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• Sharad Mehrotra
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: How to generate realistic graphs

TOOLS

• Problem#4: Who is the ‘master-mind’?

• Problem#5: Track communities over time
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Problem#1: Joint work with

Dr. Deepayan Chakrabarti 

(CMU/Yahoo R.L.)
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Graphs - why should we care?

Internet Map 

[lumeta.com]

Food Web 

[Martinez ’91]

Protein Interactions 

[genomebiology.com]

Friendship Network 

[Moody ’01]
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Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

D1

DN

T1

TM

... ...
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Graphs - why should we care?

• network of companies & board-of-directors 

members

• ‘viral’ marketing

• web-log (‘blog’) news propagation

• computer network security: email/IP traffic 

and anomaly detection

• ....
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Problem #1 - network and graph 

mining

• How does the Internet look like?

• How does the web look like?

• What is ‘normal’/‘abnormal’?

• which patterns/laws hold?
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Graph mining

• Are real graphs random?
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Laws and patterns

• Are real graphs random?

• A: NO!!

– Diameter

– in- and out- degree distributions

– other (surprising) patterns
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Solution#1

• Power law in the degree distribution 

[SIGCOMM99]

log(rank)

log(degree)

-0.82

internet domains

att.com

ibm.com
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Solution#1’: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency 
matrix

E = -0.48

Exponent = slope

Eigenvalue

Rank of decreasing eigenvalue

May 2001
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But:

How about graphs from other domains?
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The Peer-to-Peer Topology

• Frequency versus degree 

• Number of adjacent peers follows a power-law

[Jovanovic+]
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More power laws:

citation counts: (citeseer.nj.nec.com 6/2001)

1
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100 1000 10000

lo
g
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o
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n
t

log # citations

’cited.pdf’

log(#citations)

log(count)

Ullman
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More power laws:

• web hit counts [w/ A. Montgomery]

Web Site Traffic

log(in-degree)

log(count)

Zipf

users
sites

``ebay’’
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epinions.com

• who-trusts-whom 

[Richardson + 

Domingos, KDD 

2001]

(out) degree

count

trusts-2000-people user
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Outline

• Problem definition / Motivation

• Static & dynamic laws; generators

• Tools: CenterPiece graphs; Tensors

• Other projects (Virus propagation, e-bay 

fraud detection)

• Conclusions
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: How to generate realistic graphs

TOOLS

• Problem#4: Who is the ‘master-mind’?

• Problem#5: Track communities over time
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Problem#2: Time evolution

• with Jure Leskovec 

(CMU/MLD)

• and Jon Kleinberg (Cornell –

sabb. @ CMU)
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Evolution of the Diameter

• Prior work on Power Law graphs hints 

at slowly growing diameter:

– diameter ~ O(log N)

– diameter ~ O(log log N)

• What is happening in real data?
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Evolution of the Diameter

• Prior work on Power Law graphs hints 

at slowly growing diameter:

– diameter ~ O(log N)

– diameter ~ O(log log N)

• What is happening in real data?

• Diameter shrinks over time
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Diameter – ArXiv citation graph

• Citations among 

physics papers   

• 1992 –2003

• One graph per 

year

time [years]

diameter
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Diameter – “Autonomous 

Systems”

• Graph of Internet

• One graph per 

day 

• 1997 – 2000

number of nodes

diameter

UCI 2007 C. Faloutsos 26

CMU SCS

Diameter – “Affiliation Network”

• Graph of 

collaborations in 

physics – authors 

linked to papers

• 10 years of data

time [years]

diameter
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Diameter – “Patents”

• Patent citation 

network

• 25 years of data

time [years]

diameter
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Temporal Evolution of the Graphs

• N(t) … nodes at time t

• E(t) … edges at time t

• Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? 2 * E(t)
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Temporal Evolution of the Graphs

• N(t) … nodes at time t

• E(t) … edges at time t

• Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for 

E(t+1) =? 2 * E(t)

• A: over-doubled!

