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Abstract Data stream values are often associated with multiple aspects. For example,
each value observed at a given time-stamp from environmental sensors may have an
associated type (e.g., temperature, humidity, etc.) as well as location. Time-stamp,
type and location are the three aspects, which can be modeled using a tensor (high-
order array). However, the time aspect is special, with a natural ordering, and with
successive time-ticks having usually correlated values. Standard multiway analysis
ignores this structure. To capture it, we propose 2 Heads Tensor Analysis (2-heads),
which provides a qualitatively different treatment on time. Unlike most existing ap-
proaches that use a PCA-like summarization scheme for all aspects, 2-heads treats
the time aspect carefully. 2-heads combines the power of classic multilinear analysis
with wavelets, leading to a powerful mining tool. Furthermore, 2-heads has several
other advantages as well: (a) it can be computed incrementally in a streaming fashion,
(b) it has a provable error guarantee and, (c) it achieves significant compression ratio
against competitors. Finally, we show experiments on real datasets, and we illustrate
how 2-heads reveals interesting trends in the data. This is an extended abstract of an
article published in the Data Mining and Knowledge Discovery journal.
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1 Introduction

Data streams have received attention in different communities due to emerging appli-
cations, such as environmental monitoring, surveillance video streams, business trans-
actions, telecommunications (phone call graphs, Internet traffic monitor), and financial
markets. Such data is represented as multiple co-evolving streams (i.e., time series with
an increasing length). Most data mining operations need to be redesigned for data
streams, which require the results to be updated efficiently for the newly arrived data.
In the standard stream model, each value is associated with a (time-stamp, stream-ID)

pair. However, the stream-ID itself may have some additional structure. For example,
it may be decomposed into (location-ID, type) ≡ stream-ID. We call each such com-
ponent of the stream model an aspect. Each aspect can have multiple dimensions. This
multi-aspect structure should not be ignored in data exploration tasks since it may pro-
vide additional insights. Motivated by the idea that the typical “flat-world” view may
not be sufficient. How should we summarize such high dimensional and multi-aspect
streams? Some recent developments are along these lines such as Dynamic Tensor
Analysis (Sun et al. 2006b) and Window-based Tensor Analysis (Sun et al. 2006a),
which incrementalize the standard offline tensor decompositions such as Tensor PCA
(Tucker 2) and Tucker. However, the existing work often adopts the same model for
all aspects. Specifically, PCA-like operation is performed on each aspect to project
data onto maximum variance subspaces. Yet, different aspects have different char-
acteristics, which often require different models. For example, maximum variance
summarization is good for correlated streams such as correlated readings on sensors
in a vicinity; time and frequency based summarizations such as Fourier and wavelet
analysis are good for the time aspect due to the temporal dependency and seasonality.

In this paper, we propose a 2-heads Tensor Analysis (2-heads) to allow more than
one model or summarization scheme on dynamic tensors. In particular, 2-heads adopts
a time–frequency based summarization, namely wavelet transform, on the time aspect
and a maximum variance summarization on all other aspects. As shown in exper-
iments, this hybrid approach provides a powerful mining capability for analyzing
dynamic tensors, and also outperforms all the other methods in both space and speed.

Contributions: Our proposed approach, 2-heads, provides a general framework of
mining and compression for multi-aspect streams. 2-Heads has the following key
properties:

– Multi-model summarization: It engages multiple summarization schemes on
various aspects of dynamic tensors.

– Streaming scalability: It is fast, incremental and scalable for the streaming
environment.

– Error Guarantee: It can efficiently compute the approximation error based on the
orthogonality property of the models.

– Space efficiency: It provides an accurate approximation which achieves very high
compression ratios (over 20:1), on all real-world data in our experiments.
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Two heads better than one 113

We demonstrate the efficiency and effectiveness of our approach in discovering and
tracking key patterns and compressing dynamic tensors on real environmental sensor
data.

2 Related work

Tensor mining: Vasilescu and Terzopoulos (2002) introduced the tensor singular value
decomposition for face recognition. Xu et al. (2005) formally presented the tensor rep-
resentation for principal component analysis and applied it for face recognition. Kolda
et al. (2005) apply PARAFAC on Web graphs and generalize the hub and authority
scores for Web ranking through term information. A comprehensive tensor toolbox is
also provided in Bader and Kolda (2006). Acar et al. (2005) applied different tensor
decompositions, including Tucker, to online chat room applications. Chew et al. (2007)
uses PARAFAC2 to study the multi-language translation problem. Sun et al. (2005)
used Tucker to analyze Web site click-through data. Sun et al. (2006a,b) proposed
different methods for dynamically updating the Tucker decomposition, with applica-
tions ranging from text analysis to environmental sensors and network modeling. All
the aforementioned methods share a common characteristic: they assume one type of
model for all modes/aspects.

