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Abstract—
Given a million escort advertisements, how can we spot near-

duplicates? Such micro-clusters of ads are usually signals of
human trafficking. How can we summarize them, visually, to
convince law enforcement to act? Can we build a general tool that
works for different languages? Spotting micro-clusters of near-
duplicate documents is useful in multiple, additional settings,
including spam-bot detection in Twitter ads, plagiarism, and
more.

We present INFOSHIELD, which makes the following con-
tributions: (a) Practical, being scalable and effective on real
data, (b) Parameter-free and Principled, requiring no user-defined
parameters, (c) Interpretable, finding a document to be the
cluster representative, highlighting all the common phrases, and
automatically detecting “slots”, i.e. phrases that differ in every
document; and (d) Generalizable, beating or matching domain-
specific methods in Twitter bot detection and human trafficking
detection respectively, as well as being language-independent
finding clusters in Spanish, Italian, and Japanese. Interpretability
is particularly important for the anti human-trafficking domain,
where law enforcement must visually inspect ads.

Our experiments on real data show that INFOSHIELD cor-
rectly identifies Twitter bots with an F1 score over 90% and
detects human-trafficking ads with 84% precision. Moreover, it
is scalable, requiring about 8 hours for 4 million documents on
a stock laptop.

Index Terms—Anomaly Detection, Text Mining, Clustering
Methods, Minimum Description Length (MDL), Anti-Human
Trafficking

I. INTRODUCTION

Given many documents, the majority of which do not belong
to any cluster, how can we find small clusters of related docu-
ments? The driving application is human trafficking detection,
where escort ads that are very similar are usually a sign of
trafficking.

Finding related documents is a problem with numerous
applications, such as search engines, plagiarism detection,
mailing-address de-dupliclation, and more.

In this paper, we develop INFOSHIELD, a general,
information-theory based method, and we illustrate its gen-
erality, effectiveness and scalability on two settings: escort

* Both authors contributed equally to this work.

advertisements, and Twitter data (both English as well as
Spanish).

A. Application to the Human Trafficking Domain

While INFOSHIELD is general, our main motivation is near-
duplicate detection and summarization in escort advertise-
ments. Human trafficking (HT) is a dangerous societal problem
which is difficult to tackle. It is estimated that there are
24.9 million people trapped in forced labor, 55% of which
are women and girls accounting for 99% of victims in the
commercial sex industry [1]. The majority of victims are
advertised online [2] and 56% of victims have no input on
ad content [2]. The average pimp has 4-6 victims [3]. Thus,
the majority of ads suspected of HT are written by one person,
who is controlling ads for 4-6 different victims at a time. By
looking for small clusters of ads that contain similar phrasing,
rather than analyzing standalone ads, we’re finding the groups
of ads that are most likely to be organized activity, which is
a strong signal of HT.

Currently, law enforcement looks for HT cases manually,
often one at a time. Our proposed INFOSHIELD will help
them save time by detecting micro-clusters of similar ads,
grouping them, and summarizing the common parts, as shown
in Figure 1, which depicts Twitter data – we refrain from
showing escort ad results for the victims’ safety.

B. Application to Twitter Bot Detection

Detection of organized activity also has a clear application
to bot detection; given millions of tweets, most of which come
from legitimate users, how can we find tweets that exhibit bot-
like behavior? The simplest kind of bot behavior is spamming,
i.e. posting tweets that are almost or exactly identical in text,
to increase visibility. Bot detection has been well-studied, but
the majority of algorithms use manually crafted features that
are specific to certain platforms, for example, the number of
retweets. Our goal is to find near-duplicates in any application,
which includes social media platforms containing text, such as
Twitter. This particular application benefits from a vast amount
of publicly available data.
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Fig. 1: INFOSHIELD works: being precise (left), scalable (middle), and interpretable (right), detecting and visualizing slots (in
red), i.e. portions of tweets that highly differ between otherwise duplicate documents.

C. Our Method
Our first insight is to formalize the problem with informa-

tion theory, and use the Minimum Description Length (MDL)
principle to find good templates, which represent cluster text,
with “slots”, i.e. parts of the template that differ for each
document. We mark slots with red highlights in Figure 1-
right. We then use this summary to visualize the cluster.
INFOSHIELD is parameter-free, since MDL can automatically
pick the best choice of parameter values for any algorithm
by choosing the combination with the shortest compression
length. This is the INFOSHIELD-FINE part of our method.

The second insight is a novel pre-processing method, IN-
FOSHIELD-COARSE, that dramatically improves scalability to
be quasi-linear, by (a) eliminating single-copy documents/ads
and (b) grouping the rest in coarse, but mainly homogeneous,
clusters.

The resulting INFOSHIELD has a long list of desirable
properties: It is
• Practical, processing 1 million documents within 2 hours

on a Dell Alienware laptop with 32GiB RAM and i7
processor running Arch Linux; and correctly identifying
Twitter spambots with an F1 score of 90% or higher,

• Parameter-free & Principled, requiring no user-defined
parameters thanks to the Minimum Description Language
principle,

• Interpretable, providing a clear visualization and summa-
rization of the discovered micro-clusters.

• Generalizable and domain independent – we show results
on two diverse areas, namely, Twitter data, and HTdata;
as well as on multiple languages, i.e. Spanish, Italian,
English.

Reproducibility: Our code is open-sourced at https://
github.com/mengchillee/InfoShield. The HT dataset is avail-
able to researchers after NDA (email Dr. Cara Jones
cara@marinusanalytics.com). The Twitter datasets are publicly
available (see [4]).

II. BACKGROUND AND RELATED WORK

There is a lot of work on HT detection, document clustering,
and multiple sequence alignment, and we group it in the
following sub-sections.