– But obeying the ``Densification Power Law’’
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

??
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

1.69
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

1.69

1: tree
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Densification – Physics Citations

• Citations among 
physics papers 

• 2003:

– 29,555 papers, 
352,807 
citations

N(t)

E(t)

1.69clique: 2
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Densification – Patent Citations

• Citations among 

patents granted

• 1999

– 2.9 million nodes

– 16.5 million 

edges

• Each year is a 

datapoint N(t)

E(t)

1.66
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Densification – Autonomous Systems

• Graph of 

Internet

• 2000

– 6,000 nodes

– 26,000 edges

• One graph per 

day

N(t)

E(t)

1.18
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Densification – Affiliation 

Network

• Authors linked 

to their 

publications

• 2002

– 60,000 nodes

• 20,000 authors

• 38,000 papers

– 133,000 edges
N(t)

E(t)

1.15
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Outline

• Problem definition / Motivation

• Static & dynamic laws; generators

• Tools: CenterPiece graphs; Tensors

• Other projects (Virus propagation, e-bay 

fraud detection)

• Conclusions
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: How to generate realistic graphs

TOOLS

• Problem#4: Who is the ‘master-mind’?

• Problem#5: Track communities over time
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Problem#3: Generation

• Given a growing graph with count of nodes N1, 

N2, …

• Generate a realistic sequence of graphs that will 

obey all the patterns
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Problem Definition

• Given a growing graph with count of nodes N1, 
N2, …

• Generate a realistic sequence of graphs that will 
obey all the patterns 

– Static Patterns
Power Law Degree Distribution

Power Law eigenvalue and eigenvector distribution

Small Diameter

– Dynamic Patterns
Growth Power Law

Shrinking/Stabilizing Diameters
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Problem Definition

• Given a growing graph with count of nodes 

N1, N2, …

• Generate a realistic sequence of graphs that 

will obey all the patterns

• Idea: Self-similarity

– Leads to power laws

– Communities within communities

– …
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Adjacency matrix

Kronecker Product – a Graph

Intermediate stage

Adjacency matrix
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Kronecker Product – a Graph

• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Kronecker Product – a Graph

• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Kronecker Product – a Graph

• Continuing multiplying with G1 we obtain G4 and 

so on …

G4 adjacency matrix
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Properties:

• We can PROVE that

– Degree distribution is multinomial ~ power law

– Diameter: constant

– Eigenvalue distribution: multinomial

– First eigenvector: multinomial

• See [Leskovec+, PKDD’05] for proofs
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Problem Definition

• Given a growing graph with nodes N1, N2, …

• Generate a realistic sequence of graphs that will obey all 

the patterns 

– Static Patterns

Power Law Degree Distribution

Power Law eigenvalue and eigenvector distribution

Small Diameter

– Dynamic Patterns

Growth Power Law

Shrinking/Stabilizing Diameters

• First and only generator for which we can prove

all these properties

����

����
����

����
����
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Stochastic Kronecker Graphs

• Create N1×N1 probability matrix P1

• Compute the kth Kronecker power Pk

• For each entry puv of Pk include an edge 

(u,v) with probability puv

0.30.1

0.20.4

P1

Instance 

Matrix G2
0.090.030.030.01

0.060.120.020.04

0.060.020.120.04

0.040.080.080.16

Pk

flip biased

coins

Kronecker

multiplication

skip
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Experiments

• How well can we match real graphs?

– Arxiv: physics citations:

• 30,000 papers, 350,000 citations

• 10 years of data

– U.S. Patent citation network

• 4 million patents, 16 million citations

• 37 years of data

– Autonomous systems – graph of internet

• Single snapshot from January 2002

• 6,400 nodes, 26,000 edges

• We show both static and temporal patterns
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Arxiv – Degree Distribution 

degree degree degree

c
o
u
n
t

Real graph
Deterministic 

Kronecker
Stochastic 
Kronecker
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Arxiv – Scree Plot

Rank Rank Rank

E
ig

e
n
v
a
lu

e

Real graph
Deterministic 

Kronecker
Stochastic 
Kronecker
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Arxiv – Densification

Nodes(t) Nodes(t) Nodes(t)

E
d
g
e
s

Real graph
Deterministic 

Kronecker
Stochastic 
Kronecker
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Arxiv – Effective Diameter

Nodes(t) Nodes(t) Nodes(t)

D
ia

m
e
te

r

Real graph
Deterministic 

Kronecker
Stochastic 
Kronecker
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(Q: how to fit the parm’s?)