Wavelet: The discrete wavelet transform (DWT) (Daubechies 1992) has been proved
to be a powerful tool for signal processing, like time series analysis and image analysis
(Press et al. 1992). Wavelets have an important advantage over the Discrete Fourier
transform (DFT): they can provide information from signals with both periodicities
and occasional spikes (where DFT fails). Moreover, wavelets can be easily extended
to operate in a streaming, incremental setting (Gilbert et al. 2003) as well as for stream
mining (Papadimitriou et al. 2003). However, none of them work on high-order data
as we do.

3 Background

Principal component analysis: PCA finds the best linear projections of a set of high
dimensional points to minimize least-squares cost. More formally, given n points rep-
resented as row vectors xi |ni=1 ∈ R

N in an N dimensional space, PCA computes n
points yi |ni=1 ∈ R

r (r � N ) in a lower dimensional space and the factor matrix
U ∈ R

N×r such that the least-squares cost e =∑n
i=1 ‖xi − Uyi‖22 is minimized.1

Discrete wavelet transform: The key idea of wavelets is to separate the input
sequence into low frequency part and high frequency part and to do that recursively in
different scales. In particular, the discrete wavelet transform (DWT) over a sequence
x ∈ R

N gives N wavelet coefficients which encode the averages (low frequency parts)
and differences (high frequency parts) at all lg(N )+1 levels.

At the finest level (level lg(N )+1), the input sequence x ∈ R
N is simultaneously

passed through a low-pass filter and a high-pass filter to obtain the low frequency

1 Both x and y are row vectors.

123



114 J. Sun et al.

coefficients and the high frequency coefficients. The low frequency coefficients are
recursively processed in the same manner in order to separate the lower frequency
components. More formally, we define

– wl,t : The detail component, which consists of the N
2l wavelet coefficients. These

capture the low-frequency component.
– vl,t : The average component at level l, which consists of the N

2l scaling coefficients.
These capture the high-frequency component.

Here we use Haar wavelet to introduce the idea in more details.
The construction starts with vlg N ,t = xt and wlg N ,t is not defined. At each iteration

l = lg(N ), lg(N ) − 1, . . . , 1, 0, we perform two operations on wl,t to compute the
coefficients at the next level. The process is formally called Analysis step:

Differencing, to extract the high frequencies: wl−1,t = (vl,2t − vl,2t−1)/
√

2
Averaging, which averages each consecutive pair of values and extracts the low
frequencies: vl−1,t = (vl,2t + vl,2t−1)/

√
2.

We stop when vl,t consists of one coefficient (which happens at l = 0). The other
scaling coefficients vl,t (l > 0) are needed only during the intermediate stages of the
computation. The final wavelet transform is the set of all wavelet coefficients along
with v0,0. Starting with v0,0 and following the inverse steps, formally called Synthesis,
we can reconstruct each vl,t until we reach vlg N ,t ≡ xt .

In the matrix presentation, the analysis step is

b = Ax (1)

where x ∈ R
N is the input vector, b ∈ R

N consists of the wavelet coefficients. At
i-th level, the pair of low- and high-pass filters, formally called filter banks, can be
represented as a matrix, say Ai . For the Haar wavelet example in Fig. 1, the first and
second level filter banks A1 and A0 are

A1 =

⎡

⎢
⎢
⎣

r r
r r

r −r
r −r

⎤

⎥
⎥
⎦ A0 =

⎡

⎢
⎢
⎣

r r
r −r

1
1

⎤

⎥
⎥
⎦

Fig. 1 Example: (a) Haar wavelet transform on x = (1, 2, 3, 3)T . The wavelet coefficients are highlighted
in the shaded area. (b) The same process can be viewed as passing x through two filter banks
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where r = 1√
2

.
The final analysis matrix A is a sequence of filter banks applied on the input signal,

i.e.,

A = A0A1. (2)

Conversely, the synthesis step is x = Sb. Note that synthesis is the inverse of analysis,
S = A−1. When the wavelet is orthonormal like Haar and Daubechies wavelets, the
synthesis is simply the transpose of analysis, i.e., S = AT.

