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Preface

Introduction

Real-world decision-making often requires reasoning about when an event will occur. The overarching goal of
such reasoning is to help aid decision-making for optimal triage and subsequent intervention. Such problems

involving estimation of Times-to-an-Event frequently arise across multiple application areas, including,

Healthcare and Bio-informatics: More commonly known as ‘Survival Analysis‘ involves prognostication of
an adverse physiological event like a stroke, the onset of cancer, re-hospitalization, and mortality. Time-to-
event or survival analysis can be used to proactively mitigate adverse outcomes and extend the longevity of
patients.

Internet Marketing and e-commerce: Models employed for estimating customer churn and retention in
large commercial organizations are essentially time-to-event regression models and help determine best
practices to maximize customer retention.

Predictive Maintenance: Reliability engineering and systems safety research involves the use of remaining
useful life prediction models to help extend the longevity of machinery and equipment by proactive part and
component replacement.

Finance and Actuarial and Sciences: Time-to-Event models are ubiquitous in the estimation of optimal
financial strategies for setting insurance premiums, as well as estimating credit defaulting behavior.

T% =1 year $3 Death
Patient A +————v—f§3 O Censored
C = 3 years
Patient B {]
T* =4 years
Patient C £3
C = 2 years
Patient D O
v v
0 1 2 3 4 5

Time in Years —

Figure 1: Censoring and Time-to-Event Predictions: Patients A and C died 1 and 4 years from entry into
the study, whereas Patients B and D exited the study without experiencing death (were lost to follow up) at
2 and 3 years from entry in the study. Time-to-Event or Survival Regression thus involves estimates that are

adjusted for individuals whose outcomes were censored.
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Figure 1 illustrates a typical example of a Time-to-Event problem in healthcare. The challenge of working
with time-to-event data is compounded by the fact that as evidenced in the figure, such data typically includes
individuals whose outcomes are unobserved, or ‘censored, either due to a loss of follow-up or end of the
study. Discretizing time-to-event outcomes to predict if an event will occur is a common approach in standard
machine learning. However, this neglects temporal context, which could result in models that misestimate
and lead to poorer generalization

Time-to-Event Regression, often referred to as Survival Analysis or Censored Regression involves learning
of statistical estimators of the survival distribution of an individual given their covariates. As opposed to
standard regression, survival analysis is challenging as it involves accounting for outcomes censored due to loss
of follow up. This circumstance is common in, e.g., bio-statistics, predictive maintenance, and econometrics.
With the recent advances in machine learning methodology, especially deep learning, it is now possible to
exploit expressive representations to help model survival outcomes. My thesis contributes to this new body
of work by demonstrating that problems in survival analysis often manifest inherent heterogeneity that can be
effectively discovered, characterized, and modeled to learn better estimators of survival.

Heterogeneity may arise in a multitude of settings in the context of survival analysis. Some examples
include heterogeneity in the form of input features or covariates (for instance, static vs. streaming, time-
varying data), or multiple outcomes of simultaneous interest (more commonly referred to as competing risks).
Other sources of heterogeneity involve latent subgroups that manifest different base survival rates or diverse
responses to an intervention or treatment.

In this thesis, I aim to demonstrate that carefully modelling the inherent structure of heterogeneity can
boost predictive power of survival analysis models while improving their specificity and precision of estimated
survival at an individual level. An overarching methodological framework of this thesis is the application of
graphical models to impose inherent structure in time-to-event problems that explicitly model heterogeneity,
while employing advances in deep learning to learn powerful representations of data.

Furthermore, through innovative probabilistic and numerical optimization techniques we explore how
the learnt estimators can be made actionable tools for decision support. By enforcing constraints that improve
model interpretability, we explore opportunities for enhancing the utility of such models, a requirement that
is paramount in critical scenarios such as healthcare.

Our major contributions can be summarized as follows:
v’ Part I: Estimators for Survival Analysis

v’ Chapter 1 : We first introduce a new approach, Deep Survival Machines to estimating the survival distribu-
tion P(T" > t|X) using a parametric mixture model with representations learnt with neural networks.
We demonstrate the superiority of this model type in situations with competing risks where knowledge
is shared across outcomes. In the IEEE Journal of Biomedical and Health Informatics (Nagpal et al., 2021c¢).

v’ Chapter 2 : We extend Deep Survival Machines to settings where input data has -variates that vary
over time prior to when the survival curve is estimated. We learn time-varying representations of the
covariates with the use of recurrent neural architectures and demonstrate the effectiveness of the result
at estimating length of stay and mortality in critically ill Intensive Care Unit patients. This work was
published at the AAAI Spring Symposium on Survival Prediction (Nagpal et al., 2021b).

v’ Chapter 3 : We propose a model that expresses the time-to-event distribution using a mixture of Cox
models, parameterized with neural representations. We develop an efficient Expectation Maximization
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based inference procedure for this model that involves Monte-Carlo sampling to infer latent components.
We demonstrate that our approach has improved calibration over existing alternatives, especially on
minority demographics. This work was completed during an internship at Google Brain and is accepted
for publication at the Machine Learning for Healthcare Conference (Nagpal et al., 2021d).

v’ Part II: Subgroup Discovery for Heterogeneous Treatment Effects

v’ Chapter 4 : We hypothesize that in the observational settings, the individuals’ responses to a treatment
or intervention manifest heterogeneity conditioned on certain latent characteristics of the subjects. We
propose Heterogenous Effects Mixture Model to recover the latent subgroups from data if they exist, while
estimating confounding effects, using deep learning. Work was carried out during an internship with
IBM Research and published at the ACM Conference on Health, Inference and Learning (Nagpal et al., 2020).

v’ Chapter 5 : We propose to extend our Heterogenous Effects Mixture Model to settings with censored
outcomes. In such settings, latent group membership may jointly affect base survival rates as well as
prognosed treatment effects. By decoupling the base effect of survival with treatment effect heterogeneity,
we propose to extend estimators introduced in Part I to reflect counterfactual outcomes and discover
actionable phenotypes from the perspective of decision support. This work was presented at the ACM
Conference on Knowledge Discovery and Datamining 2022 (Nagpal et al., 2022a).

v’ Part III: Interpretable Approaches for Actionable Time-to-Event Analysis.

v’ Chapter 6 : Recovering Sparse and Interpretable Subgroups with Heterogeneous Treatment Effects
with Censored Time-to-Event Outcomes
In this section we propose a statistical approaches to recovering sparse phenogroups (or subtypes)
that demonstrate differential treatment effects as compared to the study population. Our approach
involves modelling the data as a mixture while enforcing parameter shrinkage through structured sparsity
regularization. We propose a novel inference procedure for the proposed model and demonstrate its
efficacy in recovering sparse phenotypes across large landmark real world clinical studies in cardiovascular
health. Presented at the Machine Learning for Health Symposium 2022 (Nagpal et al., 2023).

v’ Chapter 7 : Integer Risk Scoring with Censored Time-to-Event Outcomes

Integer risk scoring methods are ubiquitous across multiple aspects of healthcare for disease severity
estimation and subsequent intervention, management and resource allocation. Historically, integer
risk scoring methods have involved heuristic methods driven by domain expertise. Recently there has
been an interest in using machine learning to recover optimal solutions to the integer scoring problem
for binary outcomes. However, a large number of outcomes are time-to-events. In this chapter, we
propose an alternate formulation for the integer risk scoring system involving Mixed Integer Non-Linear
Programming that directly models the relative hazard for each individual. We demonstrate that, as
opposed to existing methods, our formulation has robust performance across multiple time horizons. We
demonstrate the ability of our approach to recover interpretable disease staging models across multiple
real world health studies.
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Glossary

Time-to-Event typically refers to a quantity of interest that represents the elapsed duration between begin-
ning of the study (or the time when an individual enters a study) till the time at which an event of interest
takes place. In the case of health data this could be an event like Death or Stroke or a combination of multiple
such events of clinical relevance. Survival analysis typically involve statistical estimation of the distribution

of time-to-events.

Survival Probability is the probability that a time-to-event for a subject would occur only beyond a certain
period of time. Typically notated as S(t), the survival probability is mathematically equal to unity minus the
cumulative density of the time-to-event at a certain time ¢. Thus,

S(t) =E[L{T > t}] = P(T > t)
—1-P(T<t). (1)

Kaplan-Meier (KM) Estimator It is a non-parametric estimate of the survival function that assumes that
the time-to-event and the censoring distribution are independent. The KM Estimator can be given as,

S(t) = 1— di) ,
with ¢; a time when at least one event happened, d; the number of events (e.g., deaths) that happened at time
t;, and n; the individuals known to have survived (have not yet had an event or been censored) up to time ;.

Hazard Rate The hazard rate, typically notated as A(-), of a time-to-event is the probability that an event
will occur in a given time interval, given that the event has not already occurred. It is a measure of the risk of
an event occurring at a particular point in time. The hazard rate can be used to compare the risk of an event
occurring between different groups of people or under different conditions.

Suppose that an individual has survived for a time ¢ and we desire the probability that it will not survive for
an additional time dt, the hazard rate A(-) over time is,

A(O) = Tim P(t<T<t+dt) _ P(T:t)’ or A(l) =

d
dt—0 dt- S(t) S(t) log S(t). (2)

dt

Cumulative Hazard Rate The cumulative hazard rate, also known as the cumulative hazard function for
a time-to-event distribution, is a function that measures the total amount of hazard (risk) that has been
accumulated up to a certain point in time. Typically denoted as A (), it is calculated by integrating the hazard
function over time. Thus,

A(t):/OtA(t), and  S(t) =exp (—A(t)). (3)

13
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Proportional Hazards (PH) An assumption common to survival and time-to-event analysis that involves
assuming that the hazard rates of two individuals or sub-populations are constant over time. The constant
value is referred to as the hazard-ratio of the study.

Semi-Parametric Models A class of modelling approaches that involve both parametric and non-parametric

components. Note that Semi-Parametric models are more general than non-parametric or parametric models.

Cox Model The Cox Proportional Hazards model (Cox, 1972) is a popular semi-parametric regression approach
for estimating a survival curve for an individual conditioned on its co-variates. The Cox Model is subject to
assumptions of Proportional Hazards, that is, that the conditional hazard rates for any two individuals are
constant across time. Mathematically the Cox model assumes that following parametrization,

log A(t|X = x) =log Ag(t) + f(0, ).

Typically the function f(-) is assumed to be affine. More recent research has involved modelling f(-) using
neural networks. Ag(-) is the non-parametric baseline hazard rate.

Partial Likelihood The parameters of the Cox Proportional Hazards model are estimated by minimizing the
partial likelihood. The partial likelihood is so called as it is independent of the non-parametric component
Ao (+) representing the base hazard rate. Mathematically, the partial likelihood PL(0) is defined as

B t|acl Mexp( f(6;x; )
PL(O) = H Z}_[ > mexp( f(0;x;)) “

ER (ti) jER(t:)

- exp (f(H; fcz))

- i:gl , %: )eXP (f(e; mj)) ' (5)
je

where R(t;) is the ‘risk set” - the set of individuals that survived beyond time ¢;.

Breslow’s Estimator The non-parametric component of the Cox Proportional Hazards model, the Base
Cumulative Hazard can be estimated using the Breslow’s estimator (Breslow, 1972a).

- 1 ~ ~
AO(t):Z;t S ow ((Ba) and,  So(t) = exp (— Ao(1)) (6)

JER(t:)

here, Sy(t) is the corresponding base survival rate. The individual survival can then be estimated as,

S(t|X = a) = Sy(t)P/ (@),

Heteogeneous Treatment Effects (HTE) refers to the variation in the magnitude and direction of the effect
of a treatment or an intervention across different subgroups of a population. Not everyone responds to a
treatment in the same fashion. Some individuals may benefit more from a treatment than others, and some
people may not benefit at all (or worse, are harmed).

Mixed Integer Non-Linear Programming (MINLP) It is a class of numerical optimization techniques in-
volving optimization of a non-linear function (typically a convex function) over a mixed set of integer and
continuous variables. MINLP problems are typically NP-hard and involve the use of dynamic programming
techniques such as branch-and-bound search to make them tractable to solve.



Preliminaries

Throughout this thesis, unless specified otherwise, we

will work with a dataset of right-censored instances G G
D := {(x;, t;,0;) }]-, where x; is the set of covariates

of an individual. ; € RT is the time to event or cen- @

soring as indicated by the indicator ¢; € {0, 1}. Time-
to-event or survival estimation problem thus reduces

to estimating the conditional distribution of survival
notated as @ e

BT > t}|X = z] Figure 2: Conditional Independence of the True

=PI > t[X =) Time-to-Event 7™ and the censoring times C.
=1-P(T<t|X==x). (7) Only X, T and A are observed.

Here, T refers to the distribution of the censored survival time 7' = min(T™*, C'), where T* is the
distribution of the true time-to-event and C'is the distribution of the censoring time (Figure 2). A is the
distribution of the censoring indicator A = 1{T™ < C'}. Typically we do not observe the true event times for
individuals lost to follow up as in Figure 1. Note that we will assume that the event of interest can only take
place once. This assumption is natural when modelling time-to-death or time to the first event, a common
end-point in clinical settings. Events that can recur along the lifetime of an individual are beyond the scope
of the discussion for the purposes of this thesis.

For these individuals, we observe the censored survival time, T and an indicator of if they were censored,
A =T < C. Assuming conditional independence between 7" and C'ie. T' L C'| X allows identification of the
distribution of P(7'| X).

For the censored individuals, we maximize the probability corresponding to the survival function. The
likelihood, ¢(-) under censoring is thus given as

L({x,t,8}) <« P(T =t|X = x)’P(T > t|X = x)' °. (8)

Note that P(T" > t|X = ) is the conditional survival function and typically notated as S(¢| X = ). Often
in survival analysis literature likelihoods are expressed in terms of instantaneous hazard rates A(t). The
instantaneous hazard maybe defined as the event rate at a time ¢, conditional on survival (7" > ¢) till that
time. Thus,

Pt<T<t+dt) PT=t)

A(t) = lim = or, A(t)=

d
diso  dt-S(b) S log S(t). (9)

dt
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Now reasoning in terms of hazard rates, we can rewrite Equation 8 equivalently as
L({x,t,0}) x A(t|X = x)°S(t|X = x). (10)
Broadly the popular approaches for maximizing the likelihood above are classified as,

Parametric Assumes the distribution of the time-to-event P(T'| X = ) is parametric like Weibull or Log-
Normal. Examples includes the popular Accelerated Failure Time model.

Non-Parametric Involves learning kernels or similarity functions of the input covariates followed by a non-
parametric (Kaplan-Meier or Nelson-Aalen) estimation of the survival rate weighted with a kernel obtained
either heuristically or learnt via representation learning.

Semi-Parametric the Cox Proportional Hazards model and its extensions arguably, remain the most popular
approaches and are classified as semi-parametric. The Cox model involves a two step estimation where the
feature interactions are learnt through a parametric model followed by non-parametric estimation of the
base survival (hazard) rate.



Part I

Machine Learning Estimators for Survival
Analysis

17






Motivation

Survival regression is a field of statistics and machine learning that deals with the estimation of a survival
function representing the probability of an event of interest, typically a failure, to occur beyond a certain time
in the future. Survival regression models time-to-event by estimating the survival function, S(-| X) £ P(T >
t|X'), conditional on X, the input covariates. Examples include estimating the survival times of patients
after certain treatment using clinical variables, or predicting the failure times of machines using their usage
histories, etc. Survival regression differs from standard regression due to censoring of data, i.e. observation

of some subjects stops before occurrence of an event of interest.

o Proportional Hazards Lo Non-Proportional Hazards
>
b
= 0.81 0.8
2
[}
S 061 0.6
et
=W
= 0.4 0.4
<
2
z‘ 0.2 0.24
50 .
n
0.0 0.0 T
1 2 3 4 5 0 1 2 3 4 5
1.0
1.04
0.81
) 0.81
k=
& 0.61
=} 0.6
g
50 0.4
usi
0.0 T T T T 0.0 T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Time in Years — Time in Years —

Figure 3: Non-Proportional Hazards: When the Proportional Hazards assumptions are satisfied, the Survival
Curves and their corresponding Hazard Rates dominate each other and do not intersect. In many real world
scenarios however, the survival curves. Part I of this thesis proposes flexible estimators of Time-to-Events in

the presence of non-proportional hazards.

Classical statistical machine learning techniques for survival regression rely on non-parametric or semi-
parametric methods for survival function estimation, primarily because they make working with censored
data relatively straightforward. However, non-parametric methods may suffer from the curse of dimen-
sionality, and semi-parametric approaches usually depend on strong modeling assumptions. In particular,

19
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the prevailing assumption of constant proportional hazards over lifetime as proposed by Cox (1972) in the
Proportional Hazards model (commonly referred to as CPH), is very likely to be unrealistic in many practical
scenarios encountered in healthcare, predictive maintenance, econometrics, or operations research. See
Figure 3 for an illustration of a violation of the proportional hazards assumption.

Significant volume of recent research is focused on improving the CPH model. Kraisangka & Druzdzel
(2016, 2018) combined Bayesian networks with the CPH model to improve both the model interpretability
and predictive power. Researchers have also tried to incorporate structural sparsity, regularization, as well as
active and multitask learning when available data is scarce (Vinzamuri et al., 2014; Vinzamuri & Reddy, 2013;
Li et al., 2016). Other efforts have involved incorporating non-linear interactions between the covariates in
the original model. Rosen & Tanner (1999) proposed using a mixture of linear experts for the original Cox
model. Other approaches for incorporating non-linearities considered replacing the linear interaction terms
in the CPH model with deep neural networks, first explored in Faraggi & Simon (1995), followed by Xiang et al.
(2000), and again recently by Katzman et al. (2018) with their DeepSurv approach. Extensions to that work
have involved convolutional neural networks and active learning for healthcare applications in oncology
(Mobadersany et al., 2018; Nezhad et al., 2019). However, those approaches are still subject to the same strong
assumption of proportional hazards as the original CPH formulation.

In the first part of this thesis, we investigate improvements over existing survival analysis methods by
proposing approaches that involve modeling the Time-to-Event distribution conditioned on the input data as
a fixed size mixture, while learning expressive representations of the input data using deep learning. Our
contributions allow for flexible modelling of the Time-to-Event analysis challenges without making strong
assumptions on the event time distributions.

The first chapter of this thesis proposes a general parametric approach, Deep Survival Machines (DSM), to
model static survival data with censored outcomes. We apply the DSM methodology to several real-world
datasets and demonstrate its advantages over existing baselines. We further evaluate DSM’s capability to
model data with multiple competing outcomes or risks.

The subsequent chapter extends the Deep Survival Machines methodology to the longitudinal or dynamic
setting involving covariates that vary over time. The performance is benchmarked on Length of Stay and
Mortality prediction from critically-ill ICU patients.

