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Graph Mining: Laws, Generators
and Tools

Christos Faloutsos

CMU
g CMU SCS
el
Thank you!
¢ Sharad Mehrotra
UCI 2007 C. Faloutsos
’g CMU SCS
Outline

Problem definition / Motivation

e Static & dynamic laws; generators

* Tools: CenterPiece graphs; Tensors
 Other projects (Virus propagation, e-bay
fraud detection)

¢ Conclusions
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Motivation

Data mining: ~ find patterns (rules, outliers)
* Problem#1: How do real graphs look like?
* Problem#2: How do they evolve?

* Problem#3: How to generate realistic graphs
TOOLS

e Problem#4: Who is the ‘master-mind’?

e Problem#5: Track communities over time

UCI2007 C. Faloutsos

A CMUSCS
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Problem#1: Joint work with

Dr. Deepayan Chakrabarti
(CMU/Yahoo R.L.)

UCI 2007 C. Faloutsos

’g CMUSCS

Graphs - why should we care?

Internet Map Food Web
e lumeta.coml [Martinez '91]

Friendship Network Protein Interactions
[Moody '01] [genomebiology.com]
UCI2007 C. Faloutsos 6
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Graphs - why should we care?

* IR: bi-partite graphs (doc-terms) b
1

o Tl
o
Dy ¥ 3,
* web: hyper-text graph
e ... and more:
UCI2007 C. Faloutsos 7
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Graphs - why should we care?
* network of companies & board-of-directors
members
* ‘viral’ marketing
* web-log (‘blog’) news propagation
» computer network security: email/IP traffic
and anomaly detection

UCI 2007 C. Faloutsos 8

Problem #1 - network and graph
mining
How does the Internet look like?
How does the web look like?

What is ‘normal’/‘abnormal’?
which patterns/laws hold?

UCI 2007 C. Faloutsos 9
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Graph mining

* Are real graphs random?

C. Faloutsos

UCI2007

A CMUSCS
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Laws and patterns

* Are real graphs random?

* A:NO!!
— Diameter
— in- and out- degree distributions

— other (surprising) patterns

C. Faloutsos

UCI 2007

’g CMUSCS
Solution#1

* Power law in the degree distribution
[SIGCOMM99]

internet domains
.~ att.com

0170 INTERSRD110 rrntosgrees 1 —
SxplEESDES) 37" ( -0&26118) —

log(degree)-=
4

-0.82

og(rank)

Touoc

w00

C. Faloutsos

UCI2007
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Solution#1’: Eigen Exponent E

Eigenvalue
100 - -
axp(4.3031) 'uﬁ%[gsgﬂl -
Exponent = slope
E=-048
10
May 2001

100

1
1 10
Rank of decreasing eigenvalue

e A2: power law in the eigenvalues of the adjacency
13

C. Faloutsos

matrix
UCI12007

CMU SCS

But:

2
)
How about graphs from other domains?

UC12007 C. Faloutsos 14
’g CMU SCS
The Peer-to-Peer Topology
L . - . [Jovanovic+]
{a) Goutella snapshot from Dec. 28, 2000 (4{=0.94)
* Frequency versus degree

¢ Number of adjacent peers follows a power-law

UCI2007 C. Faloutsos 15
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More power laws:
citation counts: (citeseer.nj.nec.com 6/2001)
log(count)
Ullman
[ " log(#citations)
UCI2007 C. Faloutsos 16
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>0
More power laws:
* web hit counts [w/ A. Montgomery]
o
Web Site Traffic
log(count)
i1 ™ \zipf o
s:% RN “ebay” o
. \ users .
j sites
T e oo lin-degree)
UC12007 C. Faloutsos 17
’g CMU SCS
epinions.com
¢ who-trusts-whom
count [Richardson +
o e Domingos, KDD
- 2001]
Lo
g
100
* trusts-2000-people user
e per
Out-degree
(out) degree
UCI2007 C. Faloutsos 18
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Outline

* Problem definition / Motivation
# Static & dynamic laws; generators
* Tools: CenterPiece graphs; Tensors
 Other projects (Virus propagation, e-bay
fraud detection)
 Conclusions

UCI 2007 C. Faloutsos 19
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Motivation

Data mining: ~ find patterns (rules, outliers)
v/ Problem#1: How do real graphs look like?

