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Thank you!

¢ Charlie Van Loan

¢ Lenore Mullin

¢ Frank Olken
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Outline

¢ Introduction — Motivation
e Problem#1: Patterns in static graphs

Problem#2: Patterns in tensors / time
evolving graphs

Problem#3: Which tensor tools?
Problem#4: Scalability

¢ Conclusions
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Motivation

m Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
* Problem#2: How do they evolve?
* Problem#3: What tools to use?
* Problem#4: Scalability to GB, TB, PB?
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Graphs - why should we care?

Internet Map Food Web
... Jlumeta.coml [Martinez '91]

Friendship Network Protein Interactions
[Moody '01] [genomebiology.com]
NSF tensors 2009 C. Faloutsos 5
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Graphs - why should we care?

* IR: bi-partite graphs (doc-terms) b
1 o

Dy

Ty
* web: hyper-text graph

e ... and more:
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Graphs - why should we care?

* network of companies & board-of-directors
members

e ‘viral’ marketing

* web-log (‘blog’) news propagation

e computer network security: email/IP traffic
and anomaly detection
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Outline

Data mining: ~ find patterns (rules, outliers)
m) ° Problem#1: How do real graphs look like?
— Degree distributions
— Eigenvalues
— Triangles
— weights
* Problem#2: How do they evolve?
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Problem #1 - network and graph
mining

How does the Internet look like?

How does the web look like?

What is ‘normal’/‘abnormal’?
which patterns/laws hold?

NSF tensors 2009 C. Faloutsos 9
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Graph mining

* Are real graphs random?

C. Faloutsos

NSF tensors 2009
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Laws and patterns

* Are real graphs random?

* A:NO!!
— Diameter
— in- and out- degree distributions

— other (surprising) patterns

C. Faloutsos

NSF tensors 2009

’g CMUSCS
Solution#1.1

* Power law in the degree distribution
[SIGCOMM99]

internet domains

‘‘‘‘‘

log(degree) Y,
ibm.com

C. Faloutsos
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Solution#1.2: Eigen Exponent E

Eigenvalue

PaOragor -
exp(4.3031) “X™(-0.47734) ——

Exponent = slope

E=-048

May 2001

1 10 100

Rank of decreasing eigenvalue

e A2: power law in the eigenvalues of the adjacency
matrix
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Solution#1.2: Eigen Exponent E

Eigenvalue
100

ProEgr -
exp(4.3031) X" (DATTH) ——

Exponent = slope

E=-048

May 2001

1 10 100

Rank of decreasing eigenvalue

* [Mihail, Papadimitriou *02]: slope is %2 of rank
exponent
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But:

How about graphs from other domains?

NSF tensors 2009 C. Faloutsos
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The Peer-to-Peer Topology

[Jovanovic+]

W Cl

o =
{a) Gutella snapshot from Dec. 28, 2000 (1{=0.94)

¢ Count versus degree

¢ Number of adjacent peers follows a power-law
NSF tensors 2009 C. Faloutsos 16
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More settings w/ power laws:

citation counts: (citeseer.nj.nec.com 6/2001)

log(count)

llman

N~ o

. " log(#citations)
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More power laws:

* web hit counts [w/ A. Montgomery]

o

Web Site Traffic

log(count)

i1 \zipf °
% y A\ ~ ebay’ B o
° \ users

/ sites

e oo in degree)

NSF tensors 2009 C. Faloutsos 18
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epinions.com
¢ who-trusts-whom
count [Richardson +
100000 .
g Domingos, KDD
I 2001]
_ oo
g 100
" : 2000 1
e trusts- -people user
: = T peop
1 0 W o tom
Qut-degree.
(out) degree
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Outline

Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
— Degree distributions

— Eigenvalues
m) - Triangles
— weights
* Problem#2: How do they evolve?
O oo
NSF tensors 2009 C. Faloutsos 20
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How about triangles?

