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Thank you!

• Charlie Van Loan

• Lenore Mullin

• Frank Olken
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Outline

• Introduction – Motivation

• Problem#1: Patterns in static graphs

• Problem#2: Patterns in tensors / time 

evolving graphs

• Problem#3: Which tensor tools?

• Problem#4: Scalability

• Conclusions
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: What tools to use?

• Problem#4: Scalability to GB, TB, PB?

NSF tensors 2009 C. Faloutsos 5

CMU SCS

Graphs - why should we care?

Internet Map 
[lumeta.com]

Food Web 
[Martinez ’91]

Protein Interactions 
[genomebiology.com]

Friendship Network 
[Moody ’01]
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Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

D1

DN

T1

TM

... ...



Faloutsos

3

NSF tensors 2009 C. Faloutsos 7

CMU SCS

Graphs - why should we care?

• network of companies & board-of-directors 

members

• ‘viral’ marketing

• web-log (‘blog’) news propagation

• computer network security: email/IP traffic 

and anomaly detection

• ....
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Outline

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

– Degree distributions

– Eigenvalues

– Triangles

– weights

• Problem#2: How do they evolve?

• …
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Problem #1 - network and graph 

mining

• How does the Internet look like?

• How does the web look like?

• What is ‘normal’/‘abnormal’?

• which patterns/laws hold?
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Graph mining

• Are real graphs random?
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Laws and patterns

• Are real graphs random?

• A: NO!!

– Diameter

– in- and out- degree distributions

– other (surprising) patterns
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Solution#1.1

• Power law in the degree distribution 

[SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com
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Solution#1.2: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency 
matrix

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001
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Solution#1.2: Eigen Exponent E

• [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001
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But:

How about graphs from other domains?
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The Peer-to-Peer Topology

• Count versus degree 

• Number of adjacent peers follows a power-law

[Jovanovic+]
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More settings w/ power laws:

citation counts: (citeseer.nj.nec.com 6/2001)

1

10

100

100 1000 10000

lo
g
 c

o
u
n
t

log # citations

’cited.pdf’

log(#citations)

log(count)

Ullman
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More power laws:

• web hit counts [w/ A. Montgomery]

Web Site Traffic

log(in-degree)

log(count)

Zipf

users
sites

``ebay’’
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epinions.com

• who-trusts-whom 

[Richardson + 

Domingos, KDD 

2001]

(out) degree

count

trusts-2000-people user
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Outline

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

– Degree distributions

– Eigenvalues

– Triangles

– weights

• Problem#2: How do they evolve?

• …
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How about triangles?
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Solution# 1.3: Triangle ‘Laws’

• Real social networks have a lot of triangles 
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Triangle ‘Laws’

• Real social networks have a lot of triangles

– Friends of friends are friends 

• Any patterns?
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Triangle Law: #1 
[Tsourakakis ICDM 2008]

1-24

ASNHEP-TH

Epinions X-axis: # of Triangles

a node participates in

Y-axis: count of such nodes
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Triangle Law: #2 
[Tsourakakis ICDM 2008]

1-25

SNReuters

Epinions
X-axis: degree

Y-axis: mean # triangles

Notice: slope ~ degree

exponent (insets)
CIKM’08 Copyright: Faloutsos, Tong (2008)

NSF tensors 2009 C. Faloutsos 26

CMU SCS

Triangle Law: Computations 
[Tsourakakis ICDM 2008]

1-26CIKM’08

But: triangles are expensive to compute

(3-way join; several approx. algos)

Q: Can we do that quickly?
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Triangle Law: Computations 
[Tsourakakis ICDM 2008]

1-27CIKM’08

But: triangles are expensive to compute

(3-way join; several approx. algos)

Q: Can we do that quickly?

A: Yes!