A:

• Stochastic version of Kronecker graphs +

• Max likelihood  +

• Metropolis sampling

• [Leskovec+, ICML’07]



19

UCI 2007 C. Faloutsos 55

CMU SCS

Experiments on real AS graph
Degree distribution Hop plot

Network valueAdjacency matrix eigen values
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Conclusions

• Kronecker graphs have:

– All the static properties 

Heavy tailed degree distributions

Small diameter

Multinomial eigenvalues and eigenvectors

– All the temporal properties

Densification Power Law

Shrinking/Stabilizing Diameters

– We can formally prove these results

����

����

����

����

����
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Outline

• Problem definition / Motivation

• Static & dynamic laws; generators

• Tools: CenterPiece graphs; Tensors

• Other projects (Virus propagation, e-bay 

fraud detection)

• Conclusions
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: How to generate realistic graphs

TOOLS

• Problem#4: Who is the ‘master-mind’?

• Problem#5: Track communities over time
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Problem#4: MasterMind – ‘CePS’

• w/ Hanghang Tong, 

KDD 2006

• htong <at> cs.cmu.edu
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Center-Piece Subgraph(Ceps)

• Given Q query nodes

• Find Center-piece (       )

• App.

– Social Networks

– Law Inforcement, …

• Idea:

– Proximity -> random 
walk with restarts

A C

B

b≤
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Case Study: AND query

R. Agrawal Jiawei Han

V. Vapnik M. Jordan
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Case Study: AND query

R. Agrawal Jiawei Han

V. Vapnik M. Jordan

H.V. 

Jagadish

Laks V.S. 

Lakshmanan

Heikki 

Mannila

Christos 

Faloutsos

Padhraic 

Smyth

Corinna 

Cortes

15 10
13

1 1

6

1 1

4 Daryl 

Pregibon

10

2

1

1
3

1

6
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Case Study: AND query

R. Agrawal Jiawei Han

V. Vapnik M. Jordan

H.V. 

Jagadish

Laks V.S. 

Lakshmanan

Heikki 

Mannila

Christos 

Faloutsos

Padhraic 

Smyth

Corinna 
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R. Agrawal Jiawei Han

V. Vapnik M. Jordan

H.V. 

Jagadish

Laks V.S. 

Lakshmanan

Umeshwar 

Dayal

Bernhard 

Scholkopf

Peter L. 

Bartlett

Alex J. 

Smola

15
10

13

3 3

5
2

2

327

42_SoftAnd query

ML/Statistics

databases
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Conclusions

• Q1:How to measure the importance?

• A1: RWR+K_SoftAnd

• Q2: How to find connection subgraph?

• A2:”Extract” Alg.

• Q3:How to do it efficiently?

• A3:Graph Partition (Fast CePS)

– ~90% quality

– 6:1 speedup; 150x speedup (ICDM’06, b.p. 
award)

A C

B
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Outline

• Problem definition / Motivation

• Static & dynamic laws; generators

• Tools: CenterPiece graphs; Tensors

• Other projects (Virus propagation, e-bay 

fraud detection)

• Conclusions
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Motivation

Data mining: ~ find patterns (rules, outliers)

• Problem#1: How do real graphs look like?

• Problem#2: How do they evolve?

• Problem#3: How to generate realistic graphs

TOOLS

• Problem#4: Who is the ‘master-mind’?