A. Human Trafficking Detection

Some previous works try to classify whether or not a par-
ticular advertisement is suspected of HT [5], [6], [7], [8]. For
instance, HTDN [7] proposes a supervised deep multimodal
model trained on 10K manually labeled ads. Their results are
later improved, on the same data, using an ordinal regression
neural network [9]. Unfortunately, due to the adversarial nature
of escort advertisements, these predefined or learned features
don’t stay relevant over time. These labeled ads are also
expensive to obtain (requiring the precious time of domain
experts) and are error-prone, as will be discussed in Section
V. Moreover, inspecting ads individually, we might overlook
ads that are part of an organized activity but do not stand out on
their own. Therefore, unsupervised algorithms that find groups
of organized activity are preferred in this domain. Template
Matching [10] exploits the above insight, being the first anti
HT method to our knowledge to perform clustering. However,
the interpretability of clusters is limited, and the algorithm
isn’t scalable.

B. Social Media Bot Detection

Most efforts in detecting bots in social media platforms are
formulated as supervised classification based on features from
users and the content they post [11], [12]. Fewer works look
for anomalies or fraud in networks, rather than in text, for
instance [13]. A notable method, Botometer [14], formerly
called BotOrNot, is an online service that provides a score of
likelihood that a particular user is a bot. Since it is the only
state-of-the-art method with public access to the implementa-
tion, we will use it as a baseline for our experiments in Section
V. [4] gives a more comprehensive overview of Twitter bot
detection methods, and also provides the dataset we will use
in Section V-A1. Very few works focus on detecting organized
activity - groups working together to mislead people about who
they are and what they are doing, which is a rising issue [15].
ND-Sync [16] finds a related but different type of behavior,
i.e. “retweet spam”, where groups of multiple users exhibit
organized behavior by consistently upvoting a particular user’s
tweets.

https://github.com/mengchillee/InfoShield
https://github.com/mengchillee/InfoShield


C. Document Embedding and Clustering

Much work has been done to represent documents in a
machine-understandable format. The most widely-used ap-
proaches to represent documents include bag of words [17]
and term frequency-inverse document frequency (tf-idf) [18].
These methods are commonly used for plagiarism detection
[19], [20], [21], [22], which is a similar setting to near-
duplicate detection. However, none of these methods do vi-
sualization or ranking, and some assumptions do not work
in our case, i.e. [22] assumes documents consist of multiple
lines, which is not the case for tweets or the majority of escort
advertisements.

Unsupervised word vector models such as Word2Vec [23],
Doc2Vec [24], and FastText [25] assume that words occurring
in the same context tend to have similar meaning, with much
success. However, these methods require large amounts of time
and data to train. Even when trained using large datasets from
Twitter data and the HT domain, we find that these generic
embedding methods do not perform as well, as shown in
Section V.

Given any document embedding, we can choose from many
clustering algorithms. Density-based clustering techniques are
most relevant to finding small dense text clusters, such as
DBSCAN [26], HDBSCAN [27], OPTICS [28], or k-means
[29]. These are all powerful methods, but most of them are
searching for large clusters, as opposed to micro-clusters that
we care about,and none of them do slot-detection.

In Table I, we give several question-marks for cluster-
ing methods because some of the methods are scalable (k-
means), while others are almost quadratic; some methods are
parameter-free (G-means), but most are not.

Finding pairs of nearby points (or intersecting rectangles) is
an old problem, under the name of “spatial joins” [30], [31].
However, these methods are best for low-dimensional spaces,
since they use the R-tree [32] spatial access method.

D. Multiple-Sequence Alignment

Multiple-Sequence Alignment (MSA) is a well-studied area
with an application to biology, for comparing DNA sequences.
The Barton-Sternberg algorithm [33] is an early profile-based
approach which aligns sequences by updating a profile se-
quence iteratively. However, profile-based approaches generate
ambiguity among sequences. To solve this, [34] uses partial
order graphs instead of profile sequences, which enables a
base in dynamic programming to have multiple predecessors
and successors.

Nature Language Processing (NLP) is another area benefit-
ing from MSA. [35] applies MSA to learn the patterns of given
word sequences by word lattices and rewrite the sentences.
[36] focuses on aligning sentences by syntactic features to
create the description for a particular fact. However, most of
these methods highly rely on parameter tuning and English
syntactical rules, assuming that all sentences are grammatically
correct. This assumption does not hold for data on any social
network or for escort advertisements, where misspellings and

grammatical errors are common. Thus, these methods are not
generalizable.

E. Minimum Description Length

The Minimum Description Length principle (MDL) [37]
assumes that the best model M ∈ M for data D minimizes
C(M) + C(D|M), where C(x) is defined as the cost, i.e.
number of bits, needed to describe x losslessly. The main
insight is that it penalizes both the model cost C(M), as well
as the encoding of errors/deviations from the model C(D|M)
- while several other methods ignore the model complexity.

MDL has been extremely successful in several data mining
tasks [38], including decision trees (SLIQ [39]), graph mining
(CrossAssociations [40]), time series segmentation and mining
(AutoPlait [41]), string similarity [42], and many more appli-
cations. It formalizes the very intuitive “Occam’s razor” idea:
the simplest explanation for a phenomenon or dataset is the
best explanation.

While all of the above methods have provided unique and
interesting contributions, none have all of the same features as
INFOSHIELD. Table I contrasts INFOSHIELD against the state
of the art competitors.
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Practical- Scalable ? X X "

Practical- Effective ? ? ? ? X "

Practical- Ranked output ? ? X "

Parameter-free ? "

Principled "

Interpretable ? X X X "

Slot Detection X "

Generalizable X "

TABLE I: INFOSHIELD matches all specs, while competitors
miss one or more of the features. "?" means that it depends
on the specific clustering method, or that it is unclear from
the original paper.

III. PROPOSED METHOD - THEORY

In this section we present the theory behind our proposed
method.

A. Intuition and Theory

Our problem is split in the following parts: Given N
documents, where we suspect that there are small clusters of
organized activity:

1) Theory: how do we measure the goodness of a set of
clusters, and



2) Algorithms: how do we quickly find clusters that describe
patterns in the data concisely (INFOSHIELD-COARSE–
Section IV-A) and then how do we refine and visualize
these clusters (INFOSHIELD-FINE– Section IV-B).

