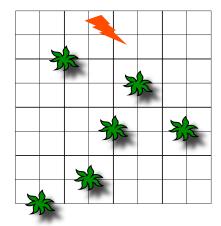
• A1: Power law-like



(C) 2011, C. Falout Area of cluster s

area of cluster s

- Trees appear at random (eg., seeds, by the wind)
- Fires start at random (eg., lightning)
- Q2: what is the average density?



• A2: the critical density $pc \sim 0.593$

- [Bak]: size of avalanches ~ power law:
- Drop a grain randomly on a grid
- It causes an avalanche if height(x,y) is >1 higher than its four neighbors

[Per Bak: How Nature works, 1996]

Outline

- Generative mechanisms
 - Random walk
 - Yule distribution = CRP
 - Percolation
 - Self-organized criticality

Other

- Random multiplication
- Fragmentation
- -> lead to lognormals (~ look like power laws)

Random multiplication:

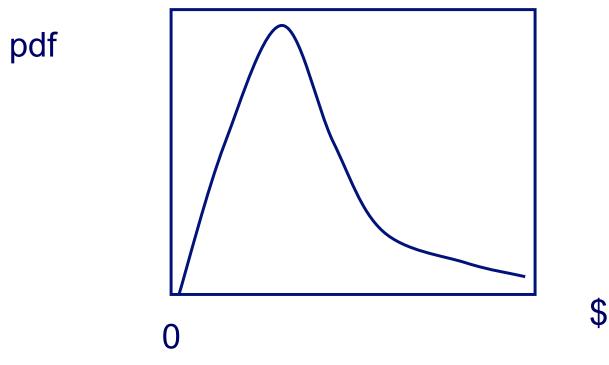
- Start with C dollars; put in bank
- Random interest rate s(t) each year t
- Each year t: C(t) = C(t-1) * (1+s(t))
- Log(C(t)) = log(C) + log(..) + log(..) ... -> Gaussian

Random multiplication:

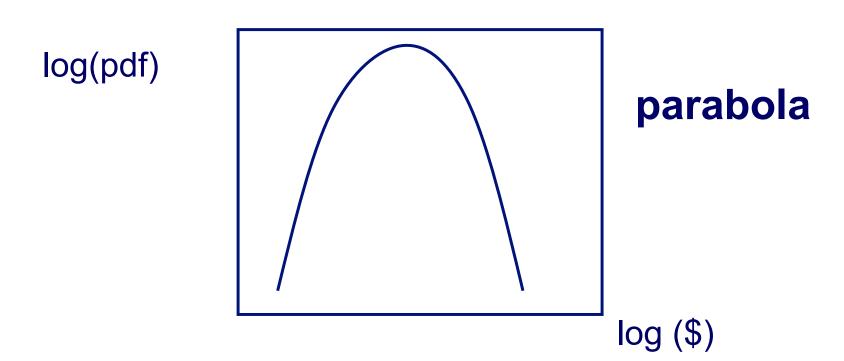
• Log(C(t)) = log(C) + log(..) + log(..) ... -> Gaussian

- Thus $C(t) = \exp(Gaussian)$
- By definition, this is Lognormal

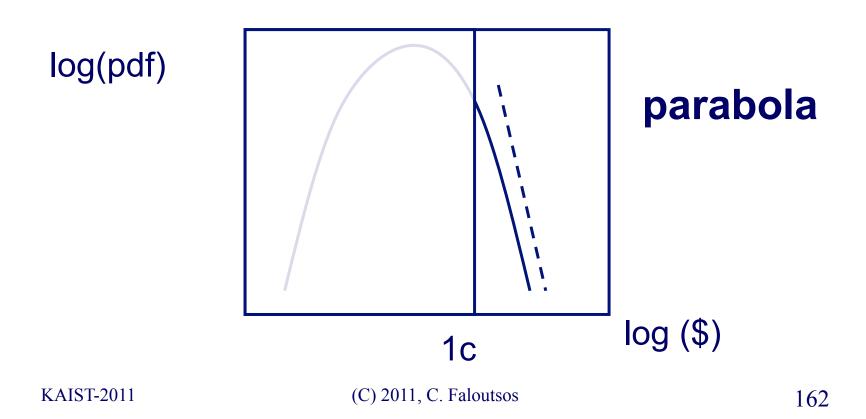
Lognormal:



Lognormal:



Lognormal:



- Random multiplication
- Fragmentation
- -> lead to lognormals (~ look like power laws)

- Stick of length 1
- Break it at a random point $x (0 \le x \le 1)$
- Break each of the pieces at random

• Resulting distribution: lognormal (why?)

Conclusions

• Many, natural mechanisms, may yield power-laws (or log-normals etc)

Questions?

• www.cs.cmu.edu/~christos