#triangles = 1/6 Sum ( λλλλi
3 )

(and, because of skewness, we only need 

the top few eigenvalues!
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Triangle Law: Computations 
[Tsourakakis ICDM 2008]

1-28CIKM’08

1000x+ speed-up, high accuracy
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Outline

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

– Degree distributions

– Eigenvalues

– Triangles

– weights

• Problem#2: How do they evolve?

• …
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How about weighted graphs?

• A: even more ‘laws’!
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Solution#1.4: fortification

Q: How do the weights 

of nodes relate to degree?
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CIKM’08 Copyright: Faloutsos, Tong (2008)

Solution#1.4: fortification:

Snapshot Power Law
• At any time, total incoming weight of a node is 

proportional to in-degree with PL exponent ‘iw’:

– i.e. 1.01 < iw < 1.26, super-linear

• More donors, even more $

Edges (# donors)

In-weights
($)

Orgs-Candidates

e.g. John Kerry, 
$10M received,
from 1K donors

1-32
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

– Diameter

– GCC, and NLCC

– Blogs, linking times, cascades

• Problem#3: Tensor tools?

• …
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Problem#2: Time evolution

• with Jure Leskovec 

(CMU/MLD)

• and Jon Kleinberg (Cornell –

sabb. @ CMU)
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Evolution of the Diameter

• Prior work on Power Law graphs hints 

at slowly growing diameter:

– diameter ~ O(log N)

– diameter ~ O(log log N)

• What is happening in real data?
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Evolution of the Diameter

• Prior work on Power Law graphs hints 

at slowly growing diameter:

– diameter ~ O(log N)

– diameter ~ O(log log N)

• What is happening in real data?

• Diameter shrinks over time
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Diameter – ArXiv citation graph

• Citations among 

physics papers   

• 1992 –2003

• One graph per 

year

time [years]

diameter
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Diameter – “Autonomous 

Systems”

• Graph of Internet

• One graph per 

day 

• 1997 – 2000

number of nodes

diameter
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Diameter – “Affiliation Network”

• Graph of 

collaborations in 

physics – authors 

linked to papers

• 10 years of data

time [years]

diameter
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Diameter – “Patents”

• Patent citation 

network

• 25 years of data

time [years]

diameter
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Temporal Evolution of the Graphs

• N(t) … nodes at time t

• E(t) … edges at time t

• Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? 2 * E(t)
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Temporal Evolution of the Graphs

• N(t) … nodes at time t

• E(t) … edges at time t

• Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? 2 * E(t)

• A: over-doubled!

– But obeying the ``Densification Power Law’’
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

??
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

1.69
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

1.69

1: tree
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

1.69clique: 2

NSF tensors 2009 C. Faloutsos 47

CMU SCS

Densification – Patent Citations

• Citations among 

patents granted

• 1999

– 2.9 million nodes

– 16.5 million 

edges

• Each year is a 

datapoint N(t)

E(t)

1.66
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Densification – Autonomous Systems

• Graph of 

Internet

• 2000

– 6,000 nodes

– 26,000 edges

• One graph per 

day

N(t)

E(t)

1.18
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Densification – Affiliation 

Network

• Authors linked 

to their 

publications

• 2002

– 60,000 nodes

• 20,000 authors

• 38,000 papers

– 133,000 edges
N(t)

E(t)

1.15
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

– Diameter

– GCC, and NLCC

– Blogs, linking times, cascades

• Problem#3: Tensor tools?

• …
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More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos 

Weighted Graphs and Disconnected 

Components: Patterns and a Generator.

SIG-KDD 2008 
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Observation 1: Gelling Point

Q1: How does the GCC emerge?
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Observation 1: Gelling Point

• Most real graphs display a gelling point

• After gelling point, they exhibit typical behavior.  This 

is marked by a spike in diameter.

Time

Diameter

IMDB

t=1914
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Observation 2: NLCC behavior

Q2: How do NLCC’s emerge and join with 

the GCC?

(``NLCC’’ = non-largest conn. components)

– Do they continue to grow in size?

– or do they shrink?