Our MDL-based approach is best explained with examples.

Example 1 (Simple toy example). Suppose we have the
documents of Table II in a particular cluster.

How could we summarize them in a human-explainable
form?

Doc# Text
#1 This is a great soap, and the 5 dollar price is great
#2 This is a great chair, and the 10 dollar price is great
#3 This is a great hat, and the 3 dollar price is great

TABLE II: Simple toy example

One part of our proposed INFOSHIELD is to use templates,
which consist of constant strings and variable strings, called
slots. We depict slots with ‘*’, following the Unix convention.
We also allow the usual string-editing operations (insertions,
deletions, and substitutions). Thus, for the above 3-ad example,
a human (and our INFOSHIELD) would produce the template:
“This is a great *, and the * dollar price is great”
as shown in Table IV.

Let’s also consider a more complicated cluster with multiple
templates:

Example 2 (Full toy example). In addition to the documents
of Example 1, suppose that we also have the documents of
Table III:

Doc# Text
#4 This is great blue pen, and the 3 dollar price is so good
#5 I made 30K working on this job - call 123-456.7890 or visit scam.com
#6 I made 30K working from home - call 123-456.7890 or visit fraud.com
#7 Happy birthday to my dear friend Mike

TABLE III: Full, toy example

Doc # 4 belongs in T1, but with one deletion (omitting “a”),
one insertion (adding “so”) and one substitution (replacing
“great” by “good”). However, Docs #5-7 clearly do not belong
to the same template. We now would expect to see two
templates T1 and T2, with T1 representing Doc #1-4, T2

representing Doc #5-6, and Doc #7 does not belong to any
template.

Furthermore, we would like to visualize the templates that
we do find as follows:

In more detail, but still informal, INFOSHIELD should
achieve lossless compression, with the cost being as follows:

1) Model complexity C(M): the cost to encode the t tem-
plates we discover. In our working example, this would
be the coding cost (roughly, the number of characters,
below), for
T1: “This is a great *, and the * dollar price is great”
T2: “I made 30K working * - call * or visit *”

Constant Slot Insertion Deletion Substitution

T1 This is agreat * and the * dollar price is great
#1 This is a great soap, and the 5 dollar price is great
#2 This is a great chair, and the 10 dollar price is great
#3 This is a great hat, and the 3 dollar price is great
#4 This is great blue pen, and the 3 dollar price is so good
T2 I made 30k working * - call * or visit *
#5 I made 30k working on this job - call 123-456.7890 or visit scam.com
#6 I made 30k working from home - call 123-456.7890 or visit fraud.com

TABLE IV: Templates for Full, toy example.

2) Data compression C(D|M): the cost to encode slot-
values, insertions, and deletions, for each of the docu-
ments, with respect to its best template (or just the listing
of the words in the document, if no template matches).
Thus, for each document, we must store (a) the tokens
in slots, (b) position and token for insertions, (c) position
for deletions, (d) position and token for substitutions, and
(e) the template-id that best matches the document. Table
V shows the information we include in C(D|M) for our
running example.

Doc Temp. Slots Ins. Del. Sub.
#1 T1 {"soap", "5"}
#2 T1 {"chair", "10"}
#3 T1 {"hat", "3"}
#4 T1 {"blue pen", "3"} 12: "so" 3 13: "good"
#5 T2 {"on this job", "scam.com"}
#6 T2 {"from home", "fraud.com"}
#7 N/A "Happy birthday to my dear friend Mike"

TABLE V: Example encoding for C(D|M)

Notice that Docs #1-4 are compressed with much fewer
characters when we use template T1, since they have so many
phrases in common.

The coding cost is roughly proportional to the number
of characters we need to describe (1) and (2) above. More
formally,

Definition 1. [Total encoding cost] The total coding cost for
a set of n documents with t templates is given by

C = C(M) + C(D|M) (1)

In Section III-B, we explain the exact cost for N documents
and t templates more precisely. Then, in section IV, we
propose algorithms on how to discover such a good set of
templates.

We want to highlight that the separation of the cost func-
tion in Equation 1 from the algorithms makes INFOSHIELD
extensible: we can use any and every optimization algorithm
we want. The ones we propose in Section IV are carefully
thought-out, and give meaningful results, but any other set of
algorithms is fine to include – we can pick the solution with
the best coding cost.



Furthermore, INFOSHIELD is parameter-free: any optimiza-
tion algorithm minimizing total cost does not need user-
defined parameters — we can try as many parameter values
as we want, and pick the solution with the lowest cost.

B. Data Compression and Summarization

In this subsection, we give the details of the encoding cost
in INFOSHIELD. Table VI provides symbols and definitions
relevant to the encoding.

Symbols Definitions
N Total number of documents in D
t Total number of templates
V Number of words in vocabulary
Ti i-th template
li Length of template Ti

si Number of slots in Ti

l̂d Alignment length of data d
wd,j Number of words in j-th slot in aligned data d
ed Number of unmatched words in aligned data d
ud Number of substituted/inserted words in aligned data d
〈n〉 ≈ 2 lgn+ 1: universal code length for a non-negative integer
lg(L) = log2(L): code length for integer i (1 ≤ i ≤ L)

TABLE VI: Symbols and definitions for INFOSHIELD-FINE

1) Template Encoding: We use the notation 〈n〉 for the
coding cost of integer n, using the universal code length [43],
that is 〈n〉 = log∗ n ≈ 2× lg n+ 1.

We also assume that we have V vocabulary words total and
that each is encoded as an index, requiring dlg V e bits. For a
length-l document, we need 〈l〉 bits to encode the number of
words and lg V for each word, resulting the total cost 〈l〉 +
l ∗ lg V .