Finally, in Chapter 3, we propose a finite size mixture of Cox regressions and an efficient learning algorithm
to perform inference under such model. We demonstrate that this approach can be effective at modeling non-
proportional hazards and has competitive discriminative capability while outperforming several baselines in
terms of calibration.



Chapter 1

Fully Parametric Survival Regression and
Representation Learning

1.1 Preliminaries

We assume that the survival data we have access to is right-censored. This implies that our data, D is a set of
tuples {(x;, t;, 51)}5\;1 Where typically, x; € R? are features associated with an individual ¢; is the time at
which an event of interest took place, or the censoring time and ¢; is an indicator that signifies whether ¢; is
event time or censoring time. For a given individual, we only either observe the actual failure or censoring
time but not both. For simplicity, it is assumed that the true data generating process is such that the censoring
process is independent of the actual time to failure. We denote the uncensored subset (6 = 1) of data as Dy
and the censored (6 = 0) subset as D¢.

1.2 Proposed Model: Deep Survival Machines

!
|

Figure 1.1: The proposed Deep Survival Machines pipeline. The input features, x are passed through a deep
multilayer perceptron followed by a softmax over mixture size, K. The Conditional Distribution of P(7'| X =
x) is then described as a mixture of K PRIMITIVE distributions, drawn from some prior.
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In this section we describe our approach, Deep Survival Machines (DSM) architecture and inference in
further detail. Fig. 1.1 is a visual representation of our approach while Fig. 1.2 describes the model in plate

notation.

1.2.1 Primitive Distributions

We choose to model the conditional distribution P(7T| X = x) as a mixture over K well-defined, parametric
distributions which we will refer to as PRIMITIVE distributions for the remainder of this chapter. Given that
we are modeling survival times, a natural assumption for these PRIMITIVE distributions is to have support
only in the space of non-negative reals. Another property of interest is to have a closed form solution for
the cDF (cumulative distribution function), as this would enable the use of gradient based optimization for
Maximum Likelihood Estimation.

Table 1.1: Choices for the PRIMITIVE distributions.

WEIBULL LOG-NORMAL
1 _(t\" _ (nt-n)?
poe(t) | 3(4)" e () | 1o
—(i)77 1 Int—n
CDF(t) e B ierfC( — WB)

For DSM, we experiment with two types of distributions that satisfy this property, the Weibull and the
Log-Normal distribution. The first of them has closed form PDF (probability distribution function) and cDF.
For the Log-Normal, we compute the cDF by using the standard approximation of the complementary error
function erfc as implemented in PyTorch. The full functional forms of the distributions are listed in Table
1.1. We parameterize the (3 and 7, as:

Bk = B + act(®o(z;) '¢), M = 1) + act(Pg(z;) " €)

Here the act(-) is the SELU and Tanh activation functions for the Weibull and Log-Normal respectively,
and ®(.) is a Multilayer Perceptron (MLP). x; are the input covariates. {6, &, ¢, 3 and n} are all parameters
that are learnt during training. Another set of parameters that are learnt are w that determine the mixture
weights for each data point.

Figure 1.2 introduces the proposed model in plate notation and the corresponding conditional inde-
pendence assumptions of the Graphical Model. The input features, x;, are passed through the MLP, ® to
determine the representation ;. This representation then interacts with the additional set of parameters
to determine the mixture weights w and the parameters of each of K underlying survival distributions
{nk, Bk} ,. The final individual survival distribution for the event time T is a weighted average over these
K distributions.
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The Generative Story at Test Time

1. x;,~D
We draw the co-variates of the individual, x;

2. w, ¢, €~ N(0,1/x)

The parameters of the model are drawn from a zero mean Gaussian distribution.

3. z; ~ Discrete(softmax(®g(z;)  w))

Conditioned on the covariates, x; and the parameters, w we draw the latent z;

4. log By ~ N (Bo,1/x)
log 7, ~ N (10, 1/x)
The set of parameters {3 }X_, and {7} X, are drawn from the prior 3, and np.
t; ~ PRIMITIVE S, i)

5. where, 8, = fB), + act(®g(xi) ' ¢)

s = 1, + act(Pg(z;) ' €)
Finally, the event time ¢; is drawn conditioned on 3., and 7., .

Figure 1.2: Deep Survival Machines in plate notation.
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1.2.2 Parameter Estimation

In order to accommodate for heterogeneity arising in the data, we propose to model the survival distribution
of each individual as a fixed size mixture of survival distribution primitives. At test time, the survival function
corresponding to this held out individual is described as a weighted mixture of the survival distribution
primitives. Here, the weights are a softmax of the output of a deep neural network. At training time, the

parameters of the network and the survival distribution primitives are learnt jointly.

Uncensored Loss. We consider the maximum likelihood estimator for the uncensored data which can be

written as:
InP(Dy|®) = In ( P(T = t;|X = x;, @)>

K
= Zln <ZP(T =t|Z =k, B, m)P(Z = k| X = Xivw)>

=1 k=1

— Zln (ZN(]E [P(T = t;|Z, Br, 77k)]>

|xi,w)

(Applying Jensen’s Inequality)

> Z <Z~ E InP(T = t;]Z, ﬁkﬂ?k)])

= ELBOU(G))

Censoring Loss. Proceeding as above, we can write the lower bound of loss for the censored observations as:

D
InP(D¢|O©) =1n <HIP(T > 41X = Xi,®)>
i=1
D
> Z (Z IlE )ln]P’(T > ti|Z,5kﬂ7k)]>
= ELBO((O)

Mitigating Long Tail Bias. Survival distributions with positive support typically have long tails, a compli-
cation that adds to the bias when performing Maximum Likelihood Estimation. Note that for the censored
instances of data, we are maximizing the probability P(T > t¢). One conceivable way of adjusting for the
long-tail bias is to instead maximize P(tmax > T > t) = P(T > t) — P(T > tmax) where tyax is some
arbitrarily large value that represents the last event or the follow up time in the study. However, for simplicity,
we choose to directly discount the censoring loss by multiplying it with a factor a € [0, 1], which has a similar

effect of diminishing bias arising from the long tails.
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Prior Loss. We include the strength of the prior on the Sy, 7y, as:

K
ﬁprior =In < H P(/Bkv le\@ 77))
k=1

K
> IP(B]B) + InP(k|n)
k=1

K
A 1Bk = BIE + [k = nll2-
k=1

Combined Loss. We finally combine the individual components of loss described above into:
Ecombined = ELBOU(@) +a- ELBOC(@) + Eprior-

Here, o is a scalar hyperparameter that trades off the contribution of regression loss vis-a-vis the evidence
lower bound of the uncensored observations to the combined objective function. For a complete formulation

of the loss function, in terms of functions and parameters please refer to Appendix A.1.

Table 1.2: Descriptive statistics of the datasets used in the experiments.

Dataset Type Dataset Dim. Feature Dim. No. Events No. Censoring
SUPPORT Single Risk 9,105 30 6,201 (68.1 %) 2,904 (31.9 %)
METABRIC | Single Risk 1,904 9 1,103 (57.9 %) 801 (42.1 %)

o Event1 7,600 (25.3%)
SYNTHETIC | Competing Risks 30,000 12 15,000 (50.0 %)
Event2 | 7,400 (24.7%)

o BC 13,564 (20.7%)
SEER Competing Risks 65,481 21 47,672 (72.8 %)
CVD 4,245 (6.5%)

1.2.3 Handling Multiple Competing Risks

We adapt Deep Survival Machines to scenarios involving multiple competing risks by allowing learning of
a common representation for the multiple risks by passing through a single MLP (®(.) in Fig. 1.1). This
representation then interacts with a separate set of {&, {, w} in order to describe the event distribution for
each competing risk. Maximum Likelihood Estimation is performed by treating the occurrence of a competing
event before the other event as a form of independent censoring. This strategy allows the model to leverage
knowledge from the two (in general, more than two) competing tasks by allowing parameter sharing through

a single intermediate representation.

1.3 Experiments

We evaluate Deep Survival Machines on their ability to measure relative risks for a single event of interest in
the presence of censoring, and then we further consider ablation experiments where we artificially increase
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the amount of censoring to demonstrate the robustness of the proposed approach. Finally, we demonstrate
DSM’s ability to learn representations of the covariates for transferring knowledge across two events in the
competing risks scenario with censoring.

1.3.1 Datasets

Single Event/Single Risk. We evaluated performance of the proposed method on the following real-world
medical datasets with single events: Study to Understand Prognoses Preferences Outcomes and Risks of
Treatment (SUPPORT) (Knaus et al., 1995), and Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) (Curtis et al., 2012). A brief introduction of each dataset is provided below.

SUPPORT: The SUPPORT dataset resulted from a study conducted to describe a prognostic model to
estimate survival over a 180-day period for 9,105 seriously ill hospitalized patients. Of the 9,105 patients, 6,201
patients (68.1%) were followed to death, with a median survival time of 58 days. We used 30 patient covariates,
including age, gender, race, education, income, physiological measurements, co-morbidity information, etc.
Missing values of certain physiological measurements were imputed using the suggested normal values' and
other missing values were imputed using the mean value for numerical features and the mode for categoricals.

METABRIC: The METABRIC data came from a study conducted to determine new breast cancer subgroups
and facilitate treatment improvement using patients’ gene expressions and clinical variables. The dataset
consists of 1,904 patients and 9 features. 1,103 patients (57.9%) were followed to death with a median survival
time of 115.9 months. The dataset used was preprocessed as in Katzman et al. (2018) and downloaded from
the PySurvival library?

Competing Risks. We also evaluated the performances on two datasets with competing risks: a synthetic
dataset and the Surveillance, Epidemiology, and End Results (SEER) dataset.

SYNTHETIC: In order to demonstrate the effectiveness of DSM as a representation learning framework,
we experiment with synthetic data that is generated following the spirit of Alaa & van der Schaar (2017b) &
Lee et al. (2018) using the same generative process as they described.

ng‘)’ Xgi), ng') ~ N(0,1)
() ~ exp <(73T x{)2 + ) Xgi))

TQ(i) ~ exp <(fy3TX§i))2 + ’y;xg)>

Here x(¥) = ( §”, xg) , xg) ) is a tuple representing the covariates of the individual i. The Event times T}
and T, are exponentially distributed around functions that are both linear and quadratic in X. We generate
30,000 patients from the distribution out of which 50% are subjected to random right censoring by uniformly
sampling the censoring times in the interval [0, min{T7, T5}]. Clearly, the choice of our distributions for
the event times are not independent and would allow a model to leverage knowledge of one event to better
predict the other, which is what we intend to demonstrate.

http://biostat.mc.vanderbilt.edu/wiki/Main/SupportDesc
https://square.github.io/pysurvival/
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SEER: This dataset’provides information on cancer statistics among the United States population. We
focused on the breast cancer patients in the registries of Alaska, San Jose-Monterey, Los Angeles and rural
Georgia during the years from 1992 to 2007, with the follow-up period restricted to 10 years. Among the 65,481
patients, 13,564 (20.7%) died due to breast cancer (BC) and 4,245 (6.5%) died due to cardiovascular disease (CVD),
which were treated as the two competing risks in our experiments. We used 21 patient covariates, including
age, race, gender, diagnostic confirmation, morphology information (primary site, laterality, histologic type,
etc.), tumor information (size, type, number etc.), and surgery information. Missing values were imputed

using the mean value for numerical features and the mode for categorical features.

1.3.2 Baselines

We compare the performance of DSM to the following competing baseline approaches:

Cox Proportional Hazards (CPH): This is the standard semi-parametric model, making the assumption
of constant baseline hazard. The features interact with the learnt set of weights in a log-linear fashion in
order to determine the hazard for a held-out individual.

Random Survival Forests (RSF): This is a popular non-parametric approach involving learning an
ensemble of trees, adapted to censored survival data (Ishwaran et al., 2008).

DeepSurv (DS): Proposed by Katzman et al. (2018), DeepSurv involves learning a non-linear function that
describes the relative hazard of a test instance. It makes the familiar assumption of constant baseline hazard,
as does CPH.

DeepHit (DH) (Lee et al., 2018): This approach involves learning the joint distribution of all event times
by jointly modelling all competing risks and discretizing the output space of event times.

Fine-Gray (FG) (Fine & Gray, 1999): This is a classic approach used for modelling competing risks
that focuses on the cumulative incidence function by extending the proportional hazards model to sub-
distributions.

For the SYNTHETIC and SEER datasets with competing risks, we compare performance of DSM to cause-
specific (cs-) versions of CPH and RSF that involve learning separate survival regressions for each competing
event by treating the other event as censored.

Performance Metrics

We evaluate DSM by assessing the ordering of pairwise relative risks using Concordance-Index (C-Index) (Har-
rell, 1982). To demonstrate performance of our approach vs. the methods subject to Coxian assumption, we
show the comparison of performances using the time-dependent Concordance-Index C*¢ (Antolini et al.,
2005).

Cl(t) = P(F(t|x;) > F(t|x;)|6; = 1,T; < T;,T; < t)

Here, F'(t|X) is the estimated cDF by the model at the truncation time ¢, given features X . The probability is
estimated by comparing relative risks pair-wise. In order to obtain an unbiased estimate for the quantity,
we adjust the estimate with an inverse propensity of censoring estimate, as is common practice in survival
analysis literature (Gerds et al., 2013).

Shttps://seer.cancer.gov/
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Observing C*? by different evaluation time horizons enable us to measure how good the models are at
capturing the possible changes in risk over time, thus alleviating the restrictive assumption C-Index makes of
constant proportional hazards. For completeness, we report the C*? at different truncation event horizon
quantiles of 25%, 50%, 75%.

Practical utility of deployed applications and their interpretability requires survival analysis models to
be well calibrated. We thus further assess calibration of DSM in comparison to the baselines by computing
the Censoring Weighted Brier Score (Gerds & Schumacher, 2006; Graf et al., 1999) at each event’s quantile.

Experimental Setup

Hyperparameters: For all the experiments described subsequently we train DSM with the Adam optimizer
(Kingma & Ba, 2014) using learning rates of {1 x 1073, 1 x 10~*}. The number of experts, K for each event is
chosen from {4, 6, 8} and the discounting factor « is chosen from {1/2,3/4, 1}. The prior strength X is set as
1 x 1078 for all the experiments and not tuned. We report the C*® for the best performing set of parameters
over the grid in cross validation for both DSM and the baselines. The representation learning function ®(.) is
a fully connected Multi-Layer Perceptron with 1 or 2 hidden layers with the number of nodes in {50, 100}
and ReLU6 activations. The choice of Log-Normal or Weibull outcome is further tuned as a hyper parameter.
All experiments were conducted in PyTorch (Paszke et al., 2019).

Evaluation Protocol: For each experiment we report the standard error around the mean of the C*? in 5-fold

cross validation.?
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Figure 1.3: Time-Dependent Concordance Index C* for SUPPORT dataset at different quantiles of event times for
different levels of censoring.

1.4 Results

1.4.1 Single Event Survival Regression

Parameter inference for DSM involves the exploitation of a closed form of the cDF, which makes DSM amenable
to gradient based optimization. Naturally one would expect that a greater amount of censoring will reduce
the available information to be modeled, thus adding bias and leading to poorer estimates of the survival

function.
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Figure 1.4: Time-Dependent Concordance Index (C*?) for METABRIC dataset at different quantiles of event times for

different levels of censoring.
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Figure 1.5: C*? for competing risks on SYNTHETIC data.
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Figure 1.6: C*? for competing risks on SEER data.

In this section, we will empirically investigate DSM’s robustness to censoring and compare it to the
relevant baselines by artificially censoring the event times. We uniformly sample a censoring time between
[0, T) for a randomly chosen subset of the uncensored training data. This is only applied to the uncensored
instances of the training splits with the same experimental protocol as used in the previous Section 1.3.2. (By
not censoring the test splits we are able to better estimate the C'*?). We perform this artificial censoring on
the single event METABRIC and SUPPORT datasets and reduce the uncensored training data to 50% and 25%

of its original amount.
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Figure 1.3 summarizes the performance of DSM on the SUPPORT dataset in 5-fold cross validation. Notice
that RSF is comparable to DSM in the 25% quantile of event time horizons across all levels of censoring,
however, DSM significantly outperforms RSF on the longer event quantiles. Similarly, we observed that
although DeepSurv was competitive in longer event horizons, DSM significantly outperformed DeepSurv in
the shorter horizons, demonstrating superiority.

For METABRIC, we observed that DSM outperformed the Deep Learning baselines significantly. Although
RSF was competitive, DSM outperformed RSF on average in 10-fold cross-validation.

Brier Scores and C'* obtained for METABRIC and SUPPORT data, can be found in Appendix A.1.1, and they
present DSM’s calibration ability to be at least on-par and often better when compared to the alternatives.

We close this section with a brief discussion on the scenarios when DSM can possibly achieve performance
gain over alternative methods. When the data is sparse during certain time spans, e.g. the longer event
horizons, the parametric nature of DSM makes it more robust than the non-parametric or deep learning based
methods. On the contrary, the fitting of other competing non-parametric models and deep learning based
approaches suffer from this lack of data. Furthermore, since DSM does not make the constant proportional
hazard assumption like the CPH model or its variants, DSM is able to capture the flexible patterns of the
survival functions when such assumptions do not hold.

1.4.2 Competing Risks Scenario

For the SYNTHETIC dataset, we observe in Fig. 1.5 that DSM is competitive with DeepHit and outperforms
all the other baselines in the 25%, 50%, 75% quantiles of event horizons. For comparison, we also report the
performance at 100% quantile and observe that DSM is significantly superior to DeepHit for both events, thus
confirming its robustness to events at longer horizons.

From Fig. 1.6, on the SEER dataset we observe that for the majority risk, Breast Cancer, DSM significantly
outperformed all the other baselines. The results for CVD were less conclusive with DeepHit being competitive
at the 25% quantile. We owe this to the class imbalance between the two types of risks. Note that for visual
clarity we do not report Fine-Gray and cs-RSF since their performance was poor. We defer the actual numbers
and confidence intervals to Appendix A.1.1.

1.4.3 Representation Learning and Knowledge Transfer

We also conducted a set of experiments to evaluate the performance of DSM as a representation learning
framework in the competing risks scenario. We compare its ability to transfer knowledge across multiple
competing risks to relevant deep learning alternatives.

We divide the SYNTHETIC data into two equal subsets of 15,000 samples each. For the first set, we discard
all records that had Event 2 before Event 1. For the second set, we perform similar preprocessing and discard
all rows where Event 1 occurred before Event 2. This effectively converts the two subsets into single event
censored datasets for Event 1 and Event 2 respectively. We train DSM, DeepSurv and DeepHit on the first half of
the dataset for the prediction of Event 1. The learned model is then used to extract representations for the
second subset. The output of the final layer is exploited as an overcomplete representation of the original set
of co-variates of the individual observation. In both cases, we tune the models by brute-force over one and
two hidden layers and the dimensionality of the hidden layers in {25, 50, 100}.
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Table 1.3: Knowledge transfer across tasks and representation learning capability on the SYNTHETIC dataset.
Representations were trained on Event 1 and used to predict relative risks for a held-out set on Event 2 using
the CPH model.