Multilinear analysis: A tensor of order M closely resembles a data cube with M
dimensions. Formally, we write an M-th order tensor as X ∈ R

N1×N2×···×NM where
Ni (1 ≤ i ≤ M) is the dimensionality of the i-th mode (“dimension” in OLAP
terminology).

Matricization. The mode-d matricization of an M-th order tensorX ∈ R
N1×N2×···×NM

is the rearrangement of a tensor into a matrix by keeping index d fixed and flattening
the other indices. Therefore, the mode-d matricization X(d) is in R

Nd×(
∏

i �=d Ni ). The
mode-d matricization X is denoted as unfold(X, d) or X(d). Similarly, the inverse oper-
ation is denoted as fold(X(d)). In particular, we have X = fold(unfold(X, d)). Figure 2
shows an example of mode-1 matricization of a 3rd-order tensor X ∈ R

N1×N2×N3 to
the N1× (N2× N3)-matrix X(1). Note that the shaded area of X(1) in Fig. 2 is the slice
of the 3rd mode along the 2nd dimension.

Mode product: The d-mode product of a tensor X ∈ R
n1×n2×···×nM with a matrix

A ∈ R
r×nd is denoted as X×d A which is defined element-wise as

(X×d A)i1...id−1 j id+1...iM =
nd∑

id=1

xi1,i2,...,iM a jid

Figure 3 shows an example of a mode-1 multiplication of 3rd order tensor X and
matrix U. The process is equivalent to a three-step procedure: first we matricize X

Fig. 2 3rd Order tensor X ∈ R
N1×N2×N3 is matricized along mode-1 to a matrix X(1) ∈ R

N1×(N2×N3).
The shaded area is the slice of the 3rd mode along the 2nd dimension
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Fig. 3 3rd Order tensor X[n1,n2,n3] ×1 U results in a new tensor in R
r×n2×n3

along mode-1, then we multiply it with U, and finally we fold the result back as
a tensor. In general, a tensor Y ∈ R

r1×···×rM can multiply a sequence of matrices
U(i)|Mi=1 ∈ R

ni×ri as: Y ×1 U1 · · · ×M UM ∈ R
n1×···×nM , which can be compactly

written as Y
M∏

i=1
×i Ui . Furthermore, the notation for Y ×1 U1 · · · ×i−1 Ui−1 ×i+1

Ui+1 · · · ×M UM (i.e. multiplication of all U j s except the i-th) is simplified as

Y
∏

j �=i
× j U j .

Tucker decomposition: Given a tensor X ∈ R
N1×N2×···×NM , Tucker decomposes a

tensor as a core tensor and a set of factor matrices. Formally, we can reconstruct
X using a sequence of mode products between the core tensor G ∈ R

R1×R2×···×RM

and the factor matrices U(i) ∈ R
Ni×Ri |Mi=1. We use the following notation for Tucker

decomposition:

X = G

M∏

i=1

×i U
(i) ≡ �G ;U(i)|Mi=1�

We will refer to the decomposed tensor �G ;U(i)|Mi=1� as a Tucker Tensor. If a tensor
X ∈ R

N1×N2×···×NM can be decomposed (even approximately), the storage space can
be reduced from

∏M
i=1 Ni to

∏M
i=1 Ri +∑M

i=1(Ni × Ri ), see Fig. 4.

Fig. 4 The input tensor D∈ R
W×N1×N2×···×NM (time-by-location-by-type) is approximated by a Tucker

tensor �G ;U(i)|2i=0�. Note that the time mode will be treated differently compared to the rest as shown
later
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Two heads better than one 117

4 Problem formulation

In this section, we formally define the two problems addressed in this paper: Static and
Dynamic 2-heads tensor mining. To facilitate the discussion, we refer to all aspects
except for the time aspect as “spatial aspects.”

4.1 Static 2-heads tensor mining

In the static case, data are represented as a single tensor D ∈ R
W×N1×N2×···×NM .

Notice the first mode corresponds to the time aspect which is qualitatively different
from the spatial aspects. The mining goal is to compress the tensor D while revealing
the underlying patterns on both temporal and spatial aspects. More specifically, we
define the problem as the follows:

Problem 1 (Static tensor mining) Given a tensor D ∈ R
W×N1×N2×···×NM , find the

Tucker tensor D̂ ≡ �G ;U(i)|Mi=0� such that (1) both the space requirement of D̂

and the reconstruction error e =
∥
∥
∥ D− D̂

∥
∥
∥

F
/ ‖D ‖F are small; (2) both spatial and

temporal patterns are revealed through the process.