Definition 2 (Model encoding cost). The coding cost for t
templates is given by

C(M) = 〈t〉+
t∑

i=1

〈li〉+ li lg V + (1 + si) lg li (2)

Let’s describe every term of the above definition:
• 〈t〉 - universal coding, for the number of templates T
• For each template Ti, we need:

– 〈li〉 to encode the number of words in the i-th template
– lg V for each word in Ti

– lg li for the number of slots si in the template, and
– lg li for the location of each slot.

Arithmetic Example 1. The encoding cost for a single
template Ti with 10 tokens and 2 slots is:

〈10〉+ 10 lg V + 3 lg 10

2) Alignment Encoding: Given a template and a document
that it describes, what is the best way to encode the document?
The intuition is to encode insertions, deletions, and substitu-
tions in the template, and the tokens in slots. For the templates,
we need only encode the word-location of a mismatch, its type,
and, for insertion/substitution, we encode the relevant word.

Definition 3 (Data encoding cost). The coding cost for N
documents encoded with t templates is given by

C(D|M) = N + ld × lg V

+

t∑
i=1

∑
d∈Di

(lg t+
〈
l̂d

〉
+ l̂d

+ ed lg l̂d + ud lg V +

si∑
j=1

S(wd,j)),

(3)

where Di denotes the data encoded by template Ti. We
describe this definition in more detail:
Let DU denotes the documents that do not match any template.
The encoding cost for data d ∈ DU which is not encoded by
template is simply computed by ld × lg V . For the rest, the
reasoning is as follows: Given a template Ti and a document
d ∈ Di, the alignment coding cost is:
• 1 bit for template flag yes/no
• lg t for template-id (if the flag is ‘yes’):
•
〈
l̂d

〉
for length of the alignment

• 1 bit for each word in alignment if matched/unmatched
• lg l̂d for the location of each unmatched word
• dlg 3e = 2 bits for operation type of each unmatched

word (insertion/deletion/substitution)
• lg V for word index in vocabulary if insertion/substitution
• S(wd,j) for the number of words wd,j in j-th slot:

S(wd,j) = 1 +

{
〈wd,j〉+ wd,j lg V , if wd,j > 0

0 , otherwise
(4)

• repeat, for all other editing operations

Arithmetic Example 2. The alignment encoding cost of Doc
#4 by template T1 (see Table IV), is the following:

lg 2 + 〈14〉+ 14

+ 3 lg 14 + 2 lg V + 2× (1 + 〈1〉+ 1 lg V )
(5)

3) Overall Encoding: Notice that we ignored the cost of
encoding the vocabulary, since it would be the same for all
sets of templates, and roughly the number of bytes to spell
out all the vocabulary words, separated by a word-delimiter,
such as a newline character. More accurately, this would be:
〈V 〉+ V × (l + 1)× 8 where l is the average word length, 8
bits per character, and 1 bit for the delimiter between words.

IV. PROPOSED METHOD - ALGORITHMS

How can we find templates that minimize our cost function
in a scalable way? While the intuition described in Section III
is correct, finding such templates is an expensive operation,
being quadratic in the worst case. Thus, we first create rea-
sonable clusters of related documents in a scalable way, using
INFOSHIELD-COARSE, then work to find templates within
each cluster using INFOSHIELD-FINE. If the average cluster
size remains small, in comparison to N , then we process N
documents in sub-quadratic time.



A. INFOSHIELD-COARSE

How do we quickly create coarse-grained clusters of doc-
uments with high text similarity? We start with document
embedding, then perform clustering.

1) Document Embeddings: How do we generate a mean-
ingful document embedding? We wish to capture similarity
between documents that contain similar phrasing, but may
have small variations (insertions, deletions, misspellings, etc).
To this end, we first calculate the tf-idf weights for each phrase
(n-gram)-document pair in the corpus. When calculating tf-idf,
we consider phrases up to 5-grams. 1

Then, for each document, we extract the top phrases with the
highest tf-idf scores. By using tf-idf and limiting the number of
phrases used, we only keep the most important phrases in the
document that are unique to only a few advertisements, while
ignoring commonly-used phrases. By making the number of
phrases selected a function of input size, we reduce the risk
of our results being heavily impacted by document length.
Since some documents have a maximum length (i.e. tweets)
but many do not, this helps to prevent INFOSHIELD-COARSE
from being domain-specific.

2) Clustering: Now, how do we quickly create meaningful
candidate clusters? We construct a bi-partite graph of doc-
uments and phrases. For any document i and phrase j, we
construct an edge i, j if j is a top phrase in i. Once all doc-
uments are processed, we consider all connected components
in G to be our coarse-grained clusters.

In the case that these clusters end up too large; an “unim-
portant” phrases combined documents that ideally should not
be combined, we rely on INFOSHIELD-FINE to refine these
clusters and split them if necessary. This is why INFOSHIELD-
COARSE is very permissive, only requiring ads to share one
important phrase to be connected.

Algorithm 1 shows more formally how to construct a
document graph using INFOSHIELD-COARSE.

Data: N documents
Result: candidate clusters generated from N
initialize empty document-phrase graph
G = (V1, V2, E);

forall documents d do
forall phrase p in FindTfidfPhrase(d) do

E ← E ∪ (d, p);

clusters ←− FindConnectedComponents(G) ;
Algorithm 1: INFOSHIELD-COARSE

B. INFOSHIELD-FINE

Once we have coarse-grained clusters, how do we find
templates and visualize the resulting clusters? Given data
D containing multiple documents, split into coarse-grained
clusters, the goal is to automatically find a template set M
containing zero or more templates. Each template is expected

1Phrase length has little impact on results past n = 5: see Section V-E.

to encode at least two documents. Within each coarse-grained
cluster, the first task is to generate non-singleton candidate
sets of documents and find potential templates. Next, we
search for the best consensus document, i.e. the document
that most represents the cluster, and detect possible slots
by optimizing our cost function in Equation 3. We continue
finding templates until we’ve processed all documents in a
coarse-grained cluster, then move to the next cluster. We divide
our algorithm into three major steps as follows:

1) Candidate Alignment: Identify the candidate set for a
template and align all the documents in the set, using
multiple sequence alignment (MSA).