NSF tensors 2009 C. Faloutsos 21
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Solution# 1.3: Triangle ‘Laws’

* Real social networks have a lot of triangles

22

C. Faloutsos

NSF tensors 2009

CMU SCS

A
=0

Triangle ‘Laws’
* Real social networks have a lot of triangles

— Friends of friends are friends

* Any patterns?

23

C. Faloutsos
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Triangle Law: #1
[Tsourakakis ICDM 2008]

HEP-TH % \ ASN
R

10" =)

'
10

Epinions .
1o l\

X-axis: # of Triangles

a node participates in
Y-axis: count of such nodes

124

NSFtc 10"
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Triangle Law: #2
[Tsourakakis ICDM 2008]

DTPL DTPL

X-axis: degree

Y-axis: mean # triangles
Notice: slope ~ degree
exponent (insets)
[R5 PE Copyright: FalddRts Fong (2008) 125

Epinions}
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Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

NEENERTs 2009 C. Faloutsos 126

’g CMUSCS

Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!
#triangles = 1/6 Sum ( A;3)
(and, because of skewness, we only need
the top few eigenvalues!

NEENERrs 2009 C. Faloutsos 127
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Triangle Law: Computations

[Tsourakakis ICDM 2008]
Wikipedia graph 2006-Nov-o4
~ 3,IM nodes ~ 37M edges

100
(1021x, 97.4%)

8
~ e
I (1277%, 94.7%)
I
X 96 e 1
2 /
o Tk
3 94 ]
< “~
< (1320%, 92.8%) — %

92 1

1300 1050 1100 1150 1200 1250 1300 1350

peedup
1000x+ speed-up, high accuracy
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Outline

Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
— Degree distributions
— Eigenvalues
— Triangles
=)  — weights
* Problem#2: How do they evolve?

NSF tensors 2009 C. Faloutsos 29
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How about weighted graphs?

¢ A:even more ‘laws’!

NSF tensors 2009 C. Faloutsos 30
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Solution#1.4: fortification
Q: How do the weights
of nodes relate to degree?
NSF tensors 2009 C. Faloutsos 31
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Solution#1.4: fortification:
Snapshot Power Law

¢ At any time, total incoming weight of a node is

proportional to in-degree with PL exponent ‘iw’:

— ie. 1.01 <iw < 1.26, super-linear

* More donors, even more $ Orgs-Candidates

e.g. John Kerry,
$10M received,
from 1K donors

In-weights

%)

‘Edges (# dénofs)

NEENERSrs 2009 Copyright: EaFaitsutséFong (2008) 132
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Motivation

Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
m) * Problem#2: How do they evolve?

— Diameter
— GCC, and NLCC
— Blogs, linking times, cascades

¢ Problem#3: Tensor tools?

NSF tensors 2009 C. Faloutsos 33
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¢ with Jure Leskovec
(CMU/MLD)

Problem#2: Time evolution

LS

and Jon Kleinberg (Cornell —
sabb. @ CMU)

NSF tensors 2009 C. Faloutsos
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Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:
— diameter ~ O(log N)
— diameter ~ O(log log N)
* What is happening in real data?

C. Faloutsos

NSF tensors 2009
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Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly gro diameter:
— diameter ~

— diameter ~ O
* What is happening in real data?

¢ Diameter shrinks over time

g N)

NSF tensors 2009 C. Faloutsos
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» Citations among
physics papers

* 1992 -2003

* One graph per
year

Diameter — ArXiv citation graph

1w diameter
—=—Full graph
-e-Post "95 subgraph
9 ~--Post '95 subgraph, no past

Effective diameter
~

6
5
4
1992 1994 1996 1998 2000 2002 2004
time [years]
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¢ Graph of Internet

* One graph per
day

* 1997 - 2000

NSF tensors 2009

Diameter - ‘“Autonomous
Systems”

"
diameter

=
o

b
=3

i
o

Effective diameter

e
%)