Model C-Index (90%-CI)
NNMF 0.5940 £ 0.0044
VAE 0.6494 £ 0.0044

K-PCA 0.7422 £ 0.0055

DeepSurv | 0.6988 = 0.0038
DeepHit | 0.7688 £ 0.0040

DSM 0.7724 + 0.0025
METABRIC SUPPORT

601 140
é 50 - g 1201
4 40 @ 100
= E g0
= 30 =
= o
g £ 601
[=} i =}
g 20 5 40
& &

101 20

'DSM CPH RSF DS DH 'DSM CPH DH RSF DS

Figure 1.7: Comparison of training times required. Parameter inference with DSM is faster than other deep learning
approaches, and it scales better with data size.

For completeness, we also experiment with Kernel-PCA (K-PCA) (Schélkopf et al., 1997), Non-Negative
Matrix factorization (NNMF) (Lee & Seung, 2001) and modern Variational Auto Encoders (VAE) to learn latent
representations. Note that as compared to DeepSurv and DSM, K-PCA, NNMF and VAE are intrinsic methods
that do not have access to the label of the original risk (Event 1) at training time and hence are limited in
their expressive capability.

Once the representations are extracted for the second subset of the data, a linear Cox Proportional Hazards
(CPH) Model is trained on them for the competing risk (Event 2). Table 1.3 presents the result of concordance
of the learned CPH model on the extracted embeddings. DSM outperforms the competing baselines.

1.4.4 Model Complexity and Scalability

We would like to stress that the advantage of Deep Survival Machines is not only in terms of competitive
predictive performance but also in the ability to manage computational and inference complexity. Since
DSM involves making reasonable parametric assumptions, inference requires fewer parameters to learn

as compared to the considered alternative approaches. In this section, we compare the training time and
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Figure 1.8: Number of learnable parameters in best architectures. DSM requires fewer parameters than deep learning

alternatives.

the model complexity in terms of the number of parameters of DSM vis-a-vis the established deep learning

baselines, DeepHit and DeepSurv, as well as the linear Cox Proportional Hazards regression CPH.

From Figures 1.7 and 1.8, the advantage of DSM in runtime and space complexity vs. considered deep

learning alternative models is clearly visible. Note that while RSF is faster in training on METABRIC, it scales

poorly with increasing amounts of data as evidenced by slower runtime on the larger SUPPORT dataset.



Chapter 2

Deep Parametric Time-to-Event Regression
with Time-Varying Covariates

2.1 Introduction

Time-to-event regression in healthcare and other domains, such as predictive maintenance, require working
with time-series (or time-varying) data such as continuously monitored vital signs, electronic health records,
or sensor readings. In such scenarios, the event-time distribution may have temporal dependencies at various
time scales that are not easily captured by classical survival models that assume training data points to
be independent. In this chapter, we describe a fully parametric approach to model censored time-to-event
outcomes with time varying covariates. It involves learning representations of the input temporal data
using Recurrent Neural Networks such as LSTMs and GRUs, followed by describing the conditional event
distribution as a fixed mixture of parametric distributions. The use of the recurrent neural networks allows
the learned representations to model long-term dependencies in the input data while jointly estimating the
Time-to-Event. We benchmark our approach on MIMIC I1I: a large, publicly available dataset collected from
Intensive Care Unit (ICU) patients, focusing on predicting duration of their ICU stays and their short-term life
expectancy, and we demonstrate competitive performance of the proposed approach compared to established
time-to-event regression models.

Several important applications of survival analysis require working with interdependent temporal data
such as multiple hemodynamic vital signs. Standard extensions to survival models for longitudinal data
involve representing input covariates with aggregate statistics accrued over time in order to make them
compatible with standard survival regression approaches. However, some data modalities, such as time series,
cannot always be sufficiently captured using statistical featurization of static snapshots of the input features.

Furthermore, in the case of discrete temporal data, such as electronic health records, certain historical
events may be more informative and more consequential, with long term effects that require modeling at
multiple scales with factors more capacious than simple aggregate statistics such as moving averages and
variances over time.

In time-to-event regression literature, such input data are known as time-varying covariates. While there
is a large amount of existing work on extensions of classical statistical methods involving such data, modern
machine learning approaches to model time-varying covariates are relatively understudied.

33
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In this chapter, we propose Recurrent Deep Survival Machines (RDSM), a fully parametric survival analysis
method for modeling time-to-event data in the presence of time-varying covariates. RDSM builds on the
original DSM model (Nagpal et al., 2021c) by replacing the learned representation with a Recurrent Neural
Network (RNN) architecture, such as a standard RNN or its variants, e.g., GRU (Cho et al., 2014a) or LSTM (Gers
et al., 1999). As in the case of the original DSM model, we assume that once the representations are obtained,
the event arrival times are distributed as a mixture of underlying parametric distributions. The parameters
of these underlying distributions are also assumed to be functions of the obtained representations, and are
learned jointly with the recurrent neural architectures. Our key contributions in this chapter are:

« We propose a novel censored Time-to-Event regression model, Recurrent Deep Survival Machines, that
allows modeling of time-varying coefficients by using RNN layers with flexible parametric choices on the

event-time distribution.

« We demonstrate the utility of RDSM on Mortality and Length-of-Stay prediction in the MIMIC-III dataset of
ICU patients, and compare performance of the proposed approach against established censored survival
regression baselines.

« Finally, we release the RDSM model as part of the open-source auton-survival (Nagpal et al., 2022b)
python package for wider dissemination with the survival analysis research community.

2.2 Related Work

The surge of deep learning methods for machine learning have prompted related research in the use of
deep learning for augmenting classic survival models. Katzman et al. (2018) propose DeepSurv, a proportional
hazard model where relative risks are estimated using a neural network. DeepSurv allows to model non-linear
proportional hazards however, is still restricted to the strong cox assumptions of proportional hazards.

Lee et al. (2019a) propose DeepHit that involves discretizing the event space with fixed intervals and
treating the survival analysis problem as binary classification over these horizons. DeepHit has competitive
performance by alleviating the proportional hazards assumption but scales poorly to large datasets especially
at longer horizons. Ren et al. (2019) propose an RNN based model but only in the context of static features
and do not discuss time-varying covariates.

Apart from Deep Learning approaches popular approaches for survival analysis also include non-parametric
techniques including Random Survival Forests (Ishwaran et al., 2008) and Gaussian Processes (Ferndndez
et al., 2016; Alaa & van der Schaar, 2017b).

Statistical methods for longitudinal data have proposed to model censored survival data by analysing
different follow up times, commonly known as landmark times. These approaches involve building separate
models for each time (Van Houwelingen, 2007). Two stage landmarking have been explored to model the
disease evolution within those intervals and extract meaningful representations which are then used to build
standard survival regression models (van Houwelingen & Putter, 2011).

Another approach aims to model longitudinal and survival outcomes simultaneously by sharing a latent
representation (Henderson et al., 2000). This joint modeling benefits from shared knowledge between models
but suffers from intractability and computational complexity.

Modern ML methods for modeling time-to-event outcomes in the presence of time-varying covariates

are relative understudied. Lee et al. (2019a) propose Dynamic-DeepHit involving recurrent neural networks but
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Figure 2.1: Recurrent Deep Survival Machines: The model involves first passing the set of input covariates sampled
over time {x!,x?, ..., x7} through the RNN, ®(-) to obtain the corresponding set of representations {x!,%?, ..., %7} at
each time step. The remaining Time-to-Event distribution is then modeled as a mixture of parametric distributions
where the parameters of the distributions are functions of the input representations. The use of RNNs allows us to learn
representations that retain knowledge from previous times steps.

suffers from similar limitations as the original DeepHit model. In a similar vein, Jarrett et al. (2019) further

propose MatchNet involving temporal convolution networks.

2.3 Proposed Model: Recurrent Deep Survival Machines

Notation and Setting

We assume that we want to model a right-censored dataset, implying that our data, D is a set of tuples
{(X;, ti,6;)} Y |, where t; is the time at which an event of interest took place, or the censoring time, and §; is
an indicator that signifies whether ¢; is the event time or censoring time. &; is the set of features sampled over

time along with the corresponding timestamp at which the datawas sampled X; := {(x},7}), (x7,77), ...(x], 7/
We notate X7 as the set of all covariates observed before time-step j and introduce remaining time-to-event
at atime-step j as / = (¢ — 77). Thus the learning problem reduces to estimating the distributions of the
conditional remaining time-to-event at each time step j, P(T'(j) | Xij ).

We assume that we either only observe the actual failure or censoring time, but not both, for each
individual. Furthermore, for the purposes of identification, it is assumed that the true data generating process

is such that the censoring process is independent of the actual time to failure.

Deep Survival Machines

The key idea behind the original Deep Survival Machines model is to assume that the conditional survival
distribution of an individual with covariates x is a mixture of fixed-size parametric distributions like the
Weibull or Log-Normal. The shape and scale parameters of the underlying distributions, as well as the mixing
weights, are implemented as a function of the input covariates using neural networks. Thus:

P(T=tX =x)=Y P(Z=kX=x)P(T =t|X =x,Z =k). (2.1)
k
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Here, P(Z = k|X = x) = softmax(f(®(x))) where f is a linear function and P(T’ = ¢|X = x, Z = k)
is Weibull or Log-Normal with shape and scale parameterized as functions of the representation ®(x).

MP(T=tX =x)=In> P(Z=kX=x)P(T =t|X =x,Z=k)
k

> P(Z=kX=x)nP(T =t|X =x,Z =k). (2.2)
k

In the original DSM model, the authors proposed to perform inference using a lower bound to the
maximum likelihood estimate under the above model as in Equation 2.2.

Structure of Recurrent DSM

Figure 2.1 gives a schematic description of our proposed approach. In order to allow RDSM to incorporate
streaming data inputs, we will extend our discussion and consider the remaining time-to-event distribution
T(j) at a timestep, j. Instead of treating this distribution as static as in standard survival settings, modeling
it as a function of time allows capturing the time varying effects of the input covariates.

Assumption 1 (Independent Censoring) For an individual with remaining time-to-event distribution, T'(§), cen-

soring time C' and set of observed covariates, X till time j;

T(G) LC| &7

Assumption 1 is analogous to the standard assumptions of random (non-informative) censoring in static
survival analysis. This assumption is required for the purpose of identifiability. Assuming independent
censoring, we can factorize the log-likelihood of the data from an individual at a time step j with remaining
time to event r/ = t — 77 over the censored and uncensored likelihood. We thus arrive at the following:

P({&X7,r7,8}) = P(T = 7| X7)OP(T > 7| x7) (179, (2.3)

Assumption 2 (Statefulness) For an individual with event-time distribution at time j, T'(j) and the set of covariates
observed till time-step j, X7;

T(j) L (X \X7) | &7

Assumption 2 essentially states that the distribution of the remaining time-to-event at time j, 7'(j) is
completely characterized by the data at time steps preceding j. Although, in practice, later events in the
data stream might effect the final event-time ¢, notice here that we consider the instantaneous event time
distribution at time j, T'(j) instead, which we allow to evolve as more data is accrued. We require to make
this assumption in order to enable inferring event risks dynamically, in a streaming fashion.



2.4, EXPERIMENTS 37

Learning

In the case of time-varying covariates, we have access to the full data stream X" and not just a single feature
vector x. We thus replace the learning objective with the following objective modified to allow streaming
(time-varying) data. For Maximum Likelihood Estimation we can represent the log-likelihood of a single
time-step of the data stream as follows:

LEXT,17,6}:0) = (1 —8)InP(T > 9]0, X7) + 6§ InP(T = 716, x7). (2.4)

Where § is an indicator of whether the individual experienced the event or was lost to follow-up (censored)
and 6 is the set of parameters to be inferred. This is a direct consequence of Equation 2.3. Now, leveraging the
assumed statefulness, we can rewrite the loss factorized over each time-step as:

P({r',r?,..r7}|0, X7) = [[P(T = 7|0, X7),0r [[P(T > 1710, X7). (2.5)
J J
From Equation 2.5 we can rewrite the loss in Equation 2.4 as a sum over each time-step as
LUX,,6}:0) =) (1—0)mP(T > rI|0, X7) + s InP(T = 1710, X7).
J
Here, P(T > 7|0, X7) and P(T = 770, X7) are functions of the input representation:

P(T = 170, 27) = Y softmax(f (RNN(AY))P(T = 17| Z = k, RNN(A7)).
k

Note that here the term W\I() refers to the output of the Recurrent Neural Network (LSTM or GRU).
P(T =17|Z =k, IW\I(X 7)) is obtained by making a parametric choice (like the ‘Weibull’ distribution) and
the shape and scale parameters for each Z modelled as functions of ﬁﬁ?\l(ét’ . P(T =176, X7) is defined
similarly for the uncensored data.

And finally, the full log-likelihood over the entire dataset, D := {(X;, t;, 5i)}£\;1 is:
D

LD;0) =YY (1=6)ImP(T > ][0, X)) + 65 mP(T = r]|0, &7).
g

Here we introduce subscript 7 to refer to a single individual in the dataset. This likelihood can be optimized
using a gradient based, first order optimizer. In practice, we optimize a lower bound of the following likelihood
similar to Equation 2.2 as was proposed for DSM.

2.4 Experiments

Task and Dataset

We work with the large publicly available dataset of over 50,000 ICU admissions from the Beth Israel Deaconess
Medical Center, MIMIC I1I (Johnson et al., 2016). In critical care scenarios, it is of interest to be able to accurately
quantify the Length-of-Stay (LOS) of an admitted patient, and their in-hospital mortality. Such estimation
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allows decision makers to help allocate adequate healthcare resources including staff and equipment, as
well as get a sense of the seriousness of the patient’s condition and guide their triage upon admission, and
treatment thereafter. For our experiments, we use MIMIC-extract (Wang et al., 2020) to obtain a subset of
all patients who were in the ICU for at least 30 hours. Our subset includes all measurements including vital
signs and medications administered, sampled every hour. A stay at ICU can be terminated by either of the
two competing events: Discharge, or Death. For mortality prediction, we define the target variable to be time
in the ICU from admission till death, with discharge being a censoring event. For Length-of-Stay prediction,
the target variable is time from admission till discharge, with death being the censoring event.

2.4.1 Evaluation

We use the first 24 hours of data from admission to estimate if the remaining ICU Length of Stay would exceed
1, 3 or 7 days. Simultaneously, we aim to estimate if a patient would experience death within the next 1,3 or 7
days. Among 24,430 patients spending at least 30 hours in the ICU, 4,886 were used as a test set to evaluate the
performance of models, while the rest were left for training and hyper-parameter tuning. For both RDSM and
the baselines, the best set of hyperparameters were chosen to maximize the log-likelihood on a development
set consisting of 2,443 patients.

We evaluate performance in terms of Area under the Receiver Operating Characteristic curve (AuROC)
and Brier score on a left-out test set for the two tasks: ‘Length of Stay’ and ‘Death’. Metrics were measured on
the agglomerated risks computed every hour during the first 24 hours after admission.

During evaluation, the AuROC and Brier Scores are computed by considering censoring events as positive
(negative) for Length-of-Stay (Mortality) prediction.' The metrics could also be adjusted to account for the
censoring using Inverse Propensity of Censoring Weighting (IPCW) by employing a Kaplan-Meier estimator
of the censoring distribution (Uno et al., 2007; Hung & Chiang, 2010a) as is popular in survival analysis. We
however avoid this approach as in ICU or critical-care settings time-to-event (death) and censoring time
(discharge) are not independent, leading to biased estimates when adjusted using the Kaplan-Meier estimator.

2.4.2 Baselines

We compare the performance of RDSM to the standard Deep Survival Machines (DSM) model which assumes
data at each time-step to be independent. We also benchmark performance against the DeepSurv model that
assumes proportional hazards and DeepHit model that discretizes event times.

2.4.3 Hyperparameter Choices

We performed a simple grid search to coarsely optimize performance of the RDSM model. The choices of
hyperparameters include the type of the recurrent neural network cell (selected from vanilla RNNs, LSTMs
or GRUs), the batch size (selected from {125, 250}), the learning rate ({1 x 1073, 1 x 107*}), the number
of hidden layers ({1, 2, 3}), the dimensionality of the hidden layer ({50, 100,200}), and the number of
underlying parametric distributions to use for the mixture (k € {3, 4, 6}). For fair comparison the baseline

IThis is an intuitive choice: a discharged patient is not likely to experience mortality immediately post ICU admission.
Similarly, a dead patient most likely had poor physiology and would end up with a longer ICU length of stay. Note: This
adjustment is only made during evaluation. At training time censored observations are treated as censored.
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Model Death<1 Death<3 Death<7 LOS>1 LOS>3 LOS>7
DeepSurv | 0.897 (0.004) | 0.859 (0.003) | 0.841(0.002) | 0.740(0.002) | 0.715(0.002) | 0.756 (0.003)
DeepHit | 0.897 (0.004) | 0.859 (0.003) | 0.798 (0.003) | 0.851(0.001) | 0.724(0.001) | 0.786 (0.002)
DSM 0.898 (0.004) | 0.863 (0.002) | 0.846(0.002) | 0.819(0.002) | 0.737 (0.001) | 0.801 (0.001)
RDSM 0.923 (0.003) | 0.890 (0.002) | 0.872 (0.002) | 0.864 (0.002) | 0.740 (0.002) | 0.796 (0.003)

Table 2.1: Area under ROC Curves on the MIMIC-III dataset for Length of Stay (LOS) and Mortality Prediction (Death).
(95% CIs were generated by bootstrapping the test set, DSM: Deep Survival Machines, RDSM: Recurrent Deep Survival
Machines)

Model Death<1 Death<3 Death<7 LOS>1 LOS>3 LOS>7
DeepSurv | 0.005 (<0.001) | 0.027 (<0.001) | 0.058 (<0.001) | 0.115(<0.001) | 0.215(0.001) | 0.096 (0.001)
DeepHit | 0.005 (<0.001) | 0.028 (<0.001) | 0.168 (<0.001) | 0.084 (0.001) 0.224 (<0.001) | 0.100 (0.001)
DSM 0.005 (<0.001) | 0.027 (<0.001) | 0.059 (<0.001) | 0.080 (0.001) 0.198 (<0.001) | 0.088 (0.001)
RDSM 0.005 (<0.001) | 0.026 (0.001) | 0.059 (0.002) | 0.073 (<0.001) | 0.193 (0.001) | 0.091 (0.001)

~— ~— ~— ~—

Table 2.2: Brier score on the MIMIC-III dataset for Length of Stay (LOS) and Mortality Prediction (Death). (95% CIs were
generated by bootstrapping the test set, DSM: Deep Survival Machines, RDSM: Recurrent Deep Survival Machines)

models were also optimized over the same grid design as for RDSM. Additionally, all models were trained using
the Adam optimizer (Kingma & Ba, 2014). For fair comparison, we employed early stopping by evaluating the
likelihood on a 10% subset of the training set.