The central question is how to construct the suitable Tucker tensor; more specifically,
what model should be used on each mode. As we show in Sect. 6.1, different models
on time and spatial aspects can serve much better for time-evolving applications.

The intuition behind Problem 1 is illustrated in Fig. 4. The mining operation aims
at compressing the original tensor D and revealing patterns. Both goals are achieved
through the specialized Tucker decomposition, 2-heads Tensor Analysis (2-heads) as
presented in Sect. 5.1.

4.2 Dynamic 2-heads tensor mining

In the dynamic case, data are evolving along time aspect. More specifically, given
a dynamic tensor D ∈ R

n×N1×N2×···×NM , the size of time aspect (first mode) n is
increasing over time n→∞. In particular, n is the current time. In another words, new
slices along time mode are continuously arriving. To mine the time-evolving data, a
time-evolving model is required for space and computational efficiency. In this paper,
we adopt a sliding window model which is popular in data stream processing.

Before we formally introduce the problem, two terms have to be defined:

Definition 1 (Time slice) A time slice Di of D ∈ R
n×N1×N2×···×NM is the i-th slice

along the time mode (first mode) with Dn as the current slice.

Note that given a tensor D ∈ R
n×N1×N2×···×NM , every time slice is actually a tensor

with one less mode, i.e., Di ∈ R
N1×N2×···×NM .

Definition 2 (Tensor window) A tensor window D(n,W ) consists of a set of the tensor
slices ending at time n with size W , or formally,

D(n,W ) ≡ {Dn−W+1, . . . ,Dn} ∈ R
W×N1×N2×···×NM . (3)
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Fig. 5 Tensor window D(n,W ) consists of the most recent W time slices in D. Dynamic tensor mining
utilizes the old model for D(n−1,W ) to facilitate the model construction for the new window D(n,W )

Figure 5 shows an example of tensor window. We now formalize the core problem,
Dynamic 2-heads Tensor Mining. The goal is to incrementally compress the dynamic
tensor while extracting spatial and temporal patterns and their correlations. More
specifically, we aim at incrementally maintaining a Tucker model for approximating
tensor windows.

Problem 2 (Dynamic 2-heads Tensor Mining) Given the current tensor window
D(n,W ) ∈ R

W×N1×N2×···×NM and the old Tucker model for D(n−1,W ), find the new

Tucker model D̂(n,W ) ≡ �G ;U(i)|Mi=0� such that (1) the space requirement of D̂ is

small; (2) the reconstruction error e =
∥
∥
∥ D(n,W ) − D̂(n,W )

∥
∥
∥

F
is small (see Fig. 5);

(3) both spatial and temporal patterns are reviewed through the process.

5 Multi-model tensor analysis

In Sects. 5.1 and 5.2, we propose our algorithms for the static 2-heads and dynamic
2-heads tensor mining problems, respectively. In Sect. 5.3 we present mining guidance
for the proposed methods.

5.1 Static 2-heads tensor mining

Many applications as listed before exhibit strong spatio-temporal correlations in the
input tensor D. Strong spatial correlation usually benefits greatly from dimensional-
ity reduction. For example, if all temperature measurements in a building exhibit the
same trend, PCA can compress the data into one principal component (a single trend
is enough to summarize the data). Strong temporal correlation means periodic pattern
and long-term dependency. This is better viewed in the frequency domain through
Fourier or wavelet transform.

123



Two heads better than one 119

Hence, we propose 2-Heads Tensor Analysis (2-heads), which combines both PCA
and wavelet approaches to compress the multi-aspect data by exploiting the spatio-
temporal correlation. The algorithm involves two steps:

– Spatial compression: We perform alternating minimization on all modes except
for the time mode.

– Temporal compression: We perform discrete wavelet transform on the result of
spatial compression.

Spatial compression uses the idea of alternating least square (ALS) method on
all factor matrices except for the time mode. More specifically, it initializes all fac-
tor matrices to be the identity matrix I; then it iteratively updates the factor matri-
ces of every spatial mode until convergence. The results are the spatial core tensor

X ≡D
∏

i �=0
×i U

(i) and the factor matrices U(i)|Mi=1.

Temporal compression performs frequency-based compression (e.g., wavelet trans-
form) on the spatial core tensor X. More specifically, we obtain the spatio-temporal
core tensor G ≡ X ×0 U(0) where U(0) is the DWT matrix such as the one shown
in Eq. 22. The entries in the core tensor G are the wavelet coefficients. We then drop
the small entries (coefficients) in G, result denoted as Ĝ, such that the reconstruction
error is just below the error threshold θ . Finally, we obtain Tucker approximation
D̂ ≡ �Ĝ ;U(i)|Mi=0�. The pseudo-code is listed in Algorithm 1.