3000 3500 4000 4500 5000 5500 6000 6500)
number of nodes

C. Faloutsos 38
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* Graph of
collaborations in
physics — authors
linked to papers

* 10 years of data

NSF tensors 2009

Diameter — “Affiliation Network”

127 s
diameter =g
11 R -&-Post '95 subgraph
' -—4--Post '95 subgraph, no past
10 .
S
E 9
s
2 8
2
=
e 7
i}
6
5

4
1992 1994 1996 1998 2000 2002

time [years]
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Diameter — “Patents”
ot »¢ diameter ——Full graph
» Patent citation ~e-Post 8% subgraph
network 30 —~Post '85 subgraph, no past

e 25 years of data

NSF tensors 2009 C. Faloutsos 40
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Effective diameter

1%75 1980 1985 1990 1995 2000
time [years]
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Temporal Evolution of the Graphs

e N(t) ... nodes at time t

e E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

* Q: what is your guess for
E(t+1) =2 2 * E(t)

NSF tensors 2009 C. Faloutsos 41
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Temporal Evolution of the Graphs

N(t) ... nodes at time t
E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

¢ Q: what is your guess for
E(t+1) E(t)

e A: over-doubled!

— But obeying the “*Densification Power Law’’
NSF tensors 2009 C. Faloutsos 42

14



Faloutsos

/|
Iy

i

CMUSCS

;
¢

Densification — Physics Citations

¢ Citations among

physics papers  E(t)

e 2003:
— 29,555 papers,
352,807
citations

NSF tensors 2009

10°

10°

Number of edges
3,

Jan 1993

+ Edges

. —:DG113le2:1D

10
2 B n
10 10 10
Number of nodes N (t)
C. Faloutsos 43
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Densification — Physics Citations

« Citations among
physics papers  E(t)
10°

e 2003:
— 29,555 papers,
352,807
citations

NSF tensors 2009

Number of edges
3,

Apr 2003

1.69

10 o
Jan 1993
+ Edges
s —=00113x"¥R%=10
10 - 5
10° 10° * 10°
Number of nodes N (t)
C. Faloutsos 44
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Densification — Physics Citations

¢ Citations among
physics papers  E(t)
e 2003: e
g
- 29,555 papers, %
352,807 2w
citations 5 1: tree
10° 5
Jan 1993
+ Edges
,
1075 - 5 s
1 WNumberofnodesm N(t) 0
NSF tensors 2009 C. Faloutsos 45

15



Faloutsos

/|
Iy

CMUSCS

i

;
¢

¢ Citations among
physics papers
* 2003:
— 29,555 papers,
352,807
citations

NSF tensors 2009

Densification — Physics Citations

EQ)

10°

Number of edges
3,

clique: 2

Jan 1993

+ Edges
—=00113x"%R%*=10

C. Faloutsos

B n s
WNumberof nodesm N(t) 1

46
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 Citations among
patents granted

* 1999
— 2.9 million nodes
— 16.5 million

edges

e Each yearis a

datapoint

NSF tensors 2009

Densification — Patent Citations

10°

E(1)

—

55

Number of edges

3,

1999

1.66

ge + Edges
—=0.0002 x"® R?=0.99

C. Faloutsos

0 7
Numbe1rouf nodes N(t) "

47
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¢ Graph of
Internet

* 2000
— 6,000 nodes
— 26,000 edges

* One graph per
day

NSF tensors 2009

Densification — Autonomous Systems

E(t) 0%

o

Number of edges
S;

=l

- Edges
—=087x

118 R2=1 0o

C. Faloutsos

10% 10°7 10°°
Number of nodes N(t)

48
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Densification — Affiliation
Network

* Authors linked &
to their E(t),
. . 10
publications g
3
* 2002 5 101 1.15
— 60,000 nodes E
* 20,000 authors 1%
* 38,000 papers
~ 133,000 edges " G ”
umoerctroses” |1
NSF tensors 2009 C. Faloutsos 49
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Motivation

Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
* Problem#2: How do they evolve?