2.5 Results

As summarized in Tables 2.1 and 2.2, performance of the DSM model is improved by the use of Recurrent
Neural Networks across all the tasks, a clear indicator that considering time-varying covariates allows to better
model the multivariate longitudinal time series data such as MIMIC-III. Furthermore RDSM demonstrates
competitive performance when compared to other published deep learning based survival approaches. As
compared to approaches such as DeepHit, RDSM does not involve discretization of the event times leading to
risk estimates that are better calibrated as well as making inference scalable.

2.5.1 Discussion

We observe that the proposed approach shows leading performance when making predictions at shorter
horizons of time, while still being comparable at longer horizons. We believe that these results can be further
improved by making more appropriate parametric choices to model the event time distributions. Further
research will involve more flexible parametric assumptions to encourage robust performance across a wide
range of time horizons.

We have demonstrated that the use of recurrent neural architectures helps improve representation
learning capability for data with time-varying covariates such as time series vital signs. Currently, the
MIMIC data we work with were preprocessed to obtain hourly resolution data by aggregating observations
at regular intervals and imputing missing entries. There are significant challenges with such real-world
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healthcare data including missing values and irregular sampling frequencies. Extensions to RDSM could
involve integrating handling of missing data into the overall process. The use of RNNs for data imputation as
has been demonstrated to have utility in clinical contexts like for example, the GRU-D model (Che et al., 2018).
In addition, irregularly or asynchronously sampled time series could be directly handled by time aware RNNs
without imputation as shown in Baytas et al. (2017) and Rubanova et al. (2019).

Extensions could also involve the use of attention in order to capture and characterize specific events
in the patients history relevant to the outcome of interest enabling studies towards establishing causal
relationships between observable factors and outcomes in such data. Future work could also involve the use
of generative models or adversarial training to better learn robust representations of the temporal data.

2.6 Conclusion

We proposed an extension of the Deep Survival Machines model to handle temporal data with time-varying
coefficients. Our approach uses recurrent neural networks to handle long term temporal dependencies in
the input data stream. Our approach obtained favorable results from empirical evaluation of our model on
predicting in-hosptial ICU mortality and length of stay. We also made the software implementation of our
tool available to the survival analysis research community online as an open source package.



Chapter 3

Deep Cox Mixtures

3.1 Preliminaries

In this section, we first introduce the notation and background for the standard Cox model.

3.1.1 Notation

We consider a dataset of right censored observations D = {(z;, &;, u;) })., of three tuples, where x; are the
covariates of an individual 7, §; is an indicator of whether an event occurred or not and u; is either the time
of event or censoring as indicated by ;.

We consider a maximum likelihood (MLE) based approach to learning S(t|z) = P(T > ¢|X = z) from
the data. Recall that the survival distribution S(¢|x) is isomorphic to the cumulative hazard function A (¢|x),
and under continuity, this is equivalent to the hazard function A(¢|x). As a result, we will refer them in the
parameters of the likelihood interchangeably. Lin (2007) shows that the likelihood of the observed data D is,

up to constant factors,
2

L(A) =[] Auila:))* S(uila:). (3.1)
i=1
In the following sections, we show how plugging in specific functional forms for S(t|z) allows us to derive

survival function estimators.

3.1.2 MLE for the standard Cox PH model

The key idea behind the Cox model is to assume that the conditional hazard of an individual, is A(t|z) =
Xo(t) exp (f(0,z)), where f is typically a linear function. Under the Cox model, the full likelihood as in
equation 3.1 is

2 5

(6, 80) =] (*owi) exp (f(6, w»)) So(ug) (F00) (52)

i=1

Cox (1972) and the discussion of his paper by Breslow (1972b), suggest deriving a maximum likelihood
estimate of 8 by maximizing the partial likelihood, PL(8) defined below, and using the following estimator

41



42 CHAPTER 3. DEEP COX MIXTURES

of the baseline survival function Ay(-),

exp (f(6;zi)) ~ 1
£(9) = Ao(t) = _ -
Pee) i:!:L , %(t)exp (f(H;acj))’ o(t) ztz;t RS (3.3)

J€e i

where R(t;) is the ‘risk set” - the set of individuals that survived beyond time ¢;.

3.2 Proposed Approach

VAE prior

Baseline Survival Functions

Cluster Specific Survival Functions

N(O’ ]1) T { Individual Survival Function
! Hazard Ratios S . E[] ™
e, ) ’ N Z~P(Z])X)"" o
exp(. 0;x ~ ~— -
2(0;x) p() 16:®)  LPH ~.
— . —
Encoder T f'\Pﬁ\,W\g o P(T > t|X) = S(t|x)
T softmax(.) Si(t|z) = Sy (1) PUr@)2)
.]npul Features g g(e CE)
X
Representation IP’(Z |X) Mixture Weights

Figure 3.1: Deep Cox Mixtures: Representation of the individual covariates x are generated using an encoding neural
network. The output representation Z then interacts with linear functions f and g that determine the proportional
hazards within each cluster Z € {1, 2, ...K } and the mixing weights P(Z|X) respectively. For each cluster, baseline
survival rates Sy (¢) are estimated non-parametrically. The final individual survival curve S(¢|x) is an average over the
cluster specific individual survival curves weighted by the mixing probabilities P(Z|X = x).

3.2.1 Proposed Model

In the case of DCM we propose an extension to the Cox model, modeling an individual’s survival function
using a finite mixture of K Cox models, with the assignment of an individual i to each latent group mediated
by a gating function g(.) The full likelihood for this model is

7| .
£(6,Ay) = Ul/z (Al 2:))® Spo(ui i) P(Z = k|zs).

where, Aui|z:) = Ay(us) exp (fo(6, 22)),  Sp(uslas) = Sy ()= (e(2)
and, P(Z = k|X = x;) = softmax(g(8; x;)) (3.4)

Architecture: We allow the model to learn representations for the covariates x; by passing them through a
encoding neural network, ®(.) : R — R”, This representation then interacts with linear functions f and g
defined on R® — R*; that determine the log hazard ratios and the mixture weights respectively. The set of
parameters for the encoder ® and the linear functions f and g are jointly notated as 8. We experiment with a
simple feed forward MLP and a variational auto-encoder for ®(.) The parameters of the MLP and the VAE are
learnt jointly during learning. For the VAE variant the encoder and the decoder architecture is kept the same.
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We also experiment with a variant that does not involve representation learning and thus the functions f and

g are linear and restricted to operate on the original features x. Figure 3.1 provides a schematic description

of our approach.

3.2.2 Learning

Notice that under the model in Eq.
3.4, the corresponding partial like-
lihood is not independent of A(.),
the hazard rate. We hence cannot
directly optimize the partial likeli-
hood to perform parameter learn-
ing. This inference complexity is
outlined in Appendix B.1.1. Since
our model requires inference over
the latent assignments Z for learn-
ing the Expectation Maximization
(Dempster et al., 1977) algorithm is
a natural approach to perform infer-
ence. The major challenge to apply-
ing exact EM lies in the fact that un-
der the our model requires a summa-

tion over all possible combinations

Algorithm 1: Learning for DCM

Input :Training set, D = {(x4,#;, ;)Y , }; batches, B;
while <not converged> do
forbe {1,2,...,B}do
Dy +—sampleMiniBatch (D)
{7}l « E-Step(6, {gk}szl );
{¢}B | ~ categorical(y) ;
0 < M-Step(0, {¢;, v} B ,);
fork € {1,2,...., K} do
S, « breslow(0, {(t;, 5i)}/|i2|1-,(1;=k) ;
§k <—splineInterpolate(§k) ;

end

end

end

Return:learnt parameters, 0;
baseline survival splines {S; } £,

of latent assignments which is intractable to compute. We propose an approximate, Monte Carlo EM algorithm

(Wei & Tanner, 1990; Song et al., 2016) involving the drawing of posterior samples to learn the parameters, 6

and the baseline survival functions {Si(.)} X ,.

E-Step: Involves estimating the posteriors of Z, v; oc P(T = t|X, Z)%P(T > t|X, Z)'~%. The Breslow
estimator only gives us the estimates of the survival rates, thus computing the posterior counts, h; o< P(T =

ti|Z, X) for the uncensored instances challenging. We mitigate this by interpolating the Baseline Survival

Rate for each latent group, Si(.) using a polynomial spline. Equation 3.5 provides the interpolated event

probability estimates. (Appendix B.1.2 describes this in detail.)

~

BT > t|X = @1, Z = k) = Sp(t)® x@2)) 4ng,

P(T=tX=wz,Z=k) =

~

P(T > t\zci, Z = k)) 0

—exp (fi(6; ;) = Si(t) (3.5)

Si(t) ot

Here, S (t) is the baseline survival rate interpolated with a polynomial spline.
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M-Step: Once the posterior counts -; are obtained, the M-Step involves learning maximizing the correspond-

ing Q(.) function given as

D

Q) = 3. S AFInP(Z]X) + 4 nP(t|Z, X);
=1 k

where, v; x P(T| X, Z) (3.6)

Notice that the v¥ are soft counts (y; € [0, 1]) making parameter inference for the term P(7'|Z, X)
intractable. Motivated from Monte-Carlo EM methods We instead sample hard posterior counts ¢; ~
Categorical(;).

We replace this with hard posterior counts for the second term, In P(¢|Z, X)

D]

Q) =3 S AFmP(Z]X) + ¢ InP(1|Z, X);

i=1 k

where, (; ~ Categorical(;) 3.7)

Note that E[Q(+)] = Q(-). Thus, Q(+) is an unbiased estimate of the exact Q(-)
The first term in Q(-) can be optimized using gradient based approaches. The second term can be re-

written as a sum over k latent groups variables.

D)
Q) =) WmP(Z|X) + 1{¢G = k} nP(1|Z, X)

i=1 k
D) D)

=N AFmPZ|X)+> > 1{¢G =k} InP(t|Z, X)
=1 k =1 k
D] Dy

=> Y A IP(Z|X)+ > > WP(tZ, X) (3.8)
=1 k k =1

(Here, Dy, is the set of all D with ¢; = k)

Now using the fact that the Proportional Hazards assumption holds within each group Dy, we arrive at

the form of the Q(-) that we optimize in each minibatch as

Dy
Q(6) = ZZ%k In softmax(g(0; x;)) + ZIHPE(D§§9)
ik k

Here, D} is the subset of all individuals that have ¢; = k within the minibatch b and PL(.) is the partial
likelihood as defined in Equation 3.3. Thus, the use of hard counts ( effectively reduces the problem to
learning K separate Cox models allowing us to maximize the partial likelihood independently within each
keK.

The parameters of the encoder are also updated during the M-Step by adding the loss corresponding to
the VAE. Altogether the loss function for optimization is

Loss(0; Dy) = Q(0; D) + o - VAE-Loss(6; Dy) (3.9)
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Here, the VAE-Loss is the Evidence Lower Bound for the VAE with representations drawn from a zero
mean and identity covariance gaussian prior as in Kingma & Welling (2013).

Algorithm 2 describes the learning procedure for DCM. We sample minibatches D;, from the data D and
compute the soft and hard posterior counts, {~;, (;}iep, for each batch. This is followed by the M-Step
involving a gradient update the parameter set 6. Finally, we update the Baseline Survival Splines, S}, computed
using the Breslow’s estimator (Eq. 3.3) for each cluster. Note that the Breslow’s estimator is computed over the

full batch, D. This is computed analytically, does not involve gradient computation and so is not expensive.

3.2.3 Inference

Following Equation 3.4, at test time the estimated risk of an individual at time ¢ is given as

~

P(T > t| X =x;) = EZN@(Z\X) []/I\D(T|X = x;, 7))

= Z S, (t)P (1020 x softmaxy, (g(0; x;)) (3.10)
k

3.3 Experiments

Table 3.1: Summary statistics for the datasets used in the experiments.

Event Quantiles

Dataset N d | Censoring (% Minority Class (%

g(%) Y ) —o5th 1 —s0th 1= 75
SUPPORT | 9,105 | 44 31.89% | Non-White (21.02%) 14 58 252
FLCHAIN | 6,524 8 69.93% Female (44.94%) 903.25 2085 3246
SEER 55,993 | 168 72.82% | Non-White (23.77%) 25 55 108

In this section we describe the datasets, the survival analysis tasks and baselines we compare DCM against.
We also describe the corresponding metrics we employ for evaluation.

3.3.1 Datasets

We experiment with the following real world, publicly available survival analysis datasets:

FLCHAIN (Assay of Serum Free Light Chain): This is a public dataset introduced by Dispenzieri et al. (2012)
aiming to study the relationship between serum free light chain and mortality. It includes covariates like age,
gender, serum creatinine and presence of monoclonal gammapothy. We removed all the individuals with
missing covariates and experiment with the remaining subset of 6,524 individuals. Out of this subset 45% of
the participants were coded as female and are considered as ‘minority’.

SUPPORT (Study to understand prognoses and preferences for outcomes and risks of treatments (Connors
et al., 1995): Dataset from study instituted to understand patient survival for 9,105 terminally ill patients on
life support. The median survival time for the patients in the study was 58 days. Out of the 9, 105 patients
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Figure 3.2: Base survival rates for the majority (White) vs. the other demographics in the SEER dataset
estimated with a Kaplan-Meier estimator. Notice that the baseline survival rates differ across groups. Dashed
lines respresent the 25 50t and 75t event quantiles.

79% were coded as ‘White’, while the rest were coded as ‘Black’, ‘Hispanic’ and ‘Asian’.

SEER (Surveillance, Epidemiology and End Results Study)' This dataset from National Cancer Institute (2019)
consists of survival characteristics of oncology patients taken from cancer registries covering about one-third
of the US Population. For our study we consider a cohort of patients over a 15 year period from 1992-2007
diagnosed with breast cancer with a median survival time of 55 months. A majority (76%) of the patients were
coded as ‘White’ and the rest were other minorities consisting of ‘Blacks’, ‘American Indians’, ‘Asians’, etc.”

Our choice of datasets encompasses varying ranges of dimensionality of covariates, levels of censoring
and size vis-a-vis the minority demographics. Table 3.1 describes some summary statistics of the considered
datasets. Figure 3.2 compares the baseline survival rates for the majority and minorities in the SEER and
SUPPORT dataset. Notice that base survival rates across demographics can vary over time.

3.3.2 Baselines

We compare the proposed DCM against the following baselines.

Accelerated Failure Time (AFT): This is an extension of generalized linear models to the survival setting
with censored data. The target variable is assumed to follow a Weibull distribution and the shape and scale
parameters are modelled as linear functions of the covariates. Parameter learning is performed using Maxi-
mum Likelihood Estimation.

Deep Survival Machines (DSM) (Nagpal et al., 2021c): This is another fully parametric approach and improves
on the Accelerated Failure Time model by modeling the event time distribution as a fixed size mixture over
Weibull or Log-Normal distributions. The individual mixture distributions are themselves parametrized with

https://seer.cancer.gov/
ZSEER has a very intricate coding pattern vis-a-vis race. Refer to https://seer.cancer.gov/tools/

codingmanuals/race_code_pages.pdf for details.


https://seer.cancer.gov/
https://seer.cancer.gov/tools/codingmanuals/race_code_pages.pdf
https://seer.cancer.gov/tools/codingmanuals/race_code_pages.pdf
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neural networks allowing to learn complex non-linear representations of the data.

Deep Hit (DHT) (Lee et al., 2018): A discrete time model, DeepHit is a popular Neural Network approach that
involves discretizing the event outcome space and treating the survival analysis problem as a multiclass
classification problem over the discrete intervals.

Cox Proportional Hazards (CPH): CPH assumes that individuals across the population have constant propor-
tional hazards overtime.

Faraggi-Simon Net (FSN)/DeepSurv (Faraggi & Simon, 1995; Katzman et al., 2018): An extension to the CPH
model, FSN involves modeling the proportional hazard ratios over the individuals with Deep Neural Networks
allowing the ability to learn non linear hazard ratios.

Random Survival Forest (RSF) (Ishwaran et al., 2008): RSF is an extension of Random Forests to the survival
settings where risk scores are computed by creating Nelson-Aalen estimators in the splits induced by the
Random Forest.> The full set of the model hyper parameters settings on which we perform grid search is
deferred to Appendix B.2.

3.3.3 Evaluation Metrics

We compare the performance of DCM against baselines in terms of both discriminative performance and
calibration using the following metrics:

Area under ROC Curve (AUC): Involves treating the survival analysis problem as binary classification at
different quantiles of event times and computing the corresponding area under the ROC curve.

Time Dependent Concordance Index (C'9): Concordance Index estimates ranking ability by exhaustively
comparing relative risks across all pairs of individuals in the test set. We employ the ‘Time Dependent’ variant
of Concordance Index that truncates the pairwise comparisons to the events occurring within a fixed time
horizon.

(1) = P(E(t]x:) > F(tx;)|o = LT, < T, T, < ¢)

Expected /1 Calibration Error (ECE): The ECE measures the average absolute difference between the observed

and expected (according to the risk score) event rates, conditional on the estimated risk score. At time ¢, let

~

the predicted risk score be R(t) = P(T" > t|X). Then, the ECE approximates

ECE(t) = E[|B(T > t|R(t)) — R(?)|]

3In practice we observe that performance of the Random Survival Forest model, especially in terms of calibration
is strongly influenced by the choice of the hyper-parameters, mtry (the number of features considered at each split)
and min_node_size (the minimum number of data samples to continue growing a tree). We thus advise carefully
tuning these hyper-parameters while benchmarking RSF.
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Figure 3.3: C* (higher means better discrimination) and ECE (lower means better calibration) of proposed approach
versus baselines at the 75t event quantile. The columns represent different quantiles at which we evaluate the individual
metrics. (Tabulated results are in Appendix B.3.1)

by partitioning the risk scores R into ¢ quantiles {[r;, er)}?:l.

Brier Score (BS): The Brier Score involves computing the Mean Squared Error around the binary forecast of
survival at a certain event quantile of interest. Brier Score is a proper scoring rule and can be decomposed
into components that measure both discriminative performance and calibration.

BS(1) = Ep[(1{T > t} - B(T > 1|X))’]

Each of the metrics described above are adjusted for censoring by using standard Thompson-Horvitz style
Inverse Propensity of Censoring Weights (IPCW) estimates learnt with a Kaplan-Meier estimator over the
censoring times.