2) Consensus Search: Search for the best consensus doc-
ument in the alignment.

3) Slot Detection: Detect slots in the consensus document
to generate a template.

To compute the MSA, we carefully choose to use Partial Order
Alignment (POA) [34] as our alignment method for its effec-
tiveness and efficiency. It is worth noting that INFOSHIELD-
FINE can co-work with any off-the-shelf MSA approaches.

1) Candidate Alignment: Given data D from one cluster
generated by INFOSHIELD-COARSE, containing multiple doc-
uments at iteration i, the candidate set for the template needs
to be identified first. We first align all the documents d ∈ D
with the first document d1 individually and then compute the
cost C(d|d1) and C(d) for every d ∈ D; if C(d|d1) is smaller
than C(d), meaning that d and d1 have high similarity and
can possibly be encoded by the same template, we add d into
the set Di containing all similar documents found in iteration
i. Finally, we generate the alignment Ai by the POA method
with all documents in Di.

2) Consensus Search: After generating alignment Ai,
how do we decide which tokens are part of the template,
and which are insertions/deletions/substitutions? Keeping too
many words in the template causes more unmatched operations
(insertion/deletion/substitution); while keeping too few words
hurts interpretability.

To solve this problem automatically, we turn it into an
optimization problem by MDL. Function Sel(Ai, h) is used to
select the sub-alignment from the POA graph, where we only
keep edges between words that occur more than h times in
Ai. We aim to search for the best threshold h∗i to generate the
consensus of alignment with the lowest cost. The optimization
problem can then be formed as follows:

h∗i = min
h

C(Di|Sel(Ai, h)) (6)

Although our cost function is not convex, the optimization
problem is only 1-dimensional, being relatively easy to solve.
Hence we employ the Dichotomous Search algorithm [44]
as our optimization method, where it returns the optimal
solutions in most cases. The optimization algorithm is shown
in Algorithm 2, where we iteratively shrink the search space to
half. The consensus document T

′

i only contains one sequence
and no slot.

3) Slot Detection: Once we have a template, how do we
find slots? Slots contain parts of documents which we expect



Data: An alignment Ai and a candidate set Di

Result: A consensus document T
′

i

Initialize hL = 0, hR = |Di| − 1;
while hL < hR do

hM ← (hL + hR)/2;
if
C(Di|Sel(Ai, hM−1)) ≤ C(Di|Sel(Ai, hM+1))
then

hR ← hM − 1;
else

hL ← hM + 1;

T
′

i ← Sel(Ai, hM );
Return T

′

i ;
Algorithm 2: Consensus-Search

to differ, either in length or content, in the same location of
each document. Slots inherently differ from unmatched words;
instead of storing the location of each unmatched word per
document as we would for unmatched words, we only store
the location once, as part of the template.

Algorithm 3 shows how we do slot detection. We first
recognize the operation types of words by each alignment
a ∈ Ai, which are either insertions or substitutions. We
identify which words each potential slot p contains in the
given consensus document T

′

i . With this information, the
computation of total cost with or without the slot p can easily
be done. We only keep slots that decrease the total cost and
store them in Ti.

4) Relative Length: To study the quality of compression by
INFOSHIELD-FINE, we use relative length:

Relative Length =
Cost after compression

Cost before compression
(7)

When relative length is close to 1, it means that the quality of
compression is low; when it is close to lower bound, it means
that the quality of compression is high, and the compressed
documents are near-duplicate. For that reason, we derive the
lower bound encoding cost of a cluster to study whether it is
close to near-duplicate or not.

Lemma 1. The lower bound encoding cost of a cluster by
INFOSHIELD-FINE is

t

n
+

1

lg V
(8)

where t denotes the number of templates in the cluster, n
denotes the number of documents in the cluster, and V denotes
the number of words in vocabulary.

Proof. The encoding cost of n documents without template is
nl lg V . By Equation 2, we know that the encoding cost of
t templates is 〈t〉 + t(〈l〉 + l lg V + lg l); and by Equation 3,

we know that the encoding cost for each document with no
unmatched words is (1 + 〈l〉+ l). We can then derive:

〈t〉+ t(〈l〉+ l lg V + lg l) + n(1 + 〈l〉+ l)

nl lg V

≈ t lg V + nl

n lg V
≈ t

n
+

1

lg V
(9)

where l is a small constant value that is negligible. So the total
encoding cost for n near-duplicate documents by t templates
is approximately t

n + 1
lg V . �

Data: A consensus document T
′

i , an alignment Ai,
and a candidate set Di

Result: A template graph Ti with slot(s)
Initialize P as a dictionary, Ti = T

′

i ;
for a ∈ Ai do

x = 0;
for j = 1, .., la do

if aj is an insert or substitution word then
P [x]← P [x] + 1;

else
/* aj is a matched or deleted word */
x← x+ 1;

for p ∈ P do
if C(Di|T

′

i (p.slot← True)) < C(Di|T
′

i ) then
Ti ← Ti(p.slot← True);

Return Ti;
Algorithm 3: Slot-Detection

5) Overall Algorithm: The overall algorithm of INFOS-
HIELD-FINE is shown in Algorithm 4. Given data D contain-
ing multiple documents from one cluster by INFOSHIELD-
COARSE, we first initialize the template set T and the number
of detected template i. At iteration i, we initialize alignment
by the first document d0 ∈ D. We compare with all other
documents d ∈ D to identify whether they should be encoded
by the same template. After generating the alignment Ai

and the data Di that it encodes, we search for the best
consensus sequence T

′

i by optimizing the cost function. Then
we detect the slots on the consensus sequence T

′

i to generate
template Ti. We include the Ti into our template set T , and
compute the total cost for both templates and data encoded
by templates. If the total cost decreases by including Ti, we
include it into T and update the total cost; otherwise, we
treat Di as noise. We run INFOSHIELD-FINE on every cluster
generated by INFOSHIELD-COARSE, thus our final model M
is T1∪T2∪· · ·∪Tm, where m is the number of coarse clusters.
It is worth noting again that INFOSHIELD-FINE is parameter-
free, needing no human-defined parameters and optimizing for
each template automatically.