— Diameter

m - GCC, and NLCC

— Blogs, linking times, cascades
e Problem#3: Tensor tools?

NSF tensors 2009 C. Faloutsos 50
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More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos
Weighted Graphs and Disconnected
Components: Patterns and a Generator.
SIG-KDD 2008

NSF tensors 2009 C. Faloutsos 51
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Observation 1: Gelling Point
Q1: How does the GCC emerge?

NSF tensors 2009 C. Faloutsos 52
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Observation 1: Gelling Point

¢ Most real graphs display a gelling point
o After gelling point, they exhibit typical behavior. This
is marked by a spike in diameter.

IMDB

I - t=1914
NIM

Diameter

|

Time

C. Faloutsos

53
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Observation 2: NLCC behavior

Q2: How do NLCC’s emerge and join with
the GCC?

("NLCC’’ = non-largest conn. components)

—Do they continue to grow in size?

— or do they shrink?

— or stabilize?

54

NSF tensors 2009 C. Faloutsos
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Observation 2: NLCC behavior

* After the gelling point, the GCC takes off, but
NLCC’s remain ~constant (actually, oscillate).

55
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How do new edges appear?

[LBKT’08] Microscopic Evolution of

Social Networks
Jure Leskovec, Lars Backstrom, Ravi

Kumar, Andrew Tomkins.
(ACM KDD), 2008.

56

NSF tensors 2009 C. Faloutsos

& How do edges appear in time?
[LBKT’08]

Edge gap o(d):
inter-arrival
time between
d" and d+1*
edge

W R
)
What is the PDF of §?
Poisson?
NSF tensors 2009 C. Faloutsos 57
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i How do edges appear in time?
[LBKT’08]
10° T T Ed .
. ge gap &(d):
Z 10’ LG 4 inter-arrival
T 102 time between
z 1 dhand d+1¥
3 edge
S0tk -
8 10° | .
-6 | | “-P
e 10’ 102 10°
Gap, 8(1)
. -a ,—p6(d)
P, (8(d);, B) o< 8(d) “e P
g CMU SCS
} o)

Motivation

Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
* Problem#2: How do they evolve?
— Diameter
— GCC, and NLCC
q — linking times, blogs, cascades
* Problem#3: Tensor tools?

NSF tensors 2009 C. Faloutsos

59

’g CMUSCS
Blog analysis

* with Mary McGlohon (CMU)

* Jure Leskovec (CMU)

* Natalie Glance (now at Google)
* Mat Hurst (now at MSR)
[SDM’07]

NSF tensors 2009 C. Faloutsos 60
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Cascades on the Blogosphere
B, @ 1 a@—__
o— "« B By 1] B ° -
- ?}' e ./\K
2
o P de, @ ®
B:\° I/f&, 1C % B, Da .\' e® o
Post network

Blog network

links among blogs  links among posts

Blogosphere
blogs + posts

Q1: popularity-decay of a post?
Q2: degree distributions?

C. Faloutsos 61
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Q1: popularity over time

#in links ¥
!

T
1 2 3

days after post

Post popularity drops-off — exponentially?

NSF tensors 2009 C. Faloutsos
Days after post
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Q1: popularity over time

#in links
(log)

days after post
(log)

= Posts
—= 54190574 "B R7=1.00)

10l 5 ,
10 10

Post popularity drops-off — expor@ally?
POWER LAW!
Exponent?

NSF tensors 2009 C. Faloutsos
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Q1: popularity over time

#in links
(log)

—— days after post
on (log)

10

= Posts
—= 54190574 "

10 =
10

Post popularity drops-off — expor@ally?