3.3.4 Experimental Protocol

For the proposed model, DCM and the baselines we perform 5-fold cross validation. The predictions of each
fold at the 25th, 50th and 75th quantiles of event times are collapsed together and bootstrapped in order to
generate standard errors. For the proposed model and the baselines we report the mean of the evaluation
metric and the bootstrapped (100 times) standard errors for the model that has the lowest Brier Score amongst
all the competing set of hyper parameter choices. For DCM, the set of hyperparameter choices include the
number of hidden layers for ® tuned from {1, 2}, units in each hidden layer selected from {50, 100}, the
number of mixture components K which are tuned between {3, 4, 6} and the discounting factor for the
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Figure 3.4: C* (higher means better discrimination) and ECE (lower means better calibration) of proposed approach
versus baselines at the 75" event quantile. The columns represents different quantiles at which we evaluate the
individual metrics. (Tabulated results are in Appendix B.3.1)

VAE-Loss, « tuned from {0, 1}. Optimization is performed using the Adam optimizer (Kingma & Ba, 2014) in
tensorflow with learning rates fixed 1 x 10~ and mini batch size of 128. The Baseline Survival Splines are

fixed to be of degree 3 and fit using the scipy python package.

3.4 Results

In this section we describe the results of our various experiments with DCM and the competing baselines. We
present the discriminative performance and calibration for DCM against the baselines on the three datasets

5th quantile of event times in Figures

for the entire population as well as the minority demographic on the 7
3.3, 3.4 and 3.5 and the corresponding tables. (For tabulated results including AuROC and Brier Scores, refer

to B.3.1.)

FLCHAIN: DCM beat all the other baselines in terms of discriminative performance on the entire population
as well as on the minority, ‘Female’ subgroup. In terms of calibration DCM was also consistently better than
all the other baselines as evidenced from low ECE scores. Interestingly, both the FSN and the linear Cox model
did poorly in terms of concordance and calibration while DCM had good performance suggesting it is not

sensistive to proportional hazards (PH).
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Figure 3.5: C* (higher means better discrimination) and ECE (lower means better calibration) of proposed approach
versus baselines at the 75" event quantile. The columns represents different quantiles at which we evaluate the
individual metrics. (Tabulated results are in Appendix B.3.1)

SUPPORT: For the SUPPORT dataset, RSF had the best discriminative performance at a population level, and
DCM came a close and beat the other deep learning baselines. Interestingly we found that the proposed DCM
had the best discriminative performance on the minority demographic beating all other baselines including
RSF. While RSF was strong in terms of discriminative performance, it was however poorly calibrated in compar-
ison to other baselines. DCM had the lowest ECE at each quantile amongst all baselines, at both the population
level as well as on the minority demographic. The performance of FSN was close to DCM in terms of calibration
but did poorly in terms of discrimination, further lending evidence to the fact that DCM is not restricted by PH.

SEER: In terms of calibration DCM beat all the other baselines at all quantiles of interest for the entire
population as well as for the minority group. DCM also consistently had good discriminative power. (DSM
did slightly better in terms of discrimination at a population level, but this was not significant). We found
that DHT was a strong competitor, which is understandable since it is particularly well suited for discrete
time datasets like SEER. Note that in the case of SEER we also report results stratified by the four largest
minority demographics in the subset of the dataset we work with in Figure B.1. DCM has better discriminative
performance across groups especially at longer horizons of event times. In terms of calibration, DCM comes
close to or outperforms the semi-parametric approaches like FSN/DeepSurv.

In order to assess the influence of the protected attribute to determine the outcome we conduct additional
studies involving removal of the protected attribute (unawareness) and training decoupled classifiers for each
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demographic. We find that in the case of unawareness we ended up with poorer calibration while decoupled
classifiers had poor discriminative performance. These results are deferred to Appendices B.3.2 and B.3.3.

3.4.1 Learnt Latent Groups

For the SUPPORT dataset, we run DCM with the default set of hyperparameters with k& = 3 latent groups.
We compare the subgroup level survival curves for the learnt subgroups using DCM by plotting the mean

survival rates within each group estimated with DCM as well as a Kaplan Meier Estimator.
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Figure 3.6: Group specific baseline survival rates for the estimated subgroups using DCM with & = 3 for a
heldout fold of the SUPPORT dataset. The first plot is the group specific Kaplan-Meier plot and the second
plot is the survival estimated with DCM.

Figure 3.6 present the estimate survival rates of the discovered subgroups using a Kaplan-Meier curve and
DCM respectively. Consider the subgroup level survival curves for groups Z = 2 and Z = 3 that intersect.

Intersecting survival curves indicate non Proportional Hazards which DCM is able to capture.

3.5 Conclusion

We proposed ‘Deep Cox Mixtures’ to model censored Time-to-Event data. Our approach involves estimating
hazard ratios within latent clusters followed by non-parametric estimation of the baseline survival rates
but is not limited by the strong assumptions of constant proportional hazards. We experiment with several
real-world health datasets and demonstrate superiority of our approach both in terms of discriminative
performance and calibration with an emphasis on improvements especially on the minority demographics.
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Part I1I

Discovery of Subgroups with Heterogeneous
Treatment Effects
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Motivation

Survival analysis is often conducted to establish the efficacy of an intervention or treatment from the result
of a randomized experiment such as a clinical trial. In many scenarios however, conducting a randomized
experiment is infeasible and policy makers have to defer to using observational data for decision making. In
observational settings however, treatment assignment is subject to factors that might simultaneously affect
outcomes, leading to a confounding of the treatment effect.

Furthermore, in real world scenarios not all individuals experience the same benefit from a treatment.
The response to an intervention is thus heterogenous across individuals. Optimal decision making should
account for the aforementioned heterogeneity when modelling outcomes at the level of an individual.

In this part of the thesis, we propose to model this form of heterogeneity using latent variables repre-
senting subgroups of subjects or phenotypes with similar responses to an intervention. We thus depart from
our previous discussion that focussed on just factual regression. We contextualize our proposed models in a
causal setting and propose approaches to model counterfactual outcomes. In a similar vein, we evaluate model
performance in terms of causal metrics such as estimation of the Average Treatment Effects and Conditional
Average Treatment Effects.

Chapter 4 first introduces the Heterogenous Effect Mixture Model, a general approach to model individual
treatment effects with latent variables in observational settings. We benchmark the proposed Heterogenous
Effect Mixture Model on multiple datasets with binary and continuous outcomes at recovering Individual
Treatment Effects. We further deploy this model to a large dataset of medical claims to identify actionable
subgroups of individuals at high risk of addiction from synthetic opioids such as Fentanyl, a major healthcare
concern in the U.S.

Chapter 5 proposes to build on the on the introduced framework for settings in which outcomes are cen-
sored. Censoring is common in when treatment effect is established by comparing time to adverse effects such
as onset of a medical condition, hospitalization or death. In this chapter, we will investigate relevant exten-
sions to quantities such as Individual Treatment Effects in the time-to-event settings, and study approaches

to estimate those with censored data under our proposed model.
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Chapter 4

Deep Subgroup Discovery in Treatment

Effect Estimation

4.1 Introduction

To identify subgroups with different
treatment effects, we hypothesize
that a latent variable determines the
treatment effect of each individual.
Moreover, individuals with similar
characteristics belong to the same
latent subgroup, resulting in simi-
lar responses to treatment across
the subgroup. Figure 4.1 is an ab-
stract representation of such a phe-
nomenon.

We propose a Bayesian network
to model these subgroups, specif-
ically as a mixture model, along
with their corresponding treatment
effects. Sparsity is induced in the

learned mixture component pa- Figure 4.1: The heterogeneous effect subgroup discovery problem. Almost all

rameters to improve interpretabil-
ity. Our approach, which we name
the heterogeneous effect mixture

model (HEMM), is similar in spirit to causal rule sets for identifying subgroups with enhanced treatment
effect (Wang & Rudin, 2022) but does not require hard partitions or assignments. Moreover, we incorporate
nonlinear as well as linear outcome models, which increases the expressiveness of the model to better adjust
for confounding without sacrificing the interpretability of the subgroup definitions. We thus benefit from
both the interpretability of sparse mixture models and the representation learning capability of neural
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instances receiving treatment in Z; have a positive outcome, while very few
in Z3 do. We are interested in recovering such latent subgroups.
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networks. In contrast, recent works (Louizos et al., 2017; Shalit et al., 2017; Alaa & van der Schaar, 2017a)
that use neural networks or nonparametric methods to estimate heterogeneous treatment effects do not
identify subgroups of individuals with similar responses. While our motivating application is opioid use, the
proposed approach applies to any problem domain requiring the discovery of subgroups with heterogeneous
responses to actions. In this spirit, we also validate our method on synthetic data and the Infant Health
and Development Program (IHDP) dataset in terms of its heterogeneous effect estimation and subgroup
identification performance.

With respect to opioids, we provide domain expert interpretation of the enhanced treatment effect
subgroup discovered using MarketScan data, i.e. patients at higher risk of adverse outcomes after an initial
synthetic opioid prescription. Some characteristics of this subgroup are well-known and/or reflected in CDC
opioid prescribing guidelines (Dowell et al., 2016): chronic pain conditions, psychological comorbidities, heart
disease and obesity.

Overall, our contributions can be summarized as follows:

i) We propose the HEMM for discovering subgroups with enhanced and diminished treatment effects in a
potential outcomes causal inference framework, using sparsity priors to enhance identifiability.

ii) We extend the HEMM’s outcome model to include neural networks to better adjust for confounding and
develop a joint inference procedure for the overall graphical model and the neural networks.

iii) We demonstrate strong performance in estimating heterogeneous effects and identifying subgroups
compared to existing approaches. Additionally, we apply the methodology to a large-scale medical
claims dataset and discover subgroups at enhanced risk of adverse outcomes with synthetic opioids.

4.2 Related Work

The machine learning literature has traditionally focused on outcome prediction and regression problems.
The study of Outcomes along with potential counterfactuals within a causal framework, where treatment has
to be modeled explicitly is relatively under studied in machine learning.

The identification of subgroups with heterogeneous or enhanced treatment effects has been addressed in
the statistics literature by building separate factual and counterfactual outcome models and then regressing
the difference of the two using another method, e.g. a decision tree (Su et al., 2009). This final model can then
be deployed to identify subgroups. Within this category of approaches, Lipkovich et al. (2011) propose the
subgroup identification based on differential effect search (SIDES) algorithm, Dusseldorp & Mechelen (2014)
propose the qualitative interaction trees (QUINT) algorithm, and Foster et al. (2011) propose the virtual twins
(VT) method. We consider empirical comparisons to these algorithms in the sequel.

Wang & Rudin (2022) propose causal rule sets for discovering subgroups with enhanced treatment effect.
This is the closest to and an inspiration for our work. That work seeks to learn discrete human-interpretable
rules predictive of enhanced treatment effect and involves optimization by Monte Carlo methods. We consider
instead a mixture of experts approach with soft assignment to groups that retains most of the interpretability
but allows greater expressiveness and can be optimized via gradient methods. Our outcome model equation 4.4,
equation 4.5 also differs from that of Wang & Rudin (2022). Most importantly, we allow nonlinearity in the
form of neural networks whereas Wang & Rudin (2022) considers only linear models. Our model also has a
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single term representing the main effect of treatment whereas Wang & Rudin (2022) has three such terms: a
population average, a subgroup term that is always active, and a subgroup term that is only active under
treatment.

Recent papers have proposed estimating heterogeneous/individual treatment effects using neural net-
works (Louizos et al., 2017; Shalit et al., 2017) or a Bayesian nonparametric method involving Gaussian
processes (Alaa & van der Schaar, 2017a). These methods rely on constructing distributional representations
of the factual and counterfactual outcomes that are similar in a statistical sense. While these methods perform
well on estimating heterogeneous effects, they do not identify subgroups of individuals with similar treatment
effects and characteristics and are thus less interpretable. This makes the application of such methods to
inform policy decisions more difficult.

4.3 Proposed Approach: Heterogeneous Effect Mixture Model

N

In this section, we propose a generative mixture
model for heterogeneous treatment effects. One way
to model heterogeneity, and the one in our proposal,
is as a finite mixture of components with a different
treatment effect model in each component (some

S
enhanced and some diminished). For tractability, we
keep the form of the mixtures to be the simplest @
T

possible: Gaussian-distributed for continuous covari-
ates and Bernoulli-distributed for discrete covariates.
Section 4.3.3 presents a model for the outcomes as

they depend on treatment, covariates, and mixture l"l’ k

membership, including nonlinear dependence on
the covariates.

4.3.1 Preliminaries

D)

We adopt the Neyman-Rubin potential outcomes L K: g N y
framework (Rubin, 1974) for causal inference. De-
fine random variables X € R? representing covari- 0 W, A

atesand T' € {0, 1} as the treatment indicator. The

subset of continuous-valued covariates are denoted

X cont and the discrete covariates (binary-valued or Figure 4.2: The proposed heterogeneous effect mixture

. . . . del (HEMM) i lat tation. F h inst »
binarized) are denoted X y.. We will sometimes re- model ( ) in plate no a, ton. ror ea'c mstance ’
. , . , (xi,t;, y;) are the observed variables and z; is a latent vari-
fertoT = 1 as ‘treatmed’ and T' = 0 as ‘control.

able that determines membership in one of the K mixture
components. Each component has an associated coefficient

i that determines the main treatment effect.
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Corresponding to the levels of treatment are two potential outcomes Y (0) and Y (1), which are the
outcomes under 7' = 0 and T' = 1 respectively. These outcomes can be discrete- or continuous-valued. We
are given an observational dataset of samples D = {(x;,t;,3;)}%.,; in which only one of the outcomes is
observed for each individual: if t; = 0 then y; = y(0);, and if ¢; = 1 then y; = y(1);. Our interest lies in
estimating the conditional average treatment effect (CATE) conditioned on X, defined as

T(X) =E[Y (1) - Y(0) | X].

In this work, the dependence on X is mediated primarily through subgroup membership, i.e. members
of the same subgroup have similar treatment effects. We make the standard assumptions that allow CATE
to be identifiable from observational data, namely exchangeability conditioned on the available covariates,
T 1L (Y(0),Y(1)) | X, positivity of the treatment propensity, 0 < p(T" = 1| x) < 1 for all x, and no
dependence between individuals i.e. the stable unit treatment value assumption (SUTVA) (Rubin, 1986;
Hernén & Robins, 2018). The first two assumptions are collectively known as strong ignorability (SITA).

For the mixture model proposed in this chapter, we additionally define the latent random variable
Z € Z ={1,..., K} toindicate mixture membership. Both the distribution of covariates and the treatment
effect are dependent on Z as described next.

4.3.2 Generative Model

The generative model is presented in Figure 4.2 in plate notation. We first give an overview of the distributions
and then go into more detail regarding X and Y in Section 4.3.3.

1. We draw a sample z; independently for each individual i that determines the latent group membership.
The prior distribution for Z is uniform over the K groups,

Z ~ Uniform(K). (4.1)

2. Conditioned on the latent group assignment z; = k,

+ The Xcont,; are drawn i.i.d. from a Gaussian distribution with mean g, and covariance X
Xeont | i = k ~ Normal(py, Xi). (4.2)

In this chapter, we constrain the off-diagonal elements of 3, to be 0 to reduce the number of parameters,
although non-diagonal covariances can be easily accommodated.

* The x4 ; are drawn i.i.d. from a multivariate Bernoulli distribution with mean 7y
Xdisc ‘ Z; = k ~ Bernoulli(ﬂk). (4_3)

3. Conditioned on the covariates x;, the treatment assignment ¢; is drawn from a Bernoulli distribution
whose mean is a function of x;:
T | x ~ Bernoulli(p(x)).

This corresponds to a model for treatment propensity. Note from Figure 4.2 that the generative model
assumes that 7" is conditionally independent of Z given X. Under this assumption, it will be seen in Sec-
tion 4.3.4 that inference for the propensity model can be done independently from the other components
of the generative model.
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4. Finally, an outcome sample y; is drawn from a distribution whose mean y,, is a function of the covariates
x;, treatment assignment ¢;, and latent group assignment z;. If Y is binary-valued, the distribution is
Bernoulli,

Y | x,t,z ~ Bernoulli(py(x, t, 2)),

whereas if Y is continuous, the distribution is Gaussian,

Y | x,t,z ~ Normal (, (x, t, 2), 05),

where af, is the variance. The outcome model is discussed further in Section 4.3.3.

Note we are interested in estimating the causal quantity,
E[Y (1) X] = E[Y|do(T = ), X] = p(¥|do(T = ), X).

Here, the first equality is from definition of interventional quantities and the second equality holds due
to Y being binary.

Theorem 1 (Identifiability) Under the Directed Acyclic Graph in Figure. 4.2,

p(YIdo(T = ). X) = [ p(YIX.2.T = (Z]).
Theorem 1 confirms that we can estimate the CATE from the observational quantities introduced above. The
proof is deferred to the Appendix C.1.

4.3.3 Treatment Outcome Model

We model the enhanced or diminished treatment effect in a subgroup through the following relationships.
In the case where Y is binary, its mean is equal to the probability of Y = 1. We define the latter using the
logistic sigmoid function g to be

p(Y =1[x,t,Z = kywe, ) = g(f (x5 W) + Yxt), (4.4)

where f(x; wy) is a function of x parametrized by wy, ¢ = 0, 1. The term ~,t represents the main effect due
to treatment and the coefficient 7, i.e. the size of the effect, depends on the group membership Z = k.
The parameters w; are allowed to be different for ¢ = 0 and ¢ = 1 to better account for differing covariate
distributions p(x | t) between the two treatment groups, a.k.a. selection bias. In the case of continuous Y, we
replace g with the identity function as follows:

ElY =1|x,t,Z = k;wy,v] = f(x; W) + it (4.5)

The simplest choice for function f(-) is linear, i.e., two linear functions w] x and w{ x. In practice,

however, the outcome may have a highly nonlinear dependence on the covariates. To accommodate nonlinear
covariate interactions and thus better adjust for confounding, we also allow f to be a nonlinear function.
In this chapter, we experiment with one- and two-hidden-layer feedforward neural networks with ReLU
activations. Outcomes under ¢ = 0 and ¢t = 1 are produced by two different heads of the network, following
Shalit et al. (2017); Louizos et al. (2017); Johansson et al. (2016). Even in the nonlinear case, the assignment of
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an individual to a subgroup is still described by a mixture model and directly interpretable in terms of the
original feature representation, thus preserving interpretability of the discovered subgroups.

It is possible to regularize the outcome models equation 4.4, equation 4.5 with /5 or ¢; regularization
A(wy), which is equivalent to adding a normal or Laplace prior on the parameter w;. In this work however,
we use weight decay instead as discussed in Section 4.3.5.