* Problem#2: How do they evolve?

* Problem#3: How to generate realistic graphs
TOOLS

* Problem#4: Who is the ‘master-mind’?

* Problem#5: Track communities over time

UCI2007 C. Faloutsos 20

’g CMU SCS
Problem#2: Time evolution

¢ with Jure Leskovec /

(CMU/MLD) m

* and Jon Kleinberg (Cornell —
sabb. @ CMU)

UCI 2007 C. Faloutsos 21
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Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:
— diameter ~ O(log N)
— diameter ~ O(log log N)

* What is happening in real data?

UCI 2007 C. Faloutsos 2
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Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:
— diameter ~
— diameter ~ 2 N)

* What is happening in real data?

e Diameter shrinks over time

UCI2007 C. Faloutsos 23

’g CMU SCS
Diameter — ArXiv citation graph

* Citations among w; diameter

——Full graph
physics papers s & Fent 95 suboraph, o past
* 1992 -2003 § 8
e One graph per o
year g,

time [years]

UCI2007 C. Faloutsos

4
1992 1994 1996 1998 2000 2002 2004

24
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Diameter - ‘“Autonomous
Systems”
54
* Graph of Internet diameter
* One graph per . :
day 24,6
* 1997 — 2000
4.2]
3%00 3500 4000 4500 5000 5500 6000 6500
number of nodes
UCI 2007 C. Faloutsos 25
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Diameter — “Affiliation Network”

e Graph of
collaborations in
physics — authors
linked to papers

diameter ——ruirgan
Q = -Post '95 subgraph
-=6=-Post '35 subgraph, no past

Effective diameter
©

* 10 years of data

1%92 1994 1996 1998 2000 2002
time [years]

UCI2007 C. Faloutsos 26

’g CMUSCS

Diameter — ‘“Patents”

o = diameter ——
» Patent citation BEar L —
30| ~Post '85 subgraph, no past

network
e 25 years of data

Effective diameter

1%75 1980 1985 1990 1995 2000
time [years]

UCI 2007 C. Faloutsos 27
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Temporal Evolution of the Graphs

e N(t) ... nodes at time t

e E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(b)

¢ Q: what is your guess for
E(t+1) =2 2 * E()

UCI 2007 C. Faloutsos 28

A CMUSCS
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Temporal Evolution of the Graphs

e N(t) ... nodes at time t

e E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

* Q: what is your guess for
E(t+1) @ E(t)

¢ A: over-doubled!

— But obeying the ““Densification Power Law’”’
UCI 2007 C. Faloutsos 29

’g CMU SCS
Densification — Physics Citations
¢ Citations among

physics papers  E(t)

5

¢ 2003: o
- 29,555 papers, %

352,807 P
citations E

Jan 1993
+ Edges
—=00113 xl R%=1.0

B n
1 WNumberof nodesm N(t)

UCI 2007 C. Faloutsos 30
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¢ Citations among

Densification — Physics Citations

10°

Uk

» Citations among

* 2003:
— 29,555 papers,
352,807
citations

UCI 2007

physics papers  E(t)

physics papers  E(t) Aor 2003
* 2003:
8
- 29,555 papers, ¥ 1.69
352,807 3
e 2
citations 3
10° e
Jan 1993
+ Edges
,
10°5 g = ,
" " umber of nodes N(t) 0
uCI12007 C. Faloutsos 31
AF CMUSCS