POWER LAW!
Exponent? -1.6 (close to -1.5: Barabasi’s stack model)

C. Faloutsos
aloutsos Days after post

NSF tensors 2009
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™ Q2: degree distribution
44,356 nodes, 122,153 edges. Half of blogs belong to
largest connected component.

count

ﬂ:-.ﬂ

1

Eh 3
4 blog in-degree

65

??

C. Faloutsos

NSF tensors 2009

il Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to
largest connected component.

count

B' 3 100 w_..,@.m
10 10" 102 100 10t
blog in-degree

66

C. Faloutsos
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Q2: degree distribution

44,356 nodes, 122,153 edges. Half of blogs belong to
largest connected component.

count

in-degree slope: -1.7 ]
out-degree: -3 blog in-degree
‘rich get richer’

NSF tensors 2009 C. Faloutsos 67
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Motivation

Data mining: ~ find patterns (rules, outliers)
» Problem#1: How do real graphs look like?
* Problem#2: How do they evolve?

m) o Problem#3: What tools to use?
— PARAFAC/Tucker, CUR, MDL
— generation: Kronecker graphs

» Problem#4: Scalability to GB, TB, PB?

NSF tensors 2009 C. Faloutsos 68
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Tensors for time evolving graphs

¢ [Jimeng Sun+
KDD’06]

e[ “ , SDM’07]

¢ [ CF, Kolda, Sun,
SDM’07 tutorial]

NSF tensors 2009 C. Faloutsos 69
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Social network analysis

¢ Static: find community structures

Keywords
1990

NSF tensors 2009

A CMUSCS
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Social network analysis

e Static: find community structures

1992
1991
1990

NSF tensors 2009

’g CMUSCS

Social network analysis

¢ Static: find community structures
¢ Dynamic: monitor community structure evolution;
spot abnormal individuals; abnormal time-stamps

Keywords

2004

oM

DB,

b8 /
¥ -

1990

Authors

NSF tensors 2009
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[~ Application 1: Multiway latent
semantic indexing (LSI)

DM

19‘-90 :> 3

2004 I

Michael
Stonebraker

authors
N
s

keyword

* Projection matrices specify the clusters
 Core tensors give cluster activation level

NSF tensors 2009 C. Faloutsos 73

A CMUSCS
e

Bibliographic data (DBLP)

 Papers from VLDB and KDD conferences

 Construct 2nd order tensors with yearly
windows with <author, keywords>

» Each tensor: 4584x3741
e 11 timestamps (years)

NSF tensors 2009 C. Faloutsos 74

’g CMUSCS
Multiway LSI

Authors ‘ Keywords Year

michael carey, mldmd ueri,paralleloptimization,concurr, 1995
heclor garcia-| molma
surajit chaudhuri, mitcl nbul systems, view,storage,servic,pr | 2004
Lhu‘m ack,michael uucs

onebraker ugur etintemel

ipport, cluster, 2004

* Two groups are co
mining
* People and concepts are drifting over time

ectly identified: Databases and Data

NSF tensors 2009 C. Faloutsos 75
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Network forensics

* Directional network flows
* A large ISP with 100 POPs, each POP 10Gbps link
capacity [Hotnets2004]
— 450 GB/hour with compression
» Task: Identify abnormal traffic pattern and find out the

cause
abnormal traffic normal traffic
=} P!
8 g4
-8 81
5] s
= E
£ 5
1] 1]
9] 9]
s} s}
source source
NSEU (with Prof. Hui Zhang, Dr. Jimeng Sun, Dr. Yinglian Xie) 76

Network forensics

o 40 60

ot

w0 0 12

Abnormal traffic Reconstruction error
over time

« Reconstruction error gives indication of anomalies.
¢ Prominent difference between normal and abnormal ones is

mainly due to the unusual scanning activity (confirmed by the
campus admin).