4.3.4 Inference

We would like to fit our proposed model to a given observational dataset D. Denote by © = ({ s, S, g, Vi J o |, W)
the set of all parameters of the model.

We have considered two approaches: maximizing the joint likelihood p(x;, t;, yi; ©), and maximizing the
conditional likelihood p(y;|xi, t;; ©). The joint and conditional likelihoods can be related as follows:

N

N
Z Inp(x;,ti,yi) = Z Mnp(x;) +Inp(t; | xi) + Inp(y; | x4, )] . (4.6)
i=1 i=1

The conditional likelihood can be further expanded as

K
Inp(y; | xi,t;) =1n (Zp(zi =k | x)p(yi | xi,ti, zi = k)) , (4.7)

k=1

where we have used the conditional independence of Z and T" given X in the first factor on the right-hand
side. The resulting first factor p(z; = k | x;) as well as the term p(x;) in equation 4.6 depend only on the
mixture model equation 4.1-equation 4.3, with p(x;) = S0 | p(z; = k)p(xi | z = k) and p(2z; = k | x;) =
p(zi = k)p(xi | z = k)/p(x;). The second factor on the right-hand side of equation 4.7 depends only on
the outcome model equation 4.4, equation 4.5. The remaining term p(t; | x;) in equation 4.6 depends on the
propensity model. Since this is the only place where the propensity model appears, its inference is separable
from the remainder of the problem, as claimed in Section 4.3.2. We do not discuss propensity modeling further
as it is not the focus of this work.

Although maximizing the joint likelihood equation 4.6 results in some closed-form expressions and
accordingly easier inference of parameters, we have observed in practice that maximizing the conditional
likelihood equation 4.7 has superior performance in estimating the potential outcomes Y'(¢) and treatment
effects. Therefore, we pursue this discriminative approach in this work. The full objective function is therefore

N
Zlnp(yi | Xi,t3; @) — AQ(7), (4.8)
=1

where X controls the strength of the prior, which here is the weight decay.

4.3.5 Evidence Lower Bound (ELBO) Optimization

Instead of optimizing the conditional log-likelihood in equation 4.8 directly using a gradient method, we
choose to lower bound the likelihood with a variational approximation, more commonly known as the
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l
;Iu—_
0.0
0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.

Control Treated

0.0
0.0 00 0.0
00 02 04 06 08 10 00 02 04 06 08 10

p(Y(0) =1|X) (contrbl) and p(Y(1) = 1| X) (treated). Treatment propensity is greater to the right of the black
dashed line, while the blue dashed line denotes the region with enhanced effect.

Figure 4.3: SYNTHETIC dataset and enhanced effect subgroups discovered by HEMM and Virtual Twins (VT).

Evidence Lower Bound (ELBO) (Blei et al., 2017). For any variational distribution ¢(Z) over the latent Z,

K

Inp(y; | i, t5;©) =In > p(yi, 2 = k | xi, 13 ©)
k=1

i <Eq EE & L;) b @)D
(i, 2 | Xiﬂfi;@)}
q(2)

using Jensen’s inequality. Now, replacing ¢(Z) with p(z;|x;; ©) and using equation 4.7 (and Z L T' | X from

> E, [ln (4.9)

Figure 4.2), we obtain
K
ELBO(y;, Xi, ti; ®) = z:p(zZ =k |x;;0)Inp(y; | xi,ti, 2 = k; ©). (4.10)
k=1

We hence substitute equation 4.10 in place of In p(y; | x;, t;; ©) in equation 4.8 and proceed to maximize
the objective function using the Adam gradient method (Kingma & Ba, 2014), a variant of stochastic gradient
descent that is a popular choice for non-convex functions like neural networks. The same method is used for
both linear and nonlinear f in equation 4.4, equation 4.5. As noted above, the first factor p(z; = k | x;; ©) in
equation 4.10 depends only on the mixture model parameters in equation 4.1-equation 4.3 while the second
factor depends only on the outcome model parameters in equation 4.4, equation 4.5. We enable “weight
decay” (Krogh & Hertz, 1992) on the parameters wy as a form of regularization. For tractability, we compute
the ELBO only over a fixed-size mini-batch of the data before each parameter update. Additional details on
the algorithm and parameter initialization can be found in Appendices C.3 and C.4 in the supplement.

We also considered an expectation-maximization (EM) algorithm to maximize equation 4.8 as an alter-
native to ELBO. Our experience however was that ELBO provided better fit in terms of Log-Likelihood and
heterogeneous effect estimates in terms of the metric reported in Section 4.5.1. A full description of the EM
method and a comparison to the ELBO optimization is deferred to the Appendix.

4.4 Experiments

We demonstrate the performance of HEMM on a synthetic dataset, the semi-synthetic Infant Health and
Development Program (IHDP) dataset, and a real-world dataset on opioids. These datasets are described
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Total Covariate Dimension 1226 | 3 Continuous, 1223 Binary
ICD-9 Diagnostic Codes 1013 Binary

CPT Procedure Codes 171 Binary
Hand-Crafted Comorbidities | 41 Binary

Daily Morphine Equivalent, | 3 Continuous

Total Number of Visits, Age

Addicted (Y'=1) | Not-Addicted (Y'=0) | Total
Treated (7'=1) | 2060 19983 22043
Control (T=0) | 7269 176156 183425
Total 9329 196139 205468

Table 4.1: OP10ID Dataset Statistics

further below.

SYNTHETIC: We take X = (X, X1) € R? and sample it from a uniform distribution over X = [0, 1]2. In
order to simulate the selection bias inherent in observational studies, the treatment variable depends on X
as T ~ Bernoulli(0.4) for xy < 0.5 and Bernoulli(0.6) for g > 0.5. The potential outcomes ¥ (0) and Y (1)
are also Bernoulli with means given by the functions of X shown in Figure 4.3 (Outcome). The figure shows
that p(Y (1) = 1| X) > p(Y(0) = 1| X), i.e. treatment increases the probability of positive outcome. Note
that under the conditional exchangeability assumption we have p(Y(¢) = 1| X) =p(Y =1 |T = t,X).
We model the effect of the confounders X by assigning higher probability to the upper triangular region
of X. This together with the distribution of 7" imply that individuals who are more likely to have positive
outcome regardless of treatment (upper triangle) are also more likely to receive treatment (right half-square).
Lastly, we model the enhanced treatment effect group as a circular region S = {z : ||z — ¢||2 < r}, where
p(Y(1) =1]8) > p(Y (1) = 1| X\S). Wesetc = (3, 3) and r = %. A total of 1000 samples (x;, t;, y;) were
generated as described above.

IHDP (SEMI-SYNTHETIC): The IHDP dataset has gained popularity in the causal inference literature dealing
with heterogenous treatment effects (Alaa & van der Schaar, 2017a; Shalit et al., 2017; Louizos et al., 2017; Hill,
2011). The original data includes 25 real covariates and comes from a randomized experiment to evaluate the
benefit of IHDP on IQ scores of three-year-old children. A selection bias was introduced by removing some of
the treated population, thus resulting in 608 control patients and 139 treated (747 total). The outcomes were
simulated using the standard non-linear ‘Response Surface B’ as described in Hill (2011).

OPI0ID: We sampled a sub-population consisting of healthcare claims for five million patients from the
MarketScan Commercial claims database. These claims describe patients’ medical histories, including both
inpatient admissions and outpatient services. Diagnoses, procedures, prescriptions and dosages are recorded.
We follow the cohort selection procedure outlined in Zhang et al. (2017) to filter patients based on several

criteria.
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For each patient in our final cohort, we create a feature vector that includes basic demographic information
such as age, gender and geographic region. We also included a predefined set of procedures along with
diagnostic codes which are associated with opioids and/or addiction, based on input from a physician.

We label all patients who received addiction diagnoses and patients who continued use of opioids for
more than one year after the initial prescription as belonging to the positive (adverse outcome) class. Patients
who discontinued opioid use within one year of initial treatment were labeled as negative. We use the terms
“addicted” and “not addicted” as shorthand for these outcomes. Patients prescribed natural or semi-synthetic
opioids are considered the control group, whereas patients administered synthetic opioids are considered
the treated group. Table 4.1 summarizes the basic statistics of this dataset.

4.4.1 Algorithms in Comparison

We have considered Virtual Twins (VT) (Foster et al., 2011), QUINT (Dusseldorp & Mechelen, 2014), and
SIDES (Lipkovich et al., 2011) among methods that identify subgroups with different treatment effects. We
implemented two versions of VT in which the treatment effect is modeled by a decision tree classifier (VT-
C) or regressor (VT-R). For VT-C, to better represent the continuous-valued treatment effect (which is a
difference in probabilities even if Y is binary), we use a collection of decision tree classifiers obtained by
applying different thresholds to the treatment effect.

For QUINT and SIDES, we utilized the standard R implementations and performed extensive hyperparam-
eter tuning. However both QUINT and SIDES failed to recover any subgroups on SYNTHETIC and OPIOID and
we thus did not consider them further. For QUINT, the likely reason is that its assumption of a subgroup with
diminished effect is not always met, whereas for SIDES, there may be a numerical issue in how it discretizes
continuous covariates.

In terms of methods that only predict heterogeneous effects and do not identify subgroups, we also
compare our method with some common approaches in Table 4.2. Here Linear-1 corresponds to a single
ordinary least squares (for continuous outcomes) or logistic regression (for binary outcomes) for both factual
and counterfactual outcomes. In the case of Linear-2, we fit two separate linear models to the control and
treated populations to better accommodate selection bias and confounding. The other baselines, k-NN, GP,
and CFRF are non-parametric versions of this approach where the estimators of the factual and counterfactual
outcomes are k-nearest neighbours, Gaussian processes with a linear kernel and Random Forests respectively.

4.5 Results

We evaluated the proposed HEMM quantitatively on two tasks, prediction of heterogeneous treatment effects
and identification of subgroups with enhanced or reduced effect. These results are discussed in Sections 4.5.1
and 4.5.2 respectively in comparison to existing methods, focusing on those that also estimate heterogeneous
effects in an interpretable manner. Methods used in the comparison are described in Section 4.4.1 and
parameter selection details are in Appendix C.4. In Section 4.5.3, we provide qualitative results for the OP10ID
dataset on the features the model discovers as characteristics of “at-risk” individuals, i.e. those in enhanced
effect subgroups.
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Figure 4.4: Performance of the proposed HEMM and Virtual Twins on the subgroup discovery task. For SYNTHETIC
data, we have access to ground truth labels for the enhanced treatment effect group and hence compare performance
using the ROC. For the IHDP and OPIOID datasets, we compare average treatment effect (ATE) estimates within the
identified subgroup as a function of subgroup size (as a fraction of the population).

4.5.1 Heterogeneous Effect Estimation

We first evaluate our performance on estimation of the CATE (E[Y (1) — Y (0) | X]). A popular metric for this
evaluation is the Precision in Estimating Heterogeneous Effects (PEHE). The PEHE is defined as

n

PEHE — % S (1) — folxr) — EY (1) = ¥ (0) | X = x)2.
i=1
Here f1(-) and fo(-) are the estimated potential outcomes under treatment and control, respectively.

Table 4.2 compares the performance of HEMM against the methods described in Section 4.4.1 on both
in-sample PEHE (corresponding to a retrospective study) computed on the training data, and out-of-sample
PEHE computed on held-out test data. HEMM-MLP and HEMM-Lin refer to the proposed approach with f in
equation 4.4, equation 4.5 as a multilayer perceptron and linear function respectively to model the effect of
confounders on the outcome.

HEMM consistently outperforms these standard causal inference baselines. GP and Linear-2 perform
close to HEMM on SYNTHETIC. We noticed that when a larger sample of data points is available to VT-R, its
performance increases dramatically. However, its performance drops in higher-dimensional settings as in the
case of IHDP and OPIOID; this is expected with methods involving non-parametric regression.

4.5.2 Subgroup Identification

SYNTHETIC: In the case of synthetic data, the subgroup with enhanced treatment effect is known. We first
visualize the performance of HEMM and VT in identifying this subgroup. For HEMM-Lin, Figure 4.3 shows the
estimated probability p(Z | X) of belonging to the enhanced effect subgroup evaluated on the test set. The true
circular region is recovered well. Furthermore, in Figure 4.3 we plot the VT-C and VT-R predictions of CATE
on the test set. For VT-C, the prediction represents an average over the collection of decision tree classifiers,
while for VT-R, it is simply the output of the decision tree regressor. While the difficulty in reproducing the
circular shape is expected for decision trees, the enhanced effect estimates are also less uniform as compared
to HEMM.
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SYNTHETIC IHDP

In-sample Out-Sample In-sample  Out-Sample
HEMM-MLP 0.101 +10°3 0.102+1073 | 1.6+0.10 1.8+0.10
HEMM-Lin 0.116 +10"3 0.116 +1073 | 2.8 +0.32 2.9+0.33
Linear-1 0.278+1072 0278+1073 | 7.9+0.46 7.94+0.47
Linear-2 0.106 1072 0.107+1073 | 2.3+£0.18 2.4+0.21
k-NN 0.210+ 1072  0.210+1073 | 3.24+0.12 4.2+0.22
GP 0.106 £102  0.107+1073 | 2.1+0.11 2.34+0.14
CFRF 0.146 +£1073  0.1424+1073 | 2.74£0.31  3.34+0.72
VT-R 0.130+107% 0.130+£1073 | 254+0.26 2.9+0.51

Table 4.2: \/PEHE values in estimating heterogeneous effects. Error represents 95% confidence interval of multiple
Monte Carlo initializations.

We also evaluate subgroup identification more quantitatively by treating it as a problem of classifying

whether or not points in the test set belong to the enhanced effect subgroup. ROC curves may then be plotted
as in Figure 4.4. For HEMM, the ROC is traced by varying the threshold on the probability p(Z | X) of being in
the enhanced effect subgroup. Similarly for VT-C and VT-R, the threshold on the CATE estimates is varied.
HEMM has higher ROCs than VT on this example, in line with Figure 4.3. There is little difference between
HEMM-Lin and HEMM-MLP since the dependence on the covariates X in Figure 4.3 is simple and complex
adjustment is not needed.
IHDP and OPIOID: For the other two datasets, we conduct a relative comparison with VT since we lack data
on ground truth subgroups. The evaluation involves two steps. First, we assign individuals to an enhanced
effect subgroup of varying size. (The same procedure can be used for a diminished effect subgroup but we
omit the results due to space.) For HEMM, we choose the subgroup & with the largest main effect v and vary
the threshold applied to the corresponding membership probability p(Z = k | X) returned by the model.
For VT-C and VT-R, we vary the threshold applied to the CATE estimates, either the composite estimate of
the decision tree classifiers or the regressor estimate, the same quantities as for the synthetic data.

In the second step, we build a propensity score model (an estimator of treatment propensity p(7' = 1|X))
to estimate the average treatment effect (ATE) conditioned on belonging to the enhanced treatment effect
subgroup defined in the first step. For the propensity score model e(X), we fit a random forest, for which
parameter tuning is performed on the DEV set. We then use the inverse probability of treatment weighting
(IPTW) estimator (Imbens, 2004) of the ATE within a subgroup S as follows:

.1 yiti g1 —ti)
s = 15 <e<xi> 1—e<xi>)' (1)

i€S

IPTW estimation is used for both HEMM- and VT-defined subgroups to be consistent.

Further, Figure 4.4 plot subgroup ATE versus subgroup size (as a fraction of the population) as the threshold
for subgroup assignment is varied. When the subgroup is the entire population at size 1.0, all curves meet at
the population ATE (dashed line). Since we have selected the enhanced effect subgroup, the curves are then

expected to increase as the subgroup is restricted to individuals with larger treatment effects. The fact that



68 CHAPTER 4. HETEROGENEOUS EFFECT MIXTURE MODEL

Musculoskeletal System Nervous System
1.0 spinal curve (kyphosis, lordosis, scoliosis) | 1.0 extrapyramidal diseases/movmt. disorders
1.0 ankle fracture 1.0 idiopathic peripheral neuropathies
1.0 sprains/strains of hand and wrist 1.0 headaches
Integumentary System Endocrine System
1.0 cellulitis and abscess of finger and toe .70 simple and unspecified goiter
1.0 local skin infections .67 other endocrine disorders
1.0 psoriasis and similar disorders .65 thyrotoxicosis with or without goiter
Reproductive System Digestive and Excretory Systems
1.0 female infertility .71 benign neoplasm of intestinal tract
.82 testicular dysfunction .69 inguinal hernia
.82 disorders of penis .58 diverticulitis
Circulatory System Immune System
1.0 hypertensive heart disease .56 immunization
.79 other disorders of circulatory system .54 strep throat and scarlet fever
.70 cardiac dysrhythmias .52 bacterial infections in other conditions
Nutrition Visual System
1.0 BMI .87 keratitis
1.0 b-complex deficiency .60 other disorders of eye (epi)scleritis
.71 disorder of electrolyte/acid-base balance | .57 visual disturbances
Auditory System Psychology

.53 vertiginous syndrome/vestibular disorder | 1.0 suspected mental health condition
.50 otitis media/eustachian tube disorders .58 adjustment reaction
.44 disorders of pinna and mastoid process .55 nondependent abuse of drugs

Digestive System (upper/oral) Respiratory System
.77 hernia, abdominal cavity w/o obstruction | 1.0 other diseases of respiratory tract
.77 dentofacial anomalies of jaw .74 deviated nasal septum
.76 diseases of oral soft tissues .69 influenza

Table 4.3: Top features of the enhanced effect subgroup k discovered by HEMM-MLP on the OP10ID dataset. The numbers
are the ratios 7,/ >, mji/, where 1/2 represents no increase in prevalence over the other subgroup (K = 2).

this increase is nearly monotonic for HEMM-MLP is evidence for the validity of the discovered subgroup,
since the IPTW estimator used here is an independent check on the treatment effect model equation 4.4,
equation 4.5 used by HEMM. Compared to VT, the subgroups identified by HEMM-MLP have higher ATE. This
suggests that for a given subgroup size, HEMM-MLP is better at grouping together individuals with more
enhanced effects. HEMM-Lin on the other hand displays contrasting performances. On IHDP in Figure 4.4,
the estimated ATE actually decreases for subgroup sizes less than 0.5, likely due to the inadequacy of a linear
model to adjust for confounding and accurately estimate CATE. However, the ATE does increase monotonically
and faster than for VT.

4.5.3 Interpretation of the OP10ID Enhanced Effect Subgroup

We now turn our focus to the motivating application of opioids and analyze key characteristics of the enhanced
effect subgroup, i.e. those patients at greater risk of adverse outcomes when treated initially with synthetic
opioids. To interpret these features, we collaborated with a subject matter expert (SME) with a PhD in cognitive
neuroscience and a clinical research emphasis in chronic pain conditions and treatments, including opioids.