– or stabilize?
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Observation 2: NLCC behavior

• After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate).

IMDB

CC size
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How do new edges appear?

[LBKT’08] Microscopic Evolution of 

Social Networks

Jure Leskovec, Lars Backstrom, Ravi 

Kumar, Andrew Tomkins. 

(ACM KDD), 2008.
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Edge gap δ(d): 
inter-arrival 
time between 
dth and d+1st

edge

How do edges appear in time?

[LBKT’08]

δδδδ

What is the PDF of δ?δ?δ?δ?
Poisson?
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CIKM’08 Copyright: Faloutsos, Tong (2008)

)()(),);(( d

g eddp
βδαδβαδ −−∝

Edge gap δ(d): 
inter-arrival 
time between 
dth and d+1st

edge

LinkedIn

1-58

How do edges appear in time?

[LBKT’08]
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

– Diameter

– GCC, and NLCC

– linking times, blogs, cascades

• Problem#3: Tensor tools?

• …
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Blog analysis

• with Mary McGlohon (CMU)

• Jure Leskovec (CMU)

• Natalie Glance (now at Google)

• Mat Hurst (now at MSR)

[SDM’07]
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Cascades on the Blogosphere

B1 B2

B4
B3

a

b c

d

e
1

B1 B2

B4
B3

1

1

2

3

1

Blogosphere
blogs + posts

Blog network
links among blogs

Post network
links among posts

Q1: popularity-decay of a post?

Q2: degree distributions?
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Q1: popularity over time

Days after post

Post popularity drops-off – exponentially?

days after post

# in links

1 2 3
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Q1: popularity over time

Days after post

Post popularity drops-off – exponentially?

POWER LAW!

Exponent?

# in links
(log)

1 2 3 days after post
(log)



Faloutsos

22

NSF tensors 2009 C. Faloutsos 64

CMU SCS

Q1: popularity over time

Days after post

Post popularity drops-off – exponentially?

POWER LAW!

Exponent? -1.6 (close to -1.5: Barabasi’s stack model) 

# in links
(log)

1 2 3

-1.6

days after post
(log)
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Q2: degree distribution

44,356 nodes, 122,153 edges.  Half of blogs belong to 
largest connected component.

blog in-degree

count

B

1

B

2

B

4

B

3

1
1

2

3

1

??
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Q2: degree distribution

44,356 nodes, 122,153 edges.  Half of blogs belong to 
largest connected component.

blog in-degree

count

B

1

B

2

B

4

B

3

1
1

2

3

1
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Q2: degree distribution

44,356 nodes, 122,153 edges.  Half of blogs belong to 
largest connected component.

blog in-degree

count

in-degree slope: -1.7

out-degree: -3

‘rich get richer’
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: What tools to use?

– PARAFAC/Tucker, CUR, MDL

– generation: Kronecker graphs

• Problem#4: Scalability to GB, TB, PB?
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Tensors for time evolving graphs

• [Jimeng Sun+ 

KDD’06]

• [    “ ,  SDM’07]

• [ CF, Kolda, Sun, 

SDM’07 tutorial]
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Social network analysis

• Static: find community structures 

DB

A
u
th

o
r s

Keywords
1990
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Social network analysis

• Static: find community structures 

DB

A
u
th

o
r s

1990
1991

1992
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Social network analysis

• Static: find community structures 

• Dynamic: monitor community structure evolution; 

spot abnormal individuals; abnormal time-stamps

DB

A
u

th
o

rs

Keywords

DM

DB

1990

2004
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DB

DM

Application 1: Multiway latent 

semantic indexing (LSI)

DB

2004

1990
Michael 

Stonebraker

QueryPattern

Ukeyword

a
u

th
o

rs

keyword

U
a

u
th

o
rs

• Projection matrices specify the clusters

• Core tensors give cluster activation level

Philip Yu
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Bibliographic data (DBLP)