Densification — Physics Citations

10°

Number of edges
3

1: tree

10 P
Jan 1993
+ Edges
s —=00113x"¥R%=10
10° 5 7 o
10 10° 10 10°
Number of nodes N (t)
C. Faloutsos 32

’g CMUSCS

 Citations among
physics papers

e 2003:
— 29,555 papers,

352,807
citations

UCI2007

10°

Number of edges
5

Densification — Physics Citations

clique: 2

Jan 1993
+ Edges
. —=00113x"%R%*=10
10

2 B n s

10 10 10 10
Number of nodes N(t)
C. Faloutsos 33
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Densification — Patent Citations

10°

E(t)

¢ Citations among
patents granted
* 1999
— 2.9 million nodes

— 16.5 million
edges

1975 *,
. + Ed
» Each yearisa

datapoint . Numbertnoses  N(1)

1999

Number of edges
=

5

10

UCI 2007 C. Faloutsos 34
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Densification — Autonomous Systems
* Graph of
Internet
e 2000 g
— 6,000 nodes ?
— 26,000 edges g
* One graph per A
+ Edges
day —=087x"®R%1.00

10°

oo e =
10 "R umber of nodes. N(t)

35

UCI 2007 C. Faloutsos
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Densification — Affiliation

Network
« Authors linked i
to their E(t),
publications ] *
.« 2002 S 115
— 60,000 nodes H

o,

* 20,000 authors

* Edges
" 38.000 papers

2|
10
2 3 T 10

- 133,000 edges 10 LS
umber of nodes N(t)

36

UCI2007 C. Faloutsos
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Outline

* Problem definition / Motivation
m) Static & dynamic laws; generators
* Tools: CenterPiece graphs; Tensors
 Other projects (Virus propagation, e-bay
fraud detection)
 Conclusions

UCI 2007 C. Faloutsos 37
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Motivation

Data mining: ~ find patterns (rules, outliers)

v/ Problem#1: How do real graphs look like?
Problem#2: How do they evolve?

* Problem#3: How to generate realistic graphs

TOOLS

* Problem#4: Who is the ‘master-mind’?

* Problem#5: Track communities over time

UCI2007 C. Faloutsos 38

’g CMUSCS

Problem#3: Generation

» Given a growing graph with count of nodes N,,
N,, ...

* Generate a realistic sequence of graphs that will
obey all the patterns

UCI 2007 C. Faloutsos 39
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Problem Definition

» Given a growing graph with count of nodes N,,
Ny ...
* Generate a realistic sequence of graphs that will
obey all the patterns
— Static Patterns
Power Law Degree Distribution
Power Law eigenvalue and eigenvector distribution
Small Diameter
— Dynamic Patterns
Growth Power Law
Shrinking/Stabilizing Diameters

UCI 2007 C. Faloutsos 40
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Problem Definition

» Given a growing graph with count of nodes
N, N, ...

¢ Generate a realistic sequence of graphs that
will obey all the patterns

¢ Idea: Self-similarity
— Leads to power laws
— Communities within communities

UCI 2007 C. Faloutsos

41

’g CMU SCS
Kronecker Product — a Graph

/
el

)

OO

/
s

—_
—_—

G
Adjacency matrix

14
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Kronecker Product — a Graph

» Continuing multiplying with G, we obtain G,and

soon...

G, adjacency matrix
43

C. Faloutsos

UCI2007

AxF CMUSCS
=)

Kronecker Product — a Graph

» Continuing multiplying with G; we obtain G,and

soon...

44

G, adjacency matrix

C. Faloutsos

UCI12007

’g CMU SCS
Kronecker Product — a Graph
» Continuing multiplying with G; we obtain G, and

soon...