Table 4.3 shows the top features of the enhanced effect subgroup as identified by HEMM-MLP. The features
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are organized by general bodily system and sorted in descending order of prevalence relative to the other
subgroup (see table caption); the selection of 3 features in each system was arbitrary and chosen primarily
for simplicity and space constraints.

Patients with a history of chronic conditions in general, as well as chronic pain conditions more specif-
ically, are at an increased risk for addiction. Many of the chronic conditions in Table 3, e.g. heart disease
(circulatory system), psoriasis (integumentary system), and BMI/obesity (nutrition) also appear in the CDC
opioid prescribing guidelines (Dowell et al., 2016) or have extensive literature linking them to increased risk
for long-term pain, either intrinsic to the condition or due to needed medical procedures that are more
likely to expose patients to opioids (Glanz et al., 2018). For example, numerous papers show a link between
increased body-mass index (BMI) and increased pain intensity and duration (with anti-correlations between
BMI and pain recovery) (Okifuji & Hare, 2015), and obesity has also been associated with higher initial opioid
doses (Kobus et al., 2012). Additionally, the chronic nutritional deficiencies and imbalances shown in Table 4.3
have been linked to acute but intense muscle spasms as well as peripheral polyneuropathies and paresthesias
(Mostacci et al., 2018), pain disorders which also show up as increased risk factors (nervous system).

Regarding chronic pain conditions, patients with a history of abnormal spinal curvatures (which can
produce low back pain and neuropathy), idiopathic peripheral neuropathies, and headaches (musculoskeletal
and nervous systems) are at increased risk for addiction. These are not surprising as they are notoriously
difficult to treat using non-opioid therapies such as non-steroidal anti-inflammatory drugs (NSAIDs), steroids,
or common procedures and surgeries (e.g. joint replacement or local injections) (Crofford, 2013). They involve
pain that may be severely intense or debilitating, sometimes unpredictable or idiopathic, and often non-
specific or diffuse (pain is referred, not well localized, or difficult to describe) and thus require a cocktail of
prescription medications or invasive procedures, increasing the likelihood of exposure to opioids (Volkow &
McLellan, 2016; Rosenblum et al., 2008; Patil et al., 2015). The intensity, duration, and non-specificity of pain
may also be a reason why digestive excretory, digestive (upper/oral), and reproductive conditions also show
up as moderately strong features in Table 4.3. These diagnoses may either directly result in acute or chronic
non-somatic visceral pain (hernia, diverticulitis) (Davis, 2012) or relate to conditions with chronic visceral
pain (e.g. female infertility may be secondary to endometriosis or pelvic inflammatory diseases). Opioids are
widely utilized for such visceral pain conditions (Gebhart et al., 2000), although often in short duration due
to adverse events.

Another expected finding was that individuals with psychological comorbidities (mental health condi-
tions) also have high probability of belonging to the enhanced response group, with individuals participating
in psychotherapy having reduced risk of addiction (psychotherapy was among the lowest-scored features and
hence not shown in the table). Substantial research has already linked mental illness with opioid misuse (Glanz
et al., 2018; Volkow & McLellan, 2016; Rosenblum et al., 2008). Although adjustment reaction (psychology)
appears with a lower score in Table 4.3, it encompasses reactions to trauma, episodic emotional disorders,
and chronic anxiety that have been shown to be comorbid with many of the chronic diagnoses and pain
conditions discussed above (Glanz et al., 2018; Volkow & McLellan, 2016; Rosenblum et al., 2008) and have
also been linked with increased opioid dosages (Helmerhorst et al., 2014). Similarly, nondependent abuse of
drugs also has a lower score but it is well known that opioid dependence and addiction are associated with
polysubstance use and abuse (Soyka, 2015; Pergolizzi et al., 2012). Based on this initial overview, the SME
judged the majority of the identified features to be scientifically meaningful with potential clinical utility
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for future prescribing guidelines. In summary, acute or chronic conditions that put patients at increased
risk for initial exposure to opioids, via acute procedures or comorbid prolonged intense pain, both increased
a patient’s addiction likelihood. Co-morbid mental health disorders, particularly those related to stress or
trauma and substance abuse also put individuals at greater risk for future opioid addiction.

4.6 Conclusion

We presented a Heterogeneous Effect Mixture Model (HEMM) for inferring subgroups of individuals that
exhibit an enhanced effect caused by treatment. Our work contrasts with existing heterogeneous effect
estimation methods as we learn interpretable subgroups using soft assighments while retaining expressiveness
in the model. The latter is attributed to the capabilities of neural networks, used here to adjust for confounding.
We evaluated the performance of HEMM on a synthetic dataset, the semi-synthetic IHDP dataset, and a large
real-world healthcare claims dataset (OP10ID). We additionally conducted qualitative analysis of the results
obtained by HEMM on the OP10ID dataset and found the derived insights in concordance with existing CDC
opioid prescribing guidelines.



Chapter 5

Counterfactual Phenotyping with censored
Time-to-Events

5.1 Introduction

Real world studies to estimate the effect of an intervention often involve time-to-event outcomes which
are typically followed up only for a fixed period of time. Such studies are commonplace in healthcare and
frequently arise when evaluating the effect of a drug or medical intervention on the time to events of interest
such as death, re-hospitalization, or a composite physiological outcome. Randomized Control Trials (RCT) aim
to eliminate group imbalance through randomizing treatment and control groups. Covariates are evaluated
to ensure balanced control and treatment groups so the two groups can be compared without confounding
the treatment effect. Hence, in an RCT the population-level event time distributions can be directly compared
to obtain estimates of average treatment efficacy.

Indeed, popular population-level metrics for survival and time-to-event prediction involve comparing
hazard ratios or summary metrics such as restricted mean time to event by building Proportional Hazard or
Kaplan-Meier estimators on the treatment and control arms.

While population-level effect estimation is important as it informs current clinical guidelines and practices,
the effect of any intervention is rarely uniform across any population under observation. The advent of
precision medicine aims to address these differences in treatment effect by applying individualized treatments
designed based on each patient’s individuals characteristics. This strategy assumes there are differences
in treatment effects that may be explained by varying demographic factors, baseline physiology, or prior
medical history. The crux of precision medicine thus entails careful phenotyping of individuals that may
receive augmented benefit from a treatment versus those who would not benefit (or worse, suffer adverse
effects). These individual patient factors can then be accounted for when framing clinical guidelines based
on randomized trials.

Consider the following scenario from an established clinical practice. Landmark studies such as the
ALLHAT clinical trial (Davis et al., 1996; Cushman et al., 2002) have established that thiazide diuretic treatment
(Chlorthalidone) are not inferior to angiotensin-converting enzyme (ACE) inhibitors (Lisinopril) or calcium
channel blockers (Amlodipine) for reducing cardiovascular risk in hypertensive patients. However, there
are certain sub-populations, such as those with baseline chronic kidney disease, who may benefit from
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a) Untreated Survival Rate (T'|do(A) = 0) b) Survival Under Treatment (T'|do(A4) = 1)
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Figure 5.1: COUNTERFACTUAL PHENOTYPING: a) In the untreated population (7'|do(A) = 0) there are two subgroups
(X) and (O) that demonstrate differential baseline survival rates represented as the latent group, Z. The intersecting
survival curves between the latent groups in Z suggest that the observed untreated survival rates do not obey the
Proportional Hazards assumption. b) Under intervention, we observe that treatment benefit is independent of base
survival group, Z. Individuals in ¢; benefit 1" while individuals in ¢, are harmed J.. We propose to recover such
counterfactual phenotypes, ¢ that demonstrate heterogeneous effects to the intervention.

the renal-protective effects of an ACE inhibitor. Additionally, ACE inhibitors are not indicated as an initial
treatment for hypertension in black patients, and either a thiazide diuretic or calcium channel blocker is
recommended for this group (Whelton et al., 2018).

Such scenarios demonstrate that certain risk groups or phenotypes may not benefit uniformly from a
given treatment. It is therefore of immense clinical interest to recover such groups or cohorts of patients to
help guide more precise interventions, which leads to personalized medicine and improved patient safety and
outcomes. In this chapter, we propose a principled approach, Cox Mixtures with Heterogeneous Effects to
discover subgroups or cohorts of individuals that demonstrate heterogeneous effects to an intervention in the
presence of censored outcomes. The proposed method is not sensitive to strong assumptions of proportional
hazards, and it can be applied in situations where such strong assumptions do not generalize uniformly across
population.

Our specific contributions can be summarized as follows:

v We propose a deep latent variable approach to recover subgroups of patients that respond differentially to
an intervention, in the presence of censored outcomes.

v' We present conditions in which the counterfactuals are identifiable using observational data under the

proposed model, along with an efficient approach for learning and inference.

v We demonstrate the proposed approach applied to multiple large landmark clinical trials that were origi-
nally carried out to assess the efficacy of medical interventions to reduce risk of adverse cardiovascular
outcomes among hypertensive and diabetic patients, and we discover clinically actionable counterfactual
phenotypes.

Cox Mixtures with Heterogeneous Effects has been released as part of the open-source package,

auton-survival and is available at autonlab.github.io/auton-survival/models/cmhe.


https://autonlab.github.io/auton-survival/models/cmhe
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5.2 Related Work

Survival Regression, involving estimation of Time-to-Events in the presence of censored outcomes is a classic
problem in statistical estimation, which has recently received attention of the machine learning research
community. Arguably, the semi-parametric Cox Proportional Hazards model (Cox, 1972) and its extensions
involving multi layer perceptrons (Faraggi & Simon, 1995; Katzman et al., 2018) remain popular, even though
they are constrained by strong assumptions on the event time distributions.

Recent research in survival analysis has focused on developing flexible estimators that can ease the
restrictive assumptions of the classical Cox model. Non-parametric approaches have been introduced involving
Random Forests (Ishwaran et al., 2008) and Gaussian Processes (Fernandez et al., 2016; Alaa & van der Schaar,
2017b). (Yu et al., 2011) proposed to treat survival as multitask classification over discrete time horizons.
Work of Lee et al. (2018) extends that with deep neural networks in the presence of longitudinal data (Lee
et al.,, 2019a).

Other relevant deep learning approaches include adversarial learning (Chapfuwa et al., 2018) and flexible
parametric mixture models (Nagpal et al., 2021c,a; Ranganath et al., 2016b). Further research into survival
estimation involves modelling of competing risks, easing restrictive proportional hazard assumptions, and
ensuring that models are well calibrated (Chapfuwa et al., 2020b; Goldstein et al., 2020; Yadlowsky et al.,
2019). The focus on estimating counterfactuals with censored data has been somewhat limited in current
machine learning research literature. Chapfuwa et al. (2021); Curth et al. (2021) propose using integrated
probability metric penalties (Shalit et al., 2017) to learn overlapping representations of the treated and control
populations in the presence of censored outcomes. More traditional statistical literature in counterfactual
survival regression includes propensity score (Linden & Yarnold, 2018; Hassanpour & Greiner, 2019b,a) and
doubly robust estimators (Zhao et al., 2015).

In this chapter, we focus specifically on the problem of subgroup identification and phenotyping with
censored outcomes. Recent research involving phenotyping of censored time to events are restricted to
factual or observational phenotypes (Nagpal et al., 2021d; Chapfuwa et al., 2020a; Manduchi et al., 2021). Our
work, however, focuses on simultaneous discovery of latent clusters (or phenotypes) that are counterfactual, in
that they demonstrate heterogeneous effects to an intervention, while learning effective predictive models
capable of capturing the uncovered heterogeneity of response functions.

Figure 5.1 illustrates this ‘Counterfactual Phenotyping’ problem. Amongst the untreated population, the
latent groups Z mediate the base survival rates. However when an intervention, do(A) = 1 is performed, the
treatment effect is mediated by another latent group ¢, independent of the base survival rate. Identification
of such counterfactual phenotypes is of immense utility from the standpoint of clinical decision making as it
can be used to administer an optimal treatment strategy to populations that are most likely to benefit.

Machine learning techniques for recovery of subgroups with heterogeneous treatment effects has re-
stricted focus to problems with outcomes that are either continuous or binary in nature. (Foster et al., 2011;
Vittinghoff et al., 2010) propose using non-parametric estimators (Decision Trees or Random Forests) to
directly regress the difference of the outcomes of the treated and control groups in a framework often called
"Virtual Twins" (VT). Wang & Rudin (2022) propose a sampling based approach to recover sparse rule-sets
identifying subgroups with enhanced effects. More recently, Nagpal et al. (2020) introduced a deep latent
variable approach, Heterogeneous Effect Mixture Model. While close in spirit to our contributions, this
approach 1) does not decouple effects of baseline physiology on survival from the treatment effect and 2) is
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5.3 Proposed Methodology
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Figure 5.2: Schematic description of the proposed CMHE. The set of features (confounders) x are passed through
an encoder to obtain deep non-linear representations. These representations then describe the latent phenogroups
P(Z|X = x) and P(¢|X = ) that determine the base survival rate and the treatment effect respectively. Finally, the
individual level hazard (survival) curve under an intervention A = a is described by marginalizing over Z and ¢ as
StHX =z,A=a)= Ez ¢)~P(|x) [S(t|A =a,X, 7, (]5)]

incompatible with censored time-to-events and hence, cannot be applied to many real-world studies in a

straightforward manner.

5.3.1 Notation and Setting

We consider a dataset of right censored ob-

servations in the form of four tuples, D = Phenotype Specific Hazard Baseline Survival Rates +

{(zi,6i,ti,a;) Y, where t; € RT is either

the time to event or censoring as indicated by @

9; € {0,1},a; € {0,1} isthe indicator of treat- M K
ment assignment, and x; are individual covari-

ates that confound the treatment assignment T\t/

and the outcome.

A

Treatment
Assignment

=

Time-to-Event

5.3.2 Cox PH Model and Cox Mixtures

Baseline Survwal
Latent Variable

The Cox Proportional Hazards model is ar-
guably the most popular approach to model

¢

Treatment Effect

censored survival outcomes. The Cox model in-

=

I—

Confounders

volves assuming that the conditional hazard of Latent Variable

an individual is .
Figure 5.3: The proposed model in Plate Notation. X confounds

A(t|z) = Ao(t) exp ( he (x)) (5.1) treatm.ent a.ssig'nme':nt A and outcome T' (Model parameters and
censoring distribution have been abstracted out).
where h is typically a linear function. Thus, un-
der the Cox model, the full likelihood in terms
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of the cumulative hazard® Ay and parameters @ is as follows:

D] 8
L(0,Ap) = H ()\o(ti) exp (hg(:ci))> So(t;)P (no(:)) (5.2)

i=1
However, the assumption that the hazard rates remain proportional over time is a strong one and is often
violated in practice. One example of such a violation is the presence of intersecting survival curves. Nagpal et al.
(2021d) propose to relax the PH assumption by describing the data as belonging to a mixture of fixed size K,
such that the PH assumptions hold only conditioned on the latent component assignment, Z. The assignment
function of an individual to a latent group can then be learned jointly along with the component-specific
hazard ratios. Under this model the hazard rate of an individual belonging to latent Z = k is:

Ao(t|X =z, Z = k) = Ag(t) exp (hg(e))
where, P(Z = k|X = ) o exp (f§(z)) (5.3)

5.3.3 Cox Mixtures with Heterogeneous Effects

In this chapter we show how to model counterfactual outcomes and individual level treatment effects using
the proposed approach: Cox Mixtures with Heterogeneous Effects (CMHE). To accomplish that, we further
extend the model in Equation 5.3 by introducing another latent variable ¢ that determines the treatment
effect for an individual with confounders, =. Thus under this new model,

Base Survival Rate Treatment Effect
k a
At X =z, Z =k, p=m,A=a)= X(1) exp (hg(z)) exp(wm) (5.4)
Conditionaf]ilazard Rate Effect of Confounders

P(Z = k|X =x;) cexp (fo(x)) ,P(¢ = m|X = x) < exp (go(x)).
Figure 5.3 presents CMHE in plate notation.
Assumption 1 (Independent Censoring) The distribution of the time-to-event T and the censoring times C are
independent conditional on the covariates, X and the treatment assignment A.

Assumption 2 (Conditional PH) Conditional on the latent group Z, individual time-to-event distributions obey

proportional hazards.

Assumption 3 (Latent Independence) The baseline survival rate group, Z and the treatment effect group, ¢ are
independent given the confounders X, ie., Z 1 ¢ | X.

Assumption 4 (Ignorability) The treatment assignment, A is independent of the potential time-to-event outcomes,
T'(A) conditioned on the set of confounders X, ie. A 1. T(A) | X.

The cumulative hazard is defined as Ay () = fot Ao (t). It can equivalently be described in terms of the base survival
rate as Ag(t) = —In Sp(t).
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Note that Assumption 1 is stronger compared to standard regression as it requires conditioning on both the
covariates and the treatment assignment. Assumption 4 essentially states that the treatment assignment A is
completely characterized by the available confounders X. In other words, there are no exogenous factors
(unobserved confounders) that may affect treatment assignments.

Remark 1 (Identifiability) Under Assumptions 1 - 3, the counterfactual Time-to-Event distribution is identifiable
with observables as follows, P(T'|do(A) = a, X) = E(z ¢)~p(|x)[P(T]|A = a, X, Z, §)].

Remark 1 allows us to make phenogroup level counterfactual inference in terms of observables. It stems
directly from the standard application of Pearl’s do-calculus and Assumptions 3 and 4 (proof available in
Appendix D.1). As a consequence of the Assumptions 1 - 3 under this new model, the full likelihood is:

Marginzalization over Treatment Effect Phenotypes, ¢
D] A

0.4 =] / B /r;@(w(ti\wi,a»&is,z"(tawi,ai))df’wau) dP(Z|a;)

Marginzalization over Baseline Survival Clusters, Z

a

where, A7 (t|z, a) = A (t) exp (hg(z)) exp (wim)®,

SP(ta, a) = S ()P (@) exp (wn)” (5 5)

5.3.4 Architecture

A non-linear representation € R% of the input « is obtained using a multilayer perceptron with parameters
6. This representation reflects the baseline survival specific log-hazard ratios, for the each of the k base
survival phenotypes through the function 4 : R¢ — R¥ and the non-normalized probability of belonging to
one of the k base survival clusters, ie. P(Z|X = x) o f(x) as f : RY — R*, Further, the non-normalized
probability of assignment to counterfactual phenotype is defined as g : R* — R™,i.e., P(¢|X = x) x g(x).
Figure 5.2 provides a schematic diagram of the proposed architecture for CMHE.