• Papers from VLDB and KDD conferences

• Construct 2nd order tensors with yearly 
windows with <author, keywords> 

• Each tensor: 4584×3741

• 11 timestamps (years)
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Multiway LSI

2004

2004

1995

Year

streams,pattern,support, cluster, 

index,gener,queri

jiawei han,jian pei,philip s. yu,

jianyong wang,charu c. aggarwal

distribut,systems,view,storage,servic,pr

ocess,cache

surajit chaudhuri,mitch

cherniack,michael

stonebraker,ugur etintemel

queri,parallel,optimization,concurr,

objectorient

michael carey, michael

stonebraker, h. jagadish,

hector garcia-molina

KeywordsAuthors

• Two groups are correctly identified: Databases and Data 
mining

• People and concepts are drifting over time

DM

DB
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Network forensics

• Directional network flows

• A large ISP with 100 POPs, each POP 10Gbps link 

capacity [Hotnets2004]

– 450 GB/hour with compression

• Task: Identify abnormal traffic pattern and find out the 

cause

100 200 300 400 500
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d
e
s
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n
a
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o
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normal trafficabnormal traffic

d
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n
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source
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n
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n

source
(with Prof. Hui Zhang, Dr. Jimeng Sun, Dr. Yinglian Xie)
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Network forensics

• Reconstruction error gives indication of anomalies.

• Prominent difference between normal and abnormal ones is 
mainly due to the unusual scanning activity (confirmed by the 
campus admin).

200 400 600 800 1000 1200
0

10

20

30

40

50

hours

e
rr

o
r

Reconstruction error 
over time
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Abnormal traffic
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MDL mining on time-evolving graph 

(Enron emails)

GraphScope [w. Jimeng Sun, 
Spiros Papadimitriou and Philip Yu, KDD’07]
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: What tools to use?

– PARAFAC/Tucker, CUR, MDL

– generation: Kronecker graphs

• Problem#4: Scalability to GB, TB, PB?
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Problem#3: Tools - Generation

• Given a growing graph with count of nodes N1, 

N2, …

• Generate a realistic sequence of graphs that will 

obey all the patterns
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Problem Definition

• Given a growing graph with count of nodes N1, 
N2, …

• Generate a realistic sequence of graphs that will 
obey all the patterns 

– Static Patterns
Power Law Degree Distribution

Power Law eigenvalue and eigenvector distribution

Small Diameter

– Dynamic Patterns
Growth Power Law

Shrinking/Stabilizing Diameters
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Problem Definition

• Given a growing graph with count of nodes 

N1, N2, …

• Generate a realistic sequence of graphs that 

will obey all the patterns

• Idea: Self-similarity

– Leads to power laws

– Communities within communities

– …
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Adjacency matrix

Kronecker Product – a Graph

Intermediate stage

Adjacency matrix

NSF tensors 2009 C. Faloutsos 84

CMU SCS

Kronecker Product – a Graph

• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Kronecker Product – a Graph

• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Kronecker Product – a Graph

• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Properties:

• We can PROVE that

– Degree distribution is multinomial ~ power law

– Diameter: constant

– Eigenvalue distribution: multinomial

– First eigenvector: multinomial

• See [Leskovec+, PKDD’05] for proofs
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Problem Definition

• Given a growing graph with nodes N1, N2, …

• Generate a realistic sequence of graphs that will obey all 

the patterns 

– Static Patterns

Power Law Degree Distribution

Power Law eigenvalue and eigenvector distribution

Small Diameter

– Dynamic Patterns

Growth Power Law

Shrinking/Stabilizing Diameters

• First and only generator for which we can prove

all these properties

����

����
����

����
����
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Stochastic Kronecker Graphs

• Create N1×N1 probability matrix P1

• Compute the kth Kronecker power Pk

• For each entry puv of Pk include an edge 

(u,v) with probability puv

0.30.1

0.20.4

P1

Instance 

Matrix G2
0.090.030.030.01

0.060.120.020.04

0.060.020.120.04

0.040.080.080.16

Pk

flip biased

coins

Kronecker

multiplication

skip
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Experiments

• How well can we match real graphs?