G, adjacency matrix

C. Faloutsos

UCI2007

45
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Properties:

* We can PROVE that
— Degree distribution is multinomial ~ power law
— Diameter: constant
— Eigenvalue distribution: multinomial

— First eigenvector: multinomial

 See [Leskovec+, PKDD’05] for proofs

UCI 2007 C. Faloutsos 46
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Problem Definition

« Given a growing graph with nodes N,, N,, ...
¢ Generate a realistic sequence of graphs that will obey all
the patterns
— Static Patterns
v/ Power Law Degree Distribution
v/ Power Law eigenvalue and eigenvector distribution
v/ Small Diameter
— Dynamic Patterns
v Growth Power Law
v Shrinking/Stabilizing Diameters
 First and only generator for which we can prove
all these properties

UCI2007 C. Faloutsos 47

CMUSCS

Stochastic Kronecker Graphs

* Create N, XN, probability matrix P,

» Compute the k" Kronecker power P,

 For each entry p,,, of P, include an edge
(u,v) with probability p,,

Kronecker [0.16]0.08 | 0.08 | 0.04

0.4 | 0.2 | multiplication ) 04 10,12 | 0.02 | 0.06 ‘ Instance
0.110.3 I 0.0410.02]0.12|0.06 Matrix G2
P, 0.01]0.030.03 |0.09 flip biased
Py coins
UCI 2007 C. Faloutsos 48
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Experiments

* How well can we match real graphs?
— Arxiv: physics citations:
* 30,000 papers, 350,000 citations
¢ 10 years of data
— U.S. Patent citation network
* 4 million patents, 16 million citations
« 37 years of data
— Autonomous systems — graph of internet
« Single snapshot from January 2002
¢ 6,400 nodes, 26,000 edges
* We show both static and temporal patterns

UCI 2007 C. Faloutsos 49

Arxiv — Degree Distribution

‘ Deterministic

‘ Real graph ‘ Kronecker

Stochastic
Kronecker

10 \
10 o' \‘
A 1
- \
10 T 3 al o 2 3 < 5
107 10 10 10 107 107 10 10 10" 10]
degree degree
UCI2007 C. Faloutsos 50

Eigenvalue

’g CMUSCS

Arxiv — Scree Plot

Real h Deterministic Stochastic
eal grap Kronecker Kronecker
107 10° 10
10' \\
10
\\\\\ - [N S_—
10 ; , 105 0 o i
10 10 107 10 10 107 10 10 10}
Rank Ran Rank
UCI 2007 C. Faloutsos 51
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Arxiv — Densification

Deterministic
‘ Real graph ‘ ‘

Kronecker

Stochastic
Kronecker

107 / /

8 5 // i / 10 /
i

Nodes(t) Nodes(t) Nodes(t)
UCI 2007 C. Faloutsos 52
;l_'_ CMU SCS
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Arxiv — Effective Diameter
Real h Deterministic Stochastic
eal grap Kronecker Kronecker
10 2
. 10f
g 5| \\\U\/ ] 6|
@ 4 4
[a] LE
2| 2|
0 05 1 15 2 25 3 2 4 6 8 0 1 2 3 4 5
Nodes(t) Nodes(t) Nodes(t)
UCI2007 C. Faloutsos 53

’g CMUSCS

(Q: how to fit the parm’s?)
A:

* Stochastic version of Kronecker graphs +
* Max likelihood +

e Metropolis sampling
e [Leskovec+, ICML’07]

UCI2007 C. Faloutsos

54
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Degree distribution Hop plot

Experiments on real AS graph

104 e —

108 ¢ T

TAS g
Kronecker = .
E 107 - ~

" THTY BRIV ————
10° 10t 102 10° 0t 1 2 3

e

AS graph
Kronecker |-®

4 5 6

2Adjacency matrix eigen values Network value

> Faloutsos 42

"AS graph —o— 3 ASgraph —— ]

Kronecker — m Kronecker
- i .

A CMUSCS
=)

Conclusions

* Kronecker graphs have:
— All the static properties
v Heavy tailed degree distributions
v/ Small diameter
v/ Multinomial eigenvalues and eigenvectors
— All the temporal properties
v/ Densification Power Law
v Shrinking/Stabilizing Diameters
— We can formally prove these results

UCI 2007 C. Faloutsos
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’g CMU SCS
Outline