By definition, the error e =
∥
∥
∥D− D̂

∥
∥
∥

2

F
/ ‖D ‖2F . It seems that we need to con-

struct the tensor D̂ and compute the difference between D and D̂ in order to calculate
the error e. Actually, the error e can be computed efficiently based on the following
theorem.

Theorem 1 (Error estimation) Given a tensor D and its Tucker approximation
described in Algorithm1, D̂ ≡ �G ;U(i)|Mi=0�, we have

e =
√

1−
∥
∥
∥ Ĝ

∥
∥
∥

2

F
/ ‖D ‖2F (4)

where Ĝ is the core tensor after zero-out the small entries and the error estimation

e ≡
∥
∥
∥D− D̂

∥
∥
∥

F
/ ‖D ‖F .

Proof Let us denote G and Ĝ as the core tensor before and after zero-outing the small
entries (G =D

∏
×i U

(i)).

2 U(0) is never materialized but recursively computed on the fly.

123



120 J. Sun et al.

Algorithm 1: static 2- heads

Input : a tensor D∈ R
W×N1×N2×···×NM , accuracy θ

Output: a tucker tensor D̂≡ �Ĝ ;U(i)|Mi=0�

// search for factor matrices

initialize all U(i)|Mi=0 = I1

repeat2
for i ← 1 to M do3

// project D to all modes but i

X=D
∏

j �=i
× j U( j)

4

// find co-variance matrix

C(i) = XT
(i)X(i)5

// diagonalization

U(i) as the eigenvectors of C(i)6

// any changes on factor matrices?

if T r(||U(i)TU(i)| − I|) ≤ ε for 1 ≤ i ≤ M then converged7

until converged;8
// spatial compression

for i ← 1 to M do X=D
M∏

i=1
×i U(i)

9

// temporal compression

G=X×0 U(0) where U(0) is the DWT matrix.10

Ĝ≈ G by setting all small entries (in absolute value) to zero, s.t.

√

1−
∥
∥
∥ Ĝ

∥
∥
∥

2

F
/ ‖D‖2F ≤ θ11

e2 =
∥
∥
∥
∥D− Ĝ

M∏

i=0
×i U

(i)T
∥
∥
∥
∥

2

F

/ ‖D ‖2F def. of D̂

=
∥
∥
∥
∥D

M∏

i=0
×i U

(i)T − Ĝ

∥
∥
∥
∥

2

F

/ ‖D ‖2F unitary trans

=
∥
∥
∥G− Ĝ

∥
∥
∥

2

F
/ ‖D ‖2F def. of G

=∑

x
(gx − ĝx )

2/ ‖D ‖2F def. of F-norm

=
(

∑

x
g2

x −
∑

x
ĝ2

x

)

/ ‖D ‖2F def. of Ĝ

= 1−
∥
∥
∥ Ĝ

∥
∥
∥

2

F
/ ‖D ‖2F def. of F-norm

�

Computational cost of Algorithm 1 comes from the mode product and diagonal-

ization, which is O
(∑M

i=1

(
W

∏
j<i R j

∏
k≥i Nk + N 3

i

))
. The dominating factor is

usually the mode product. Therefore, the complexity of Algorithm 1 can be simplified
as O(W M

∏M
i=1 Ni ).
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5.2 Dynamic 2-heads tensor mining

For the time-evolving case, the idea is to explicitly utilize the overlapping information
of the two consecutive tensor windows to update the co-variance matrices C(i)|Mi=1.
More specifically, given a tensor window D(n,W ) ∈ R

W×N1×N2×···×NM , we aim at
removing the effect of the old slice Dn−W and adding in that of the new slice Dn .

This is hard to do because of the iterative optimization. Recall that the ALS algo-
rithm searches for the factor matrices. We approximate the ALS search by updating
factor matrices independently on each mode, which is similar to high-order SVD
(De Lathauwer et al. 2000). This process can be efficiently updated by maintaining the
co-variance matrix on each mode.