Data: Data D consisting of multiple documents
Result: A template set T
Initialize T , c∗ = C(D), i = 1;
while |D| > 0 do

Initialize Ai = d1 by the first document in D;
Initialize candidate set Di;
for d ∈ D[2 :] do

if C(d|d1) < C(d) then
Di ← Di ∪ {d};
Ai ←MSA(Ai, d);

T
′

i ← ConsensusSearch(Ai, Di);
Ti ← SlotDetection(T

′

i , Ai, Di);
c← C(T ∪ {Ti}) + C(D|T ∪ {Ti});
if c < c∗ then
T ← T ∪ {Ti};
c∗ ← c, i← i+ 1;

else
Treat Di as noise(s);

D ← D\Di

Return T ;
Algorithm 4: INFOSHIELD-FINE

C. Complexity Analysis

Lemma 2. INFOSHIELD is quasi-linear on the input size,
taking time

O(Ncl) +O(kmaxNlog(N)l2) (10)

where N is the number of documents, l is the (maximum)
length of a document, m is the number of coarse clusters,
c is the maximum number of non-duplicate documents in a
cluster, and kmax is the maximum number of templates in a
coarse-grained cluster.

Proof. We analyze the runtimes of INFOSHIELD-COARSE and
INFOSHIELD-FINE separately. For INFOSHIELD-COARSE, we
iterate through N documents, picking the top 10% of phrases
in N , and adding edges between these documents and phrases.
Thus the runtime of INFOSHIELD-COARSE is O(Nl), where
l is the average length of the documents.

In INFOSHIELD-FINE, there are a total of k iterations,
where k is the maximum number of templates generated from
the given data. With the help of vectorization, MSA can be
done in O(l2). For each iteration, Consensus-Search requires
O(logS

′×S′
l2) time, where S

′
is the average number of doc-

uments being aligned in each template; and Slot-Detection re-
quires S

′
l2 time. The time complexity of Candidate-Alignment

in each iteration is O(Sl2), where S ≥ S
′

is the average
number of documents in the each cluster. Thus the time
complexity of INFOSHIELD-FINE is O(

∑m
i=1 kiSi log(Si)l

2),
which is upper-bounded by O(kmaxN log(N)l2), and where
where m is the number of coarse clusters generated by INFOS-
HIELD-COARSE, kmax is the maximum number of templates
generated by a cluster.

In total, the algorithm takes time O(Nl) +
O(kmaxNlog(N)l2) time.

In practice, kmax ≤ 2 in the Twitter datasets. Furthermore,
the value of c will be quite low, since Twitter spambots post
many duplicate tweets, which will make the runtime fast.
Empirical evidence of this can be found in Figure 2, where
we see that INFOSHIELD-COARSE scales linearly with input
size. For the use cases presented in this paper, i.e. escort
advertisements and tweets, we also note that l is bounded (280
for Tweets). �

V. EXPERIMENTS

A. Description

Here, we give descriptions of all datasets and metrics, as
well as the experimental setup.

1) Twitter Bot Data: We use data from [4]. This data
includes the tweet text and user id. The data is split into the
following categories:

Dataset Accounts Tweets
genuine accounts 3,474 8,377,522
social spambots #1 991 1,610,176
social spambots #3 464 1,418,626
Test set #1 (spambots #1) 1,982 4,061,598
Test set #2 (spambots #3) 928 2,628,181

TABLE VII: Statistics for Twitter bot data

To create each test set, [4] sampled all tweets from 50%
genuine accounts, and 50% from either social spambots #1 or
social spambots #3. We use the provided test sets, which focus
on social spambots only, so we can easily compare results to
the best performing methods in [4].

This data not only contains binary labels as to whether
particular tweets were posted from bots or legitimate users, but
also inherent clusters; i.e. user ids that correspond to legitimate
users or bots.

We expect INFOSHIELD to cluster most tweets from bots in
clusters, ideally in one cluster per bot, and to have few clusters
with legitimate users in them. With this intuition, we can create
ground truth cluster labels in Twitter data as follows: (1) all
legitimate users get labeled -1, since we assume their tweets
are different enough that they shouldn’t be clustered together;
(2) all bots get labeled with their user id.

2) Human Trafficking Data - Trafficking10k Dataset: The
Trafficking 10k dataset is created in [7], where expert anno-
tators manually labeled 10,265 ads from 0-6. 0 represents
“Not Trafficking”, 3 represents “Unsure”, and 6 represents
“Trafficking”.There are 6,551 ads labeled as not HT, 354
labeled as “Unsure”, and 3,360 labeled as HT.

Since the likelihood of an ad being HT is subjective,
labeling is a difficult task. In fact, our analysis shows that 40%
of exact duplicate ads (without any preprocessing) had label
disagreement – i.e. multiple labels for the same exact text. Ads
that are exact duplicates account for 12% of the dataset. We
expect this labeling issue to occur for near duplicates as well.
Therefore, we argue that looking at ads individually, whether



manually or algorithmically, is a non-ideal way to find or to
label HT cases.

Despite the noisy labels, this is the only HT dataset to our
knowledge with labeled data by human investigators. Thus,
we use this dataset in our experiments, while being aware that
noisy labels may impact results.

This data does not have ground truth clusters. However, to
create binary labels, we can call scores 0-3 as not HT, and 4-6
as HT.

3) Human Trafficking Data – Cluster Trafficking: Cluster
Trafficking is a new dataset provided by Marinus Analytics.
This data contains cluster labels, provided by domain experts,
for both HT and spam advertisements. We are given 6 spam
clusters as well as ads from 96 massage parlors around the
US. Cluster Trafficking consists of 157,258 ads, with 6,283
spam ads, 50,985 HT ads, and 99,990 normal ads.