¢ Problem definition / Motivation

e Static & dynamic laws; generators
# Tools: CenterPiece graphs; Tensors

fraud detection)
¢ Conclusions

UCI2007 C. Faloutsos

 Other projects (Virus propagation, e-bay

57
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Motivation

Data mining: ~ find patterns (rules, outliers)
y/ Problem#1: How do real graphs look like?
/ Problem#2: How do they evolve?
Problem#3: How to generate realistic graphs
TOOLS
=) Problem#4: Who is the ‘master-mind’?
* Problem#5: Track communities over time

UCI 2007 C. Faloutsos 58

CMU SCS

Problem#4: MasterMind — ‘CePS’

* w/ Hanghang Tong,
KDD 2006

* htong <at> cs.cmu.edu

A
=0

UCI2007 C. Faloutsos 59

’g CMU SCS
Center-Piece Subgraph(Ceps)
 Given Q query nodes g °\\
. ! gon
* Find Center-piece (< p ) & i\@ b
Pean-N
* App. OfG\b
— Social Networks
— Law Inforcement, ... L
9 v
¢ Idea: ® o Q
— Proximity -> random @ @
walk with restarts ‘*'O 0 b

UCI 2007 C. Faloutsos 60
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Case Study: AND query
@
(o)

C. Faloutsos 61

UC12007

Case Study: AND query

HV. ( Laks V.S. ™
Jagadlsh akshmana 13\i

\4\77 Corinna 6
Cortes
C. Faloutsos

UCI 2007

62

’g CMUSCS
Case Study' AND query

UCI2007

H AvE, 10—, LakS V.S.
Jagadlsh akshman

R. Agrawal |
10
|
\ —] 74‘,,
\4\77 Corinna ™
Cortes
C. Faloutsos

63

21



i== CMUSCS

2% 10~

15 13

R. Agrawal

9 /

N -
B R -77 7/7/3///
ML/Statistics
g —2— —
/° - - X

~

2_SoftAnd query -

\ |
27 3
64

UCI2007 C. Faloutsos
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Conclusions ch ! Y
* QIl:How to measure the importance? o« &cﬁ\*
e Al: RWR+K_SoftAnd
* Q2: How to find connection subgraph?
* A2:”Extract” Alg.
* Q3:How to do it efficiently?
* A3:Graph Partition (Fast CePS)
—~90% quality

— 6:1 speedup; 150x speedup (ICDM’06, b.p.
award)

UCI2007 C. Faloutsos 65

’g CMUSCS
Outline

* Problem definition / Motivation
e Static & dynamic laws; generators
# Tools: CenterPiece graphs; Tensors
 Other projects (Virus propagation, e-bay
fraud detection)
* Conclusions

UCI 2007 C. Faloutsos 66
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Motivation

Data mining: ~ find patterns (rules, outliers)

y/ Problem#1: How do real graphs look like?

/ Problem#2: How do they evolve?
Problem#3: How to generate realistic graphs

TOOLS

/Problem#4: Who is the ‘master-mind’?

* Problem#5: Track communities over time

UCI 2007 C. Faloutsos 67
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Tensors for time evolving graphs

¢ [Jimeng Sun+
KDD’06]

[ < , SDM’07]
¢ [ CF, Kolda, Sun,
SDM’07 tutorial]

UCI2007 C. Faloutsos 68

’g CMUSCS

Social network analysis

¢ Static: find community structures

Keywords
1990

DB
UCI 2007 g 69
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Social network analysis

¢ Static: find community structures
¢ Dynamic: monitor community structure evolution;
spot abnormal individuals; abnormal time-stamps

Keywords

2004 = 7

/ /

7 / og

1990 7 /

b/ 70

Authors

UCI2007

CMU SCS

-5 Application 1: Multiway latent
DM £

semantic indexing (L.ST)
1990 Stonebraker
—y 3

- Ukeyword ﬂ
[P ] [ coery |

keyword

200

authors

* Projection matrices specify the clusters
» Core tensors give cluster activation level

UCI2007 C. Faloutsos 71

il Bibliographic data (DBLP)

Papers from VLDB and KDD conferences

 Construct 2nd order tensors with yearly
windows with <author, keywords>

* Each tensor: 4584x3741
* 11 timestamps (years)