More formally, the co-variance matrix along the i th mode is as follows:

C(i)
old =

[
X
D

]T [
X
D

]

= XTX+ DTD

where X is the matricization of the old tensor slice Dn−W and D is the matricization of
tensor window D(n−1,W−1) (i.e., the overlapping part of the tensor windows D(n−1,W )

and D(n,W )). Similarly, C(i)
new = DTD+YTY, where Y is the matricization of the new

tensor Dn . As a result, the update can be easily achieved as follows:

C(i)← C(i) −DN−W
T
(i)DN−W(i) +DN

T
(i)DN(i)

where DN−W(i)(DN(i)) is the mode-i matricization of tensor slice Dn−W (Dn).
The updated factor matrices are just the eigenvectors of the new co-variance matri-

ces. Once the factor matrices are updated, the spatio-temporal compression remains
the same. One observation is that Algorithm 2 can be performed in batches. The only
change is to update co-variance matrices involving multiple tensor slices. The batch
update can significantly lower the amortized cost for diagonalization as well as spatial
and temporal compression.

5.3 Mining guide

We now illustrate practical aspects concerning our proposed methods.
The goal of 2-heads is to find highly correlated dimensions within the same aspect

and across different aspects, and monitor them over time.

Spatial correlation: A projection matrix gives the correlation information among
dimensions for a single aspect. More specifically, the dimensions of the i-th aspect
can be grouped based on their values in the columns of U(i). The entries with high
absolute values in a column of U(i) correspond to the important dimensions in the same
GconceptG. The SENSOR type example shown in Fig. 1 correspond to two concepts
in the sensor type aspect—see Sect. 6.1 for details.

123



122 J. Sun et al.

Algorithm 2: dynamic 2- heads

Input : a new tensor window D(n,W ) = {Dn−W+1, . . . , Dn} ∈ R
W×N1×N2×···×NM , old

co-variance matrices C(i)|Mi=1, accuracy θ

Output: a tucker tensor D̂≡ �Ĝ ;U(i)|Mi=0�

for i ← 1 to M do1
// update co-variance matrix

C(i) ← C(i) −DN−W
T
(i)DN−W(i) +DN

T
(i)DN−W(i)2

// diagonalization

U(i) as the eigen-vectors of C(i)3

// spatial compression

for i ← 1 to M do X=D
M∏

i=1
×i U(i)

4

// temporal compression

G=X×0 U(0) where U(0) is the DWT matrix.5

Ĝ≈ G with setting all small entries (in absolute value) to zero, s.t.

√

1−
∥
∥
∥ Ĝ

∥
∥
∥

2

F
/ ‖D‖2F ≤ θ6

Temporal correlation: Unlike spatial correlations that reside in the projection matri-
ces, temporal correlation is reflected in the core tensor. After spatial compression,
the original tensor is transformed into the spatial core tensor X—line 4 of Algo-
rithm 2. Then, temporal compression applies on X to obtain the (spatio-temporal)
core tensor G which consists of dominant wavelet coefficients of the spatial core. By
focusing on the largest entry (wavelet coefficient) in the core tensor, we can easily
identify the dominant frequency components in time and space—see Fig. 7 for more
discussion.

Correlations across aspects: The interesting aspect of 2-heads is that the core tensor
Y provides indications on the correlations of different dimensions across both spa-
tial and temporal aspects. More specifically, a large entry in the core means a high
correlation between the corresponding columns in the spatial aspects at specific time
and frequency. For example, the combination of Fig. 6b, the first concept of Figs. 1
and 7a gives us the main trend in the data, which is the daily periodic trend of the
environmental sensors in a lab.

6 Experiment evaluation

In this section, we will evaluate both mining and compression aspects of 2-heads on
real environment sensor data. We first describe the dataset, then illustrate our mining
observations in Sect. 6.1 and finally show some quantitative evaluation in Sect. 6.2.

The sensor data consists of voltage, humidity, temperature, and light intensity at
54 different locations in the Intel Berkeley Lab (see Fig. 6a). It has 1,093 timestamps,
one for each 30 min. The dataset is a 1, 093× 54× 4 tensor corresponding to 22 days
of data.
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Two heads better than one 123

Fig. 6 Spatial correlation: vertical bars in (b) indicate positive weights of the corresponding sensors and
vertical bars (c) indicate negative weights. (a) Shows the floor plan of the lab, where the numbers indicate
the sensor locations. (b) Shows the distribution of the most dominant trend, which is more or less uniform.
This suggests that all the sensors follow the same pattern over time, which is the daily periodic trend (see
Fig. 7 for more discussion) (c) shows the second most dominant trend, which gives the negative weights to
the bottom left corner and positive weights to the rest. It indicates relatively low humidity and temperature
measurements because of the vicinity to the A/C
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Table 1 SENSOR type correlation

Sensor-type Voltage Humidity Temperature Light-intensity

Concept 1 .16 −.15 .28 .94
Concept 2 .6 .79 .12 .01

6.1 Mining case-studies

Here, we illustrate how 2-heads can reveal interesting spatial and temporal correlations
in sensor data.