– Arxiv: physics citations:

• 30,000 papers, 350,000 citations

• 10 years of data

– U.S. Patent citation network

• 4 million patents, 16 million citations

• 37 years of data

– Autonomous systems – graph of internet

• Single snapshot from January 2002

• 6,400 nodes, 26,000 edges

• We show both static and temporal patterns
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(Q: how to fit the parm’s?)

A:

• Stochastic version of Kronecker graphs +

• Max likelihood  +

• Metropolis sampling

• [Leskovec+, ICML’07]
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Experiments on real AS graph
Degree distribution Hop plot

Network valueAdjacency matrix eigen values

NSF tensors 2009 C. Faloutsos 93

CMU SCS

Conclusions

• Kronecker graphs have:

– All the static properties 

Heavy tailed degree distributions

Small diameter

Multinomial eigenvalues and eigenvectors

– All the temporal properties

Densification Power Law

Shrinking/Stabilizing Diameters

– We can formally prove these results

����

����

����

����

����
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How to generate realistic tensors?

• A: ‘RTM’ [Akoglu+, ICDM’08]

– do a tensor-tensor Kronecker product

– resulting tensors (= time evolving graphs) have 

bursty addition of edges, over time.
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: What tools to use?

• Problem#4: Scalability to GB, TB, PB?
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Scalability

• How about if graph/tensor does not fit in 

core?

• How about handling huge graphs?
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Scalability

• How about if graph/tensor does not fit in 

core?

• [‘MET’: Kolda, Sun, ICMD’08, best paper 

award]

• How about handling huge graphs?
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Scalability

• Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 

a Planet: The Google Cluster Architecture” IEEE Micro 

2003]

• Yahoo: 5Pb of data [Fayyad, KDD’07]

• Problem: machine failures, on a daily basis

• How to parallelize data mining tasks, then?

• A: map/reduce – hadoop (open-source clone)  
http://hadoop.apache.org/
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2’ intro to hadoop

• master-slave architecture; n-way replication 
(default n=3)

• ‘group by’ of SQL (in parallel, fault-tolerant way)

• e.g, find histogram of word frequency

– compute local histograms

– then merge into global histogram

select course-id, count(*)

from ENROLLMENT

group by course-id
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2’ intro to hadoop

• master-slave architecture; n-way replication 
(default n=3)

• ‘group by’ of SQL (in parallel, fault-tolerant way)

• e.g, find histogram of word frequency

– compute local histograms

– then merge into global histogram

select course-id, count(*)

from ENROLLMENT

group by course-id map

reduce
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User

Program

Reducer

Reducer

Master

Mapper

Mapper

Mapper

fork fork fork

assign

map
assign

reduce

read
local

write

remote read,

sort

Output

File 0

Output

File 1

write

Split 0

Split 1

Split 2

Input Data

(on HDFS)

By default: 3-way replication;

Late/dead machines: ignored, transparently (!)
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D.I.S.C. 

• ‘Data Intensive Scientific Computing’ [R. 

Bryant, CMU]

– ‘big data’

– http://www.cs.cmu.edu/~bryant/pubdir/cmu-
cs-07-128.pdf
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E.g.: self-*  and DCO systems @ CMU

• >200 nodes

• target: 1 PetaByte

• Greg Ganger +:

– www.pdl.cmu.edu/SelfStar

– www.pdl.cmu.edu/DCO
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OVERALL CONCLUSIONS

• Graphs/tensors pose a wealth of fascinating 
problems

• self-similarity and power laws work, when 
textbook methods fail!

• New patterns (densification, fortification, -
1.5 slope in blog popularity over time

• New generator: Kronecker

• Scalability / cloud computing -> PetaBytes
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