NSF tensors 2009 C. Faloutsos 77

CMUSCS

MDL mining on time-evolving graph
(Enron emails)

Enron timeline

20K

Cost savings (spli]
o 3 @
2 2 2
Intensty

o &l m/‘\f\/\w\ \M\MAW\[\‘WJ

o =

00 120

0
~Nov 1999: Enron launched
Feb 2001: Jeffrey Skilling takes over as CEO

tephen F.
to inflate profits ant

GraphScope [w. Jimeng Sun,
Spiros Papadimitriou and Philip Yu, KDD’07]

NSF tensors 2009
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Motivation

Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
* Problem#2: How do they evolve?

* Problem#3: What tools to use?
— PARAFAC/Tucker, CUR, MDL
m) - generation: Kronecker graphs
* Problem#4: Scalability to GB, TB, PB?

A CMUSCS
=)

Problem#3: Tools - Generation

» Given a growing graph with count of nodes N,,
N, ...

* Generate a realistic sequence of graphs that will
obey all the patterns

NSF tensors 2009 C. Faloutsos 80

’g CMUSCS

Problem Definition

» Given a growing graph with count of nodes N,,
N ...
* Generate a realistic sequence of graphs that will
obey all the patterns
— Static Patterns
Power Law Degree Distribution
Power Law eigenvalue and eigenvector distribution
Small Diameter
— Dynamic Patterns
Growth Power Law
Shrinking/Stabilizing Diameters

NSF tensors 2009 C. Faloutsos 81
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Problem Definition

¢ Given a growing graph with count of nodes
N, N,, ...

* Generate a realistic sequence of graphs that
will obey all the patterns

¢ Idea: Self-similarity
— Leads to power laws
— Communities within communities

NSF tensors 2009 C. Faloutsos 82
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Kronecker Product — a Graph

/)
5
@,

//

1]1
111]1
11
G

Adjacency matrix

’g CMU SCS
Kronecker Product — a Graph

» Continuing multiplying with G; we obtain G, and
soon ...

G, adjacency matrix
NSF tensors 2009 C. Faloutsos 84
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Kronecker Product — a Graph

» Continuing multiplying with G, we obtain G,and
soon ...

G, adjacency matrix
NSF tensors 2009 C. Faloutsos 85
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Kronecker Product — a Graph

» Continuing multiplying with G; we obtain G,and
soon ...

G, adjacency matrix
NSF tensors 2009 C. Faloutsos 86
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Properties:

* We can PROVE that
— Degree distribution is multinomial ~ power law
— Diameter: constant
— Eigenvalue distribution: multinomial
— First eigenvector: multinomial

 See [Leskovec+, PKDD’05] for proofs

NSF tensors 2009 C. Faloutsos 87
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Problem Definition

» Given a growing graph with nodes N;, N,, ...
* Generate a realistic sequence of graphs that will obey all
the patterns
— Static Patterns
v/ Power Law Degree Distribution
v Power Law eigenvalue and eigenvector distribution
v/ Small Diameter
— Dynamic Patterns
v Growth Power Law
v Shrinking/Stabilizing Diameters
* First and only generator for which we can prove
all these properties

NSF tensors 2009 C. Faloutsos 38

CMU SCS

Stochastic Kronecker Graphs

* Create N,XN, probability matrix P,
» Compute the k* Kronecker power P,

 For each entry p,,, of P, include an edge
(u,v) with probability p,,

Kronecker |0.16]0.08 | 0.08 | 0.04

04102 multiplication [y 04.10.12 [ 0.02 | 0.06 Instance
0.1103 I 0.0410.02|0.12|0.06 . Matrix G2

0.01]0.030.03 |0.09

P, flip biased
P, coins
NSF tensors 2009 C. Faloutsos 89
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Experiments

* How well can we match real graphs?
— Arxiv: physics citations:
* 30,000 papers, 350,000 citations
¢ 10 years of data
— U.S. Patent citation network
* 4 million patents, 16 million citations
37 years of data
— Autonomous systems — graph of internet
« Single snapshot from January 2002
¢ 6,400 nodes, 26,000 edges

* We show both static and temporal patterns
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(Q: how to fit the parm’s?)