Spatial correlations: The SENSOR dataset consists of two spatial aspects, namely,
the location and sensor types. Interesting patterns are revealed on both aspects.

For the location aspect, the most dominant trend is scattered uniformly across all
locations. As shown in Fig. 6b, the weights (the vertical bars) on all locations have about
the same height. For sensor type aspect, the dominant trend is shown as the 1st concept
in Table 1. It indicates (1) the positive correlation among temperature, light intensity
and voltage level and (2) negative correlation between humidity and the rest. This cor-
responds to the regular daily periodic pattern: During the day, temperature and light
intensity go up but humidity drops because the A/C is on. During the night, tempera-
ture and light intensity drop but humidity increases because A/C is off. The voltage is
always positively correlated with the temperature due to the design of MICA2 sensors.

The second strongest trend is shown in Fig. 6c and the 2nd concept in Table 1 for
the location and type aspects, respectively. The vertical bars on Fig. 6c indicate neg-
ative weights on a few locations close to A/C (mainly at the bottom and left part of
the room). This affects the humidity and temperature patterns at those locations. In
particular, the 2nd concept has a strong emphasis on humidity and temperature (see
the 2nd concept in Table 1).

Temporal correlations: Temporal correlation can be best described by frequency-
based methods such as wavelets. 2-Heads provides a way to capture the global temporal
correlation that traditional wavelets cannot capture.

Figure 7a shows the strongest tensor core stream of the SENSOR dataset for the
first 500 timestamps and its scalogram of the wavelet coefficients. Large wavelet coef-
ficients (indicated by the dark color) concentrate on low frequency part (levels 1–3),
which correspond to the daily periodic trend in the normal operation.

Figure 7b shows the strongest tensor core stream of the SENSOR dataset for the last
500 timestamps and its corresponding scalogram. Notice large coefficients penetrate
all frequency levels from 300 to 350 timestamps due to the erroneous sensor readings
caused by low battery level of several sensors.

Summary: In general, 2-heads provides an effective and intuitive method to identify
both spatial and temporal correlation, which no traditional methods including Tucker
and wavelet can do by themselves. Furthermore, 2-heads can track the correlations
over time. All the above examples confirmed the great value of 2-heads for mining
real-world, high-order data streams.
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Fig. 7 SENSOR time-frequency break-down on the dominant components. Notice that the scalogram of
(a) only has the low-frequency components (dark color); but the scalogram of (b) has frequency penetration
from 300 to 340 due to the sudden shift. Note that dark color indicates high value of the corresponding
coefficient

6.2 Quantitative evaluation

In this section, we quantitatively evaluate the proposed methods in both space and
CPU cost.

Performance metrics: We use the following three metrics to quantify the mining
performance:

1. Approximation accuracy: This is the key metric that we use to evaluate the quality
of the approximation. It is defined as: accuracy = 1− relative SSE, where relative
SSE (sum of squared error) is defined as ‖D− D̂‖2/‖D‖2.

2. Space ratio: We use this metric to quantify the required space usage. It is defined
as the ratio of the size of the approximation D̂ and that of the original data D.
Note that the approximation D̂ is stored in the factorized forms, e.g., Tucker form
including core and projection matrices.

3. CPU time: We use the CPU time spent in computation as the metric to quantify the
computational expense. All experiments were performed on the same dedicated
server with four 2.4 GHz Xeon CPUs and 48 GB memory.

Method parameters: Two parameters affect the quantitative measurements of all the
methods:

1. window size is the scope of the model in time. For example, window size = 500
means that a model will be built and maintained for most recent 500 time-stamps.

2. step size is the number of time-stamps elapsed before a new model is constructed.

Methods for comparison: We compare the following four methods:

1. Tucker: It performs Tucker2 decomposition (Tucker 1966) on spatial aspects
only.
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Fig. 8 (a) (Step size is 20% window size): but (dynamic) 2-heads is faster than Tucker and is similar to
wavelet. However, 2-heads reveals much more patterns than wavelet and Tucker without incurring compu-
tational penalty. (b) Step Size versus CPU time: (window size 500) Dynamic 2-heads requires much less
computational time than Static 2-heads. (c) Space versus Accuracy: 2-heads and wavelet requires much
smaller space to achieve high accuracy (e.g., 99%) than Tucker, which indicates the importance temporal
aspect. 2-Heads is slightly better than wavelet because it captures both spatial and temporal correlations.
Wavelet and Tucker only provide partial view of the data

2. Wavelets: It performs Daubechies-4 compression on every stream. For example,
54×4 wavelet transforms are performed on SENSOR dataset since it has 54×4
stream pairs in SENSOR.