• Problem#5: Track communities over time
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Tensors for time evolving graphs

• [Jimeng Sun+ 

KDD’06]

• [    “ ,  SDM’07]

• [ CF, Kolda, Sun, 

SDM’07 tutorial]
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Social network analysis

• Static: find community structures 

DB

A
u
th

o
r s

Keywords
1990
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Social network analysis

• Static: find community structures 

• Dynamic: monitor community structure evolution; 

spot abnormal individuals; abnormal time-stamps

DB

A
u

th
o

rs

Keywords

DM

DB

1990

2004
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DB

DM

Application 1: Multiway latent 

semantic indexing (LSI)

DB

2004

1990

Michael 
Stonebraker

QueryPattern

Ukeyword

a
u

th
o

rs

keyword

U
a

u
th

o
rs

• Projection matrices specify the clusters

• Core tensors give cluster activation level

Philip Yu
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Bibliographic data (DBLP)

• Papers from VLDB and KDD conferences

• Construct 2nd order tensors with yearly 
windows with <author, keywords> 

• Each tensor: 4584×3741

• 11 timestamps (years)
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Multiway LSI

2004

2004

1995

Year

streams,pattern,support, cluster, 

index,gener,queri

jiawei han,jian pei,philip s. yu,

jianyong wang,charu c. aggarwal

distribut,systems,view,storage,servic,pr

ocess,cache

surajit chaudhuri,mitch

cherniack,michael

stonebraker,ugur etintemel

queri,parallel,optimization,concurr,

objectorient

michael carey, michael

stonebraker, h. jagadish,

hector garcia-molina

KeywordsAuthors

• Two groups are correctly identified: Databases and Data 
mining

• People and concepts are drifting over time

DM

DB
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Conclusions

Tensor-based methods (WTA/DTA/STA):

• spot patterns and anomalies on time 

evolving graphs, and

• on streams (monitoring)
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Outline

• Problem definition / Motivation

• Static & dynamic laws; generators

• Tools: CenterPiece graphs; Tensors

• Other projects (Virus propagation, e-bay 

fraud detection)

• Conclusions
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Virus propagation

• How do viruses/rumors propagate?

• Will a flu-like virus linger, or will it 

become extinct soon?
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The model: SIS

• ‘Flu’ like: Susceptible-Infected-Susceptible

• Virus ‘strength’ s= β/δ

Infected

Healthy

NN1

N3

N2

Prob. ββββ

Prob. β

Prob. δδδδ

UCI 2007 C. Faloutsos 78

CMU SCS

Epidemic threshold ττττ

of a graph: the value of τ, such that

if   strength s = β / δ <  τ

an epidemic can not happen

Thus, 

• given a graph

• compute its epidemic threshold
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Epidemic threshold ττττ

What should τ depend on?

• avg. degree? and/or highest degree? 

• and/or variance of degree?

• and/or third moment of degree?

• and/or diameter?
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Epidemic threshold

• [Theorem] We have no epidemic, if 

β/δ <τ = 1/ λ1,A
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Epidemic threshold

• [Theorem] We have no epidemic, if 

β/δ <τ = 1/ λ1,A

largest eigenvalue

of adj. matrix A
attack prob.

recovery prob.
epidemic threshold

Proof: [Wang+03]
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Experiments (Oregon)
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δ: 0.05 0.06 0.07

Oregon

β =  0.001

ββββ/δδδδ > τ

(above threshold)

ββββ/δδδδ = τ

(at the threshold)

ββββ/δδδδ < τ

(below threshold)
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Outline

• Problem definition / Motivation

• Static & dynamic laws; generators

• Tools: CenterPiece graphs; Tensors

• Other projects (Virus propagation, e-bay 

fraud detection)

• Conclusions
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E-bay Fraud detection

w/ Polo Chau &

Shashank Pandit, CMU
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E-bay Fraud detection - NetProbe
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OVERALL CONCLUSIONS

• Graphs pose a wealth of fascinating 

problems

• self-similarity and power laws work, 

when textbook methods fail!

• New patterns (shrinking diameter!)

• New generator: Kronecker
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‘Philosophical’ observation

Graph mining brings together:

• ML/AI / IR

• Stat, Num. analysis, 

• Systems (DB (Gb/Tb), Networks )

• sociology, epidemiology

• physics, ++…
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