4) Baselines: Most state-of-the-art methods for HT de-
tection are not open-sourced. Instead, we compare against
HTDN [7], which usese the same Trafficking10k dataset, and
develop three baselines using state-of-the art text embedding
methods Word2Vec [23], FastText[25], and Doc2Vec [24]. We
train all models using 1 million escort advertisements from
the web. Then, we cluster using HDBSCAN [27] with a
minimum cluster size of 3. We call these methods Word2Vec-
cl, Doc2Vec-cl, and FastText-cl.

On Twitter data, we compare to three supervised methods
[45], [14], [46] and one unsupervised method [47]. These
methods all use Twitter-specific features that our domain-
independent INFOSHIELD does not use, such as number of
mentions, favorites, retweets, posting time, etc. The unsuper-
vised method is also not fully automatic, as a manually set
threshold discerns spam from legitimate tweets, which they
change for each dataset. Regardless, INFOSHIELD provides
comparable results to these baselines.

5) Metrics: For Twitter data, we have both binary labels
and ground truth cluster labels. To compare binary labels, we
can report precision, recall, and F1 score. For cluster labels,
we use Adjusted Rand Index (ARI) [48].

We calculate precision, recall and F1 by calling all doc-
uments that ended up in templates to be suspicious, and all
other documents as not suspicious.

B. Results

Here we report experiments to answer the following ques-
tions.
Q1. Practical: How fast is INFOSHIELD, and how well does

INFOSHIELD work?
Q2. Interpretable: How well does INFOSHIELD visualize

clusters? Are there any interesting results with respect
to the relative length metric?

Q3. Robustness: How much does INFOSHIELD-COARSE
change as we consider longer n-grams?

Then, we report advantages and observations about INFOS-
HIELD.

C. Q1 – Practical

How scalable is INFOSHIELD? By using INFOSHIELD-
COARSE to create coarse-grained clusters, and using the more
expensive INFOSHIELD-FINE on smaller input sizes, we save
time. We design an experiment on Twitter data by sampling
Tweets the same way [4] did to create the test sets, and report
the average runtime for each dataset out of five trials. The
result is shown in Figure 2. Error bars were too small to be
visible, so they were omitted.
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Fig. 2: INFOSHIELD is scalable: Linear on the input size;
≈8hours for 4M tweets, on a stock laptop.

How effective is INFOSHIELD? We run INFOSHIELD, as
well as our developed baselines on both the Twitter data and
Trafficking10k datasets. We report our results in Table VIII,
comparing against the two highest performing methods from
[4].

On Twitter data, INFOSHIELD always performs within ten
points of the top contender, despite using no features specific
to Twitter such as retweets, favorites, or posting times.

For HT data, we see that INFOSHIELD reports the highest
precision; this is crucial since we want to avoid giving false
positives to law enforcement at all costs. Law enforcement
would rather know that they receive a real HT case (precision)
than for all HT cases to be returned (recall) since they likely
won’t have time to pursue all cases. False positives cause law
enforcement to lose trust in the algorithm and abandon it – as
happened with previous applied solutions.

D. Q2 – Interpretable

How well does INFOSHIELD visually interpret the clusters
and templates we find? We show a few results of templates
for Twitter data, and a censored version for the HT data, with
discussion.

1) Twitter Data: As shown in Table IX, we find that 23
Spanish tweets are encoded by the given template. The first
22 ones are exact duplicates, but the last one contains three
different words. INFOSHIELD-FINE automatically determines
that representing those different terms as unmatched results,
rather than as a slot, gives a smaller total cost. We can easily
spot anomalies within clusters by using the template; the last
tweet will have a lower compression rate than all other tweets.

In Table X, we find that all the tweets are talking about
the most popular weekly stories. While the first half of all



Twitter Data
Dataset Test Set #1 Test Set #2
Metric ARI Prec. Rec. F1 ARI Prec. Rec. F1

INFOSHIELD 83.2 93.0 91.2 92.1 75.7 96.7 88.9 92.6
Cresci [47] n/a 98.2 97.2 97.7 n/a 100 85.8 92.3

BotOrNot [14] n/a 47.1 20.8 28.9 n/a 63.5 95.0 76.1
Yang [45] n/a 56.3 17.0 26.1 n/a 72.7 40.9 52.4

Ahmed [46] n/a 94.5 94.4 94.4 n/a 91.3 93.5 92.3

Human Trafficking Data
Dataset Trafficking10k Cluster Trafficking
Metric Prec. Rec. F1 Prec. Rec. F1 ARI

INFOSHIELD 84.8 50.7 63.5 85.4 99.8 92.0 43.1
Word2Vec-cl 19.4 10.7 13.8 71.7 99.5 83.1 9.6
Doc2Vec-cl 25.6 10.9 15.3 74.2 98.8 84.7 16.2
FastText-cl 28.4 22.4 25.1 69.6 99.6 81.9 6.8
HTDN [7] 71.4 62.2 66.5 — — — n/a

TABLE VIII: INFOSHIELD performs well: Notice that INFOSHIELD beats or approaches the best domain-specific method in
both settings. Bold shows the best score, underline shows methods within 10 points of the best. Methods in red are supervised,
while INFOSHIELD is unsupervised.
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Fig. 3: Perpetrators seem separable, thanks to our features: (a) shows all clusters (circles) and the lower bounds (black lines)
– points are above the lower bound, as expected. (b) heatmap of the same: most points are close to the lower bound. (c)
emphasizes the spam clusters as red stars, and (d) emphasizes the HT clusters as blue stars. Note that the majority of spam
and HT clusters (red and blue stars) sit apart from the benign clusters.

tweets are almost identical, with minor syntax differences,
the second half describes the particular stories, which all
differ. INFOSHIELD-FINE then detects the second half of each
sentence as a slot, which we expect to have different content
in each tweet. This will help researchers pay attention to the
most worth-studying parts.