3. Static 2-heads: It is one of the proposed method in the paper. It uses Tucker2 on
spatial aspects and wavelet on temporal aspect. The computational cost is similar
to the sum of Tucker and wavelet methods.

4. Dynamic 2-heads: It is the main practical contribution of this paper, due to handling
efficiently the Dynamic 2-heads Tensor Mining Problem.

Computational efficiency: As mentioned above, computation time can be affected by
two parameters: window size and step size.

In general, the CPU time increases linearly with the window size as shown in Fig. 8a.
Wavelets are faster than Tucker, because wavelets perform on individual streams,

while Tucker operates on all streams simultaneously. The cost of Static 2-heads is
roughly the sum of wavelets and Tucker decomposition, which we omit from Fig. 8a.
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Dynamic 2-heads performs the same functionality as Static 2-heads. But, it is as
fast as wavelets by exploiting the computational trick which avoids the computational
penalty that static-2-heads has.

The computational cost of Dynamic 2-heads increases as the step size, because the
overlapping portion between two consecutive tensor windows decreases. Despite that,
for all different step sizes, dynamic-2-heads requires much less CPU time as shown
in Fig. 8b.

Space efficiency: The space requirement can be affected by two parameters: approx-
imation accuracy and window size. For all methods, Static and Dynamic 2-heads give
comparable results; therefore, we omit Static 2-heads in the following figures.

Remember the fundamental trade-off between the space utilization and approxi-
mation accuracy. For all the methods, the more space, the better the approximation.
However, the scope between space and accuracy varies across different methods.
Figure 8c illustrates the accuracy as a function of space ratio for both datasets.

2-Heads achieves very good compression ratio and it also reveals spatial and tem-
poral patterns as shown in the previous section.

Tucker captures spatial correlation but does not give a good compression since the
redundancy is mainly in the time aspect. Tucker method does not provide a smooth
increasing curve as space ratio increases. First, the curve is not smooth because Tucker
can only add or drop one component/column including multiple coefficients at a time
unlike 2-heads and wavelets which allow to drop one coefficient at a time. Second,
the curve is not strictly increasing because there are multiple aspects, different con-
figurations with similar space requirement can lead to very different accuracy.

Wavelets give a good compression but do not reveal any spatial correlation. Fur-
thermore, the summarization is done on each stream, which does not lead to global
patterns such as the ones shown in Fig. 7.

Summary: Dynamic 2-heads is efficient in both space utilization and CPU time com-
pared to all other methods including Tucker, wavelets and Static 2-heads. Dynamic
2-heads is a powerful mining tool combining only strong points from well-studied
methods while at the same time being computationally efficient and applicable to
real-world situations where data arrive constantly.

7 Conclusions

We focus on mining of time-evolving streams, when they are associated with multiple
aspects, like sensor-type (temperature, humidity), and sensor-location (indoor, on-the-
window, outdoor). The main difference from previous and our proposed analysis is
that the time aspect needs special treatment, which traditional “one size fit all” type
of tensor analysis ignores. Our proposed approach, 2-heads, addresses exactly this
problem, by applying the most suitable models to each aspect: wavelet-like for time,
and PCA/tensor-like for the categorical-valued aspects.

2-Heads has the following key properties:

– Mining patterns: By combining the advantages of existing methods, it is able to
reveal interesting spatio-temporal patterns.
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– Multi-model summarization: It engages multiple summarization schemes on multi-
aspects streams, which gives us a more powerful view to study high-order data that
traditional models cannot achieve.

– Error guarantees: We proved that it can accurately (and quickly) measure approx-
imation error, using the orthogonality property of the models.

– Streaming capability: 2-Heads is fast, incremental and scalable for the streaming
environment.

– Space efficiency: It provides an accurate approximation which achieves very high
compression ratios—namely, over 20:1 ratio on the real-world datasets we used in
our experiments.

Finally, we illustrated the mining power of 2-heads through two case studies on
real world datasets. We also demonstrated its scalability through extensive quantita-
tive experiments. Future work includes exploiting alternative methods for categorical
aspects, such as nonnegative matrix factorization.
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