A:

* Stochastic version of Kronecker graphs +
* Max likelihood +

e Metropolis sampling

e [Leskovec+, ICML’07]
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Experiments on real AS graph
Degree distribution Hop plot
108 g 10° T 1 !
10° %@ Kronecker . . -
102 R 107 g
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102 : 108/
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0
10 A& graph —2 10 AS grph
S Kronecker \ Kronecker
‘an "o 4 -
‘10 \ 107 ¢ \\
\ 1
<
0 | > Faloutsos 492 N
10 10
10° 10' 10° 10" 10° 10°
’g CMU SCS
Conclusions
* Kronecker graphs have:
— All the static properties
v'Heavy tailed degree distributions
v/ Small diameter
v’ Multinomial eigenvalues and eigenvectors
— All the temporal properties
v Densification Power Law
v Shrinking/Stabilizing Diameters
— We can formally prove these results
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How to generate realistic tensors?

g

iﬁi

* A: ‘RTM’ [Akoglu+, ICDM’08]
— do a tensor-tensor Kronecker product
— resulting tensors (= time evolving graphs) have

bursty addition of edges, over time.
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Motivation

Data mining: ~ find patterns (rules, outliers)
» Problem#1: How do real graphs look like?
* Problem#2: How do they evolve?

¢ Problem#3: What tools to use?
= . Problem#4: Scalability to GB, TB, PB?
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Scalability

* How about if graph/tensor does not fit in

core?

* How about handling huge graphs?

C. Faloutsos
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Scalability

* How about if graph/tensor does not fit in
core?

* ['MET’: Kolda, Sun, ICMD’08, best paper
award]
* How about handling huge graphs?
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Scalability

¢ Google: > 450,000 processors in clusters of ~2000
processors each [Barroso, Dean, Holzle, “Web Search for
a Planet: The Google Cluster Architecture” IEEE Micro
2003]

* Yahoo: 5Pb of data [Fayyad, KDD’07]
¢ Problem: machine failures, on a daily basis
* How to parallelize data mining tasks, then?

* A: map/reduce — hadoop (open-source clone)
http://hadoop.apache.org/
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2’ intro to hadoop

* master-slave architecture; n-way replication
(default n=3)

e ‘group by’ of SQL (in parallel, fault-tolerant way)
¢ e.g, find histogram of word frequency

— compute local histograms

— then merge into global histogram

select course-id, count(*)
from ENROLLMENT
group by course-id
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2’ intro to hadoop

* master-slave architecture; n-way replication
(default n=3)

e ‘group by’ of SQL (in parallel, fault-tolerant way)
¢ e.g, find histogram of word frequency

— compute local histograms

— then merge into global histogram

select course-id, count(* reduce
from ENROLLMENT
group by course-id map
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A CMUSCS

User
>Program

fork fork | ‘l‘*«.fork
Input Data map
(on HDFS)
Split 0
Split 1
Split 2

sort

By default: 3-way replication;
Late/dead machines: ignored, transparently (!)
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D.LI.S.C.

* ‘Data Intensive Scientific Computing’ [R.
Bryant, CMU]
— ‘big data’
— http://www.cs.cmu.edu/~bryant/pubdir/cmu-
¢s-07-128.pdf
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E.g.: self-* and DCO systems @ CMU
e >200 nodes

o target: 1 PetaByte

* Greg Ganger +:

<

— www.pdl.cmu.edu/SelfStar
— www.pdl.cmu.edu/DCO
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OVERALL CONCLUSIONS

» Graphs/tensors pose a wealth of fascinating
problems

* self-similarity and power laws work, when
textbook methods fail!

* New patterns (densification, fortification, -
1.5 slope in blog popularity over time

* New generator: Kronecker

e Scalability / cloud computing -> PetaBytes
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