2) HT Data: In Table XI, we show an example template
from the HT domain. Unfortunately, we must censor the
text to protect potential HT victims, so we only provide
the highlighting from the template. For the slots, we give a
description of the type of text they represent.

Notice that slots tend to include consistent user-specific
information. For example, the second slot, if not empty, always
discusses time. With a quick glance, a domain expert can easily
find this data, rather than looking at a longer wall of text.
For the HT domain, interpretability is key: law enforcement
will only have to read one template, rather than each cluster
member individually, to determine if this cluster is suspicious.

The slots also contain messy data: i.e. while each slot has
a specific purpose in Table XI, the text can be in multiple
formats, i.e. “until 9pm” vs. “9 P.M”, etc. Work could be done
to automatically extract and process the information within
each slot, but this is beyond the scope of this paper.

3) Relative Length: Next, we consider the relative length, to
further investigate the clusters detected by INFOSHIELD. How
does the relative length of a micro-cluster change as a function

of the number of documents? Do we notice any differences
between the relative lengths of spam clusters vs. HT clusters?
Using the Cluster Trafficking dataset, we illustrate the lower
bound of relative length versus number of documents per
cluster in Figure 3(a), where the black lines from left to right
denote the lower bound of clusters with one to four templates.
For example, the clusters with two templates (orange dots)
cannot be on the left side of the second black line. As shown in
Figure 3(b), most clusters are concentrated by the lower bound,
meaning that they do not have high numbers of documents.
Further analysis surprisingly finds that spam and HT clusters
follow patterns in this space. As shown in Figure 3(c), most
spam clusters (red stars) have small relative length with a high
number of documents; in Figure 3(d), there are two patterns of
HT clusters (blue stars): (1) the near-duplicate clusters with
a high number of documents (but slightly lower than spam
clusters), (2) the outlier clusters that lie far from the lower
bounds.

E. Q3 – Robustness

How sensitive is INFOSHIELD-COARSE to the length of n-
grams we use to calculate tfidf scores? We run an experiment
on one of the datasets we used for our timing experiments,
which contains 100,000 tweets by sampling all tweets from
50% legitimate accounts and 25% social spambot #1 accounts,
and 25% social spambot #3 accounts. We detail the results in
Figure 4.



Constant Slot Insertion Deletion Substitution

T1 sismo richter km al sureste de puerto escondido oax lat lon pf km
#1 sismo richter km al sureste de puerto escondido oax lat lon pf km
Omit 21 Identical Tweets as #1 ...
#23 sismologicomx sismo magnitud loc km al sureste de puerto escondido oax lat lon pf km

TABLE IX: INFOSHIELD is language-independent: Spanish template from Twitter dataset.

Constant Slot Insertion Deletion Substitution

T1 the mostpopular most popularstories on pr daily this week from * are *
#1 the most popular stories on pr daily this week from instagram to mr t and perhaps even your grocers produce httptcokbfwdfts
...
#14 the most popular stories on pr daily this week from new cover photo rules on facebook and a battle of the soci httptcoeuetyugbku
#15 the mostpopular stories on pr daily this week from whimsical words to hillarys texts here are this weeks mos httptcoymwflapn
...
#27 the mostpopular stories on pr daily this week from understanding sopa to dating a pr professional here are the httptcoploce

TABLE X: INFOSHIELD detects slots: template from Twitter dataset.

Constant Slot Insertion Deletion Substitution

T1 not shown for victim’s safety
#1 (empty) time (empty) (empty)
#2 personal description time (empty) cost
#3 (empty) time (empty) cost
#4 personal description (empty) preferences cost
...18 similar ads

TABLE XI: Slots contain user-specific information: template from HT dataset.
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Fig. 4: 5-grams are enough: Precision stabilizes after n = 4.

F. Discussion and Discoveries: INFOSHIELD at Work

We note that INFOSHIELD has the following advantages:

Advantage 1. INFOSHIELD is general, using no language-
specific or domain specific features.

In fact, the Twitter data includes tweets in Spanish, Ital-
ian, English, and Japanese, and we use no language-specific
features in our methodology. In INFOSHIELD-COARSE, we
automatically let tf-idf penalize common words, so there is
no need to include stop-words in our algorithm. Note that
the template in Table IX is in Spanish, while the template in
Table X is in English. This makes our method very powerful;
it can be run on text in almost any language, or on other text
data such as DNA strings.

Advantage 2. INFOSHIELD is extensible: the goal of minimiz-
ing the total cost is separate from the algorithms we propose
to do so.

In fact, one could replace INFOSHIELD-COARSE and IN-
FOSHIELD-FINE with similar algorithms achieving the same
end goal of pre-clustering and minimizing the total cost. We
propose the algorithms above because they are scalable, and
effective on real data.

Advantage 3. INFOSHIELD does not require any user-defined
parameters.

By using Consensus-Search to find the optimal algorithm,
we remove the need for user-defined parameters in INFOS-
HIELD-FINE.

VI. CONCLUSIONS

We presented INFOSHIELD, which finds small clusters of
near-duplicates in a collection of documents like escort ads for
human trafficking detection, and visualizes the micro-clusters
in a clear manner.

The main contributions of the method are that it is:
• Practical, processing 4 million documents in 8 hours,

on a Dell Alienware laptop with 32GiB RAM and i7
processor, running Arch Linux,

• Parameter-free & Principled, based on the MDL princi-
ple,

• Interpretable, providing a clear visualization and summa-
rization of clusters, and

• Generalizable and independent of domain (Twitter, HT),
as well as of language (English, Spanish etc).

Reproducibility: Code is open-sourced here: https://github.
com/mengchillee/InfoShield. The twitter datasets are public
[4]. The Trafficking10K dataset is available after NDA – email
Cara Jones (cara@marinusanalytics.com).

https://github.com/mengchillee/InfoShield
https://github.com/mengchillee/InfoShield
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