UCI 2007 C. Faloutsos 72
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Multiway LSI
Authors ‘ Keywords Year

michael carey, michael ueri,parallel,optimization,concurr, 1995
hector garcia-molina
surajit chaudhuri, mitcl nbul systems, view,storage,servic,pr | 2004
cherniack,michael uucs

onebraker u r etinteme!

ipport, cluster, 2004

e Two groups are cor€Ctly identified: Databases and Data
mining
* People and concepts are drifting over time

UCI 2007 C. Faloutsos 73
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Conclusions
Tensor-based methods (WTA/DTA/STA):

* spot patterns and anomalies on time
evolving graphs, and

* on streams (monitoring)

UCI2007 C. Faloutsos 74

’g CMUSCS
Outline

* Problem definition / Motivation
e Static & dynamic laws; generators
* Tools: CenterPiece graphs; Tensors

=) Other projects (Virus propagation, e-bay
fraud detection)

¢ Conclusions

]

UCI 2007 C. Faloutsos 75
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Virus propagation

« How do viruses/rumors propagate?
« Will a flu-like virus linger, or will it
become extinct soon?

UCI 2007 C. Faloutsos 76

A CMUSCS
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The model: SIS

* ‘Flu’ like: Susceptible-Infected-Susceptible
* Virus ‘strength’ s= /0

Healthy

Prob. §
Prob. B E
—

Infected

C. Faloutsos

UCI 2007

77

’g CMUSCS
Epidemic threshold t©

of a graph: the value of T, such that
if strengths=p4/0< 7

an epidemic can not happen

Thus,

 given a graph

* compute its epidemic threshold

UCI2007 C. Faloutsos

78
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Epidemic threshold t©

What should T depend on?

¢ avg. degree? and/or highest degree?
* and/or variance of degree?

* and/or third moment of degree?

e and/or diameter?

UCI 2007 C. Faloutsos 79

A CMUSCS
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Epidemic threshold

* [Theorem] We have no epidemic, if

ps<t=1/7,,

UCI2007 C. Faloutsos 80

’g CMUSCS
Epidemic threshold

* [Theorem] We have no epidemic, if

epidemic threshold
recovery prob. 'ﬂ\ /

p/o <‘[!= I/;II,A
7

i
attack prob./ largest eigenvalue
of adj. matrix A

Proof: [Wang+03]

UCI 2007 C. Faloutsos 81
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Outline

* Problem definition / Motivation
* Static & dynamic laws; generators
* Tools: CenterPiece graphs; Tensors
mm) Other projects (Virus propagation, e-bay
fraud detection)
* Conclusions

|

UCI2007 C. Faloutsos 83

:E CMU SCS
[ Experiments (Oregon)
” { | | I |s= o001 |
T 00 B>t
= (above threshold)
©
2 300 4
23
2
=
52004 Nk
H \ SSseqessscas a0 BlB=1
5 001 AN, ; / (at the threshold)
AT WO AW PR |
0 250 500 750 \oatxkﬁls <T
Time (below threshold)
§: =8-0.05 == 0.06 =< 0.07
UCI 2007 C. Faloutsos 82
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’g CMUSCS

E-bay Fraud detection

w/ Polo Chau &
Shashank Pandit, CMU

UCI 2007 C. Faloutsos 84
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E-bay Fraud detection - NetProbe

UCI 2007 C. Faloutsos 85
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OVERALL CONCLUSIONS

* Graphs pose a wealth of fascinating
problems

* self-similarity and power laws work,
when textbook methods fail!

* New patterns (shrinking diameter!)

* New generator: Kronecker

UCI2007 C. Faloutsos 86

CMUSCS

‘Philosophical’ observation
Graph mining brings together:
 ML/AI/IR
e Stat, Num. analysis,

» Systems (DB (Gb/Tb), Networks )
* sociology, epidemiology
* physics, ++...

UCI 2007 C. Faloutsos 87
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