5.3.5 Learning

Parameter inference in semi-parametric latent variable models such as CMHE is hard as estimation of the
baseline hazard rates ({Ay}X_)) is carried out non-parametrically. Naive application of the Expectation
Maximization (EM) algorithm requires inference over all possible (M x K)IP! latent assignments for the
entire dataset which is intractable. As described in Nagpal et al. (2021d) we propose a stochastic EM algorithm
involving Monte-Carlo sampling to make inference tractable. The M-step of our proposed EM algorithm
involves the following Q(-) function,

|Dy| |Dy|

Q8) = Zlnpﬁk(Db,¢,$; 0) + ZZ%]C Insoftmax ( fo(x;)) + ZZCZ” In softmax (gg(;)),
k k1 m i
(5.6)

which we arrive at using the assumption that the Proportional Hazards hold within each baseline survival
rate group Z = k. Here ~ and ¢ are the respective soft posterior counts of Z and ¢. 1 and £ corresponds
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Algorithm 2: Learning for CMHE with Stochastic EM
Input :Training set, D = {(x;,t;, a;, ;) }; batches, B;

while <not converged> do
forb € {1,2,...,B}do
Dy ~D > Draw a minibatch from the full dataset.

fori € |Dy| do
vi ~ P(Z = kl|z;); G~ P(p=m|z;)
> Sample soft posteriors.

1p; ~ Categorical(y;); &; ~ Categorical(¢;)
> Draw hard posteriors.

0 0 +1-V4Q(6; D)
> Update 6 with gradient of Q.
fork € {1,2,..., K} do
-1
Ap(t) < 32 ( > exp (hg(zy) + aw@-))
it <t \jER(t;)
> Breslow (1972b)’s estimator.
Sk (t) = exp (—Ax(t))
Sy + argmin > (§k(t) — s(t))2 40

‘min
S =1

> Cubic-spline interpolation.

end

Return:learnt parameters, 6; baseline survival splines {.:qvk} K

to the hard posterior counts sampled as 1) ~ Categorical(-y), & ~ Categorical(¢) and PL(-) is the partial
likelihood. Algorithm 2 describes the stochastic EM learning algorithm for CMHE. The proposed stochastic EM
makes inference is tractable with a complexity of (|D| x M x K). A complete discussion of our formulation
along with the functional form of the Q(-) and PL(+) functions are deferred to Appendix D.2

5.3.6 Inference

Following Remark 1, the estimated risk of an individual with confounders  under an interventiondo(A) = a
atatimetis

~

P(T >t|X =x,do(A) =a) =E T X =x,A=a,Z, ¢)

(z.6)~p(1x) P
= Z Z:softmax;€ (fg(ac)) - softmax,,, (gg(;c)) . §1T(t)exp (he(m)+a-wm)‘
k m
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5.4 Experiments
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Dataset Outcome Treatment Control Hazard Ratio ATEgyst(t) | Event Rate N
ALLHAT-A | Cardiovascular Death | Chlorothalidone | Amlodipine/Lisinopril | 0.94 4 0.04 | 21.23 4 12.34 26.84% | 33,357
ALLHAT-B | Cardiovascular Death Amlodipine Lisinopril 0.95+0.05 | 23.87 + 15.56 27.47% | 18,102
ACCORD Primary End Point | Intensive Glycemia | Standard Glycemia 0.89+0.12 | 8.28+14.42 8.50% | 9,822

Figure 5.4: Kaplan-Meier estimates and summary statstics of the datasets used in the chapter. (For ACCORD, the primary
endpoint was the time to first instance of Non-Fatal Myocardial Infarction, Stroke, or Death.)

In our experiments, we consider data from the landmark ALLHAT and ACCORD clinical trials originally

conducted to determine the optimal treatment for reducing risk from cardiovascular disease.

5.4.1 Datasets

» ANTIHYPERTENSIVE AND LIPID-LOWERING TREATMENT TO PREVENT HEART ATTACK (ALLHAT): The
ALLHAT clinical trial (Furberg et al., 2002) was constituted to establish the appropriate intervention between
chlorthalidone (a diuretic), amlodipine (calcium channel blocker) and lisinopril (angiotensin converting
enzyme (ACE) inhibitor) for hypertensive patients to reduce adverse cardiovascular events. Patients were
enrolled over a four year period with a mean follow up time of 4.9 years. The complete study involved 33,357
participants older than 55 years of age, all with hypertension. 15,255 (~ 50%) of participants were assigned
to the Chlorthalidone arm, while 9,048 (~ 25%) assigned to amlodipine and 9,054 (= 25%) to lisinopril. For
the purposes of this chapter, we consider two separate experiments on the ALLHAT dataset. ALLHAT-A: We
consider all patients in the trial assigned to chlorthalidone as ‘Treated’ and the rest as ‘Controls’. ALLHAT-B:
We only consider the 18,102 assigned to lisinopril or amlodipine. Amlodipine is considered the ‘Treatment’.
For both ALLHAT A and B we consider the time to death from cardiovascular events as the outcome of interest.

» ACTION TO CONTROL CVD RISK IN DIABETES (ACCORD) : The ACCORD study (Ismail-Beigi et al., 2010)
involved 10,251 patients over the age of 40 with Type-2 Diabetes Mellitus with a median follow up time of 3.7
years. 5,128 (~ 50%) patients were randomized to intensive glycemic control. (HibA1C*< 6%) and the rest to
standard glycemic control (HbA1C: 7—7.9%). In this chapter we consider the patients assigned to the standard

%Glycated Hemoglobin (A1c)
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The SYNTHETIC Dataset
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Figure 5.5: a) The distribution of the latent baseline survival groups, Z in the space of features X. b) The distribution
of the latent treatment effect phenogroups ¢ in the space of features X. c) Kaplan-Meier Estimators conditioned on
the latent baseline groups in the untreated population ie. P(T > t|Z, do(A) = 0). d) Kaplan-Meier estimators of the

~

treated population conditioned on the latent treated effect groups ie. P(T > t|¢, do(A) = 1). Notice that individuals
in ¢1, benefit A from the intervention but ¢, are harmed V.

glycemic control arm as ‘Treated” and compare the performance in terms of time to the primary endpoint
of the study, a composite endpoint including death, myocardial infarction or stroke. The ACCORD trial is
of particular interest, as the results from it demonstrate that although intensive hyperglycemia treatment
strategy for patients with diabetes reduces rate of adverse cardiovascular events, however it may increase
the patient’s risk for overall mortality. This is most likely due to adverse effects of the treatment itself.

Figure 5.4 presents the Kaplan-Meier estimates of the overall population level event-free survival for
the two studies along with the summary statistics including Hazard Ratio and Average Treatment Effect in
Restricted Mean Survival Time. For both the ALLHAT and the ACCORD trials we consider a set of confound-
ing features measured during the patients baseline visit at the time of randomization. This includes basic
demographic information including sex and race, age at entry into the study, previous history of adverse
cardiovascular events, etc. (Full list of confounders in Appendix D.7).

» SYNTHETIC: We further benchmark the proposed model on a synthetic dataset presented in Figure 5.5.
This dataset is designed such that the latent treatment effect phenotype ¢ is not linearly separable in x.
The time-to-event T conditioned on x, latent Z and latent effect group ¢ are generated from a Gompertz
distribution. (Complete details of this design are deferred to Appendix D.5).

5.4.2 Counterfactual Phenotyping

We evaluate the performance of CMHE in its ability to identify phenotypes of varying sizes that have a more
pronounced treatment effect when compared to the baselines. For all the datasets we keep 75% of the dataset
as training and the rest as testing to evaluate each model’s performance. For CMHE as well as the baselines we
identify the phenogroup with the most enhanced and the most diminished treatment effect on the training
set and report the estimated Conditional Average Treatment Effect in Restricted Mean Survival Time on the
held out sample.
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Latent Phenogroups with Enhanced Treatment Effects
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Figure 5.6: Conditional Average Treatment Effect in Restricted Mean Survival Time (95% Confidence Bands) over
Time for counterfactual phenotypes recovered by CMHE and Baselines in comparison to the Average Treatment Effect
(ATE). For each of the datasets we identify phenogroups with enhaced (diminished) treatment effect based on RMST
on the training split and report the corresponding RMST on the out-of-sample testing split. Phenogroups of different
sizes are generated by varying the threshold, o > P(¢|X = z) at which an individual « is assigned to the latent
phenogroup, X. (Here we report phenogroups that are of the size 15% of the total study population.) Notice how CMHE
consistently recovers phenogroups with larger CATEgysr(¢) (Tabulated results in Table D.6).

Definition 1 (RMST) The Restricted Mean Survival Time at time t under an intervention a for individual with

confounders x is the expected conditional Time-to-Event, E[min{T,t}|do(4) = a, X = x].

In the case of time-to-event outcomes, Restricted Mean Survival Time (RMST) is the truncated area under

the survival curve,
t
E[min{T,t}|do(4) = a,X = x| = / S(t|do(A4) = a, X = x)dt.
0

Following from Chen & Tsiatis (2001); Royston & Parmar (2013) we define the Conditional Average Treatment
Effect in terms of the difference in Restricted Mean Survival Time under treatment and control.

Definition 2 (CATEgmst) The Conditional Average Treatment Effect at time t is expected difference between the
treated and control Restricted Mean Survival Time conditioned on the phenogroup, X

CATEgmsT(X;t) = EX [E[min{T,t}|do(A) = 1,X = ] — E[min{T,t}|do(4) = 0,X = z]|.
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This can now be estimated as:
_— 1 t b
CATERwsr (¥;t) = — > [/ 51(t|x)dt—/ So(t|x)dt]. (5.7)
reX 0 0

Here X is the set of all individuals in the phenotype (we control the size of the phenotype by varying
the threshold, o > f’(¢\a:) and t is the time horizon at which RMST is computed. S (-) and Sy(-) are the
survival distributions under treatment and control.

Note that we cannot directly compare the survival curves conditioned on the recovered phenotype as
within the phenotype treatment assignment is not random. In order to mitigate this problem, we fit separate
Random Survival Forests (RSFs) (Ishwaran et al., 2008) on the treated and control populations in the training
set in a 5-fold Cross Validation to minimize the Integrated Brier Score. The fitted estimators are then employed
to estimate the individual counterfactual survival curves, S; (t| X ) and S (¢ X ) on the test data for evaluation.

BASELINES: We compare the ability of CMHE against the following baseline strategies for counterfactual
phenotyping:

» Dimensionality Reduction + Clustering: Involves first performing dimensionality reduction of the input
confounders, x, followed by clustering. For the experiments in the chapter we consider Linear-PCA and
Kernel-PCA with an Radial Basis Function Kernel for dimensionality reduction, followed by K-Means and
Gaussian Mixture Models (GMMs) for clustering. The number of reduced dimensions for the confounders is
tuned from {8, 16} and the number of clusters from {2, 3}. For the GMMs we enforce the learned covariance
matrix of the components to be diagonal.

» Virtual Twins (Foster et al., 2011; Vittinghoff et al., 2010): Involves first building regression estimators of
the outcome conditioned on the confounders separately for the treated and control populations, followed
by regressing the difference between counterfactual estimates on the confounders using a simpler model
such as a Decision Tree. In the experiments, we estimate the virtual twin counterfactual survival models
using a Linear Cox model and Cox model parameterized with a 2 hidden layer Multi-Layer Perceptron (MLP)
with (Faraggi & Simon, 1995; Katzman et al., 2018) in a 5 fold cross-validation fashion on the training dataset.
For both the Linear and MLP Cox Model we tune the batch size from {128,256} the learning rate {2,3} in
{1073,104}. For the MLP, the hidden layer was fixed to have Tanh activations with a dimensionality of 50.
The models were optimized using Adam (Kingma & Ba, 2014). Once the counterfactual models are estimated,
the difference in there estimates in terms of RMST@5-Year is modelled using a Random Forest with 25 trees
whose depth is tuned from {4,5}. The trained Random Forest is then employed to recover the counterfactual
phenotypes.

RESULTS: CMHE consistently recovered phenogroups that demonstrated higher CATE as compared to the the
Virtual Twins and Dimensionality Reduction + Clustering baselines as in Figure 5.6. In the case of ALLHAT A
and B, CMHE recovered a sub-population of 15% of the test data that had a diminished CATErumst@5-Years of
10.09 + 0.86 and 2.28 + 2.18 Days respectively as compared to the population ATE of 24.30 and 28.97
Days (Table D.6).
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In the ACCORD trial, CMHE recovered a phenogroup involving 15% of the test set that had a much more
dramatic treatment effect (CATErmsT@5-Years of 27.02 + 2.43 Days, as compared to the population average
treatment effect of 8.28 4 14.42 Days). These results demonstrate that CMHE can discover compelling
phenogroups with substantially different treatment responses. In the case of synthetic data, we directly
compare the performance of in-recovery of ¢ by treating it as a binary classification problem. CMHE has
higher discriminative performance (Area under Receiver Operating Characteristic: 0.924 + 0.01) versus the
clustering (0.505 + 0.02) and Virtual Twins (0.900 + 0.001) baselines, as shown in Figure 5.7. Notice that
Clustering is not better than random, which is expected due to the nonlinear nature of ¢ as in Figure 5.5.

Rule explanation of CMHE Phenotype Size | > rear RMST
CATE | ATE
1 SYNTHETIC ALLHAT-A
—— CMHE (0.92440.01) Height<68.51 Dia.BP<88.5 GFR<65.7 Aspirin=+ve 5.05% | 42.87 | 24.30
08] |~ Clustering (0.505::0.02) Dia.BP<82.50 Prior[T-inv.]=+ve LLT=-ve Race[Black]=+ve | 13.00% | 20.32 | 24.30
2 —— Virtual Twins (0.940.01) ALLHAT-B
£0° Sys.BP>144.5 Dia.BP>87.5 GFR>55.7 Race[Blackl=+ve | 8.71% | 53.20 | 28.97
g‘ o4 Dia.BP<=78.5 GFR<=86.1 Race[Black]l=+ve Aspirin=-ve 6.86% 7.56 | 28.97
] / ACCORD
Y 4 GFR<79.9 UACR<42.9 FPG>194.6  Prior[CVD]=-ve | 5.58% | 28.94 | 4.79
_ potassium<=4.8 GFR>90.2 Prior [MI]=-ve Prior [CVD]=+ve 7.56% | -23.26 4.79
0.0

102 107! 100
False Positive Rate

Table 5.1: We employ a tree ensemble based rule learning algorithm (Details in
Figure 5.7: ROC curves for recov-  Appendix D.4) to explain the phenotypes extracted by CMHE. Enhanced (Diminished)
ery of ¢ by CMHE and proposed Treatment Effect Rules in Blue (Red). We report explanations that maximize F; score
models on the synthetic dataset. on the heldout dataset. Extensive discussion on physiologic interpretation of the

extracted explanations are in Section 5.4.2.

INTERPRETATION: We employed a tree ensemble based rule learning (Friedman & Popescu, 2008) to inter-
pret the phenotypes discovered with CMHE in terms of parsimonious conjunctions. The extracted rules are
presented in Table 5.1. Additional implementation details are provided in Appendix D.4. The extracted rules
were subjected to qualitative evaluation by an expert clinician.

» ALLHAT-A: Conditions associated with increased protective effect from chlorthalidone treatment include
patients who are older, shorter, have decreased renal function evidenced from lower glomerular filtration
rate (GFR), and exhibit less baseline cardiac disease (absence of coronary heart disease). Additionally, several
conditions favor patients with lower baseline systolic or diastolic blood pressure. In clinical practice, the
decision for first-line antihypertensive therapeutic agent continues to be debated (Whelton et al., 2018).
However, ACE inhibitors are commonly used for treatment of patients with hypertension and cardiac disease
(such as coronary heart disease). The conditions stated above are consistent with this, indicating patients
with absence of coronary heart disease are more likely to benefit from diuretic therapy. Additionally, patients
treated with calcium channel blockers may be prone to edema and fluid retention. Fluid retention is a risk for
patients with lower baseline GFR, indicative of kidney dysfunction, thus diuretic therapy may be preferred in
these patients. On the other hand, ACE inhibitors are believed to slow the progression of mild kidney disease,
making them a reasonable treatment for these patients.
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Metric Concordance Index Metric Concordance Index
Time Horizon | 1 Year ‘ 3 Year ‘ 5 Year 1BS Time Horizon | 1 Year ‘ 3 Year ‘ 5 Year 1BS
ALLHAT-A ALLHAT-B
Cox-Linear 0.6822 | 0.6716 | 0.6688 | 0.1362 Cox-Linear 0.6741 | 0.6641 | 0.6629 | 0.1402
Cox-MLP 0.6797 | 0.6693 | 0.6677 | 0.1361 Cox-MLP 0.6717 | 0.6605 | 0.6602 | 0.1404
| CMHE-Linear | 0.6830 | 0.6722 | 0.6692 | 0.1360 | | CMHE-Linear | 0.6753 | 0.6651 | 0.6638 | 0.1401 |
CMHE-MLP 0.6832 | 0.6734 | 0.6705 | 0.1357 CMHE-MLP 0.6760 | 0.6655 | 0.6640 | 0.1399
ACCORD SYNTHETIC
Cox-Linear 0.6615 | 0.6737 | 0.6713 | 0.0591 Cox-Linear 0.6224 | 0.6205 | 0.6158 | 0.1723
Cox-MLP 0.6564 | 0.6723 | 0.6706 | 0.0590 Cox-MLP 0.6623 | 0.6727 | 0.6740 | 0.1619
| CMHE-Linear | 0.6606 | 0.6720 | 0.6697 | 0.0591 | | CMHE-Linear | 0.6356 | 0.6365 | 0.6337 | 0.1698 |
CMHE-MLP 0.6755 | 0.6881 | 0.6850 | 0.0587 CMHE-MLP 0.6676 | 0.6758 | 0.6786 | 0.1604

Table 5.2: Time Dependent Concordance Index and Integrated Brier Score (IBS) for CMHE (Linear and MLP) and baseline
Cox models.

» ALLHAT-B: Patients treated with amlodipine who achieved the greatest benefit tended to have higher
baseline blood pressure (systolic and diastolic), weigh less (lower weight and body mass index), have higher
baseline kidney function (higher GFR), and were more likely to be of Black, non-Hispanic ethnicity. These
characteristics are useful and actionable clinical parameters to guide clinicians in choosing a first antihy-
pertensive agent. In fact, the American College of Cardiology and American Heart Association guidelines
for hypertension management suggest that Black patients should be prescribed either a thiazide diuretic
or calcium channel blocker for first-line agent (Whelton et al., 2018). In this case, the rules discovered with
CMHE demonstrate that the calcium channel blocker amlodipine is more effective than lisinopril for Black,
non-Hispanic patients. Conditions corresponding with diminished treatment effect are the inverse of those
described for the group receiving the most benefit. ACE inhibitors are indicated treatment to slow the
progression of renal insufficiency for those with mild renal dysfunction and hypertension, and the CMHE
conditions support this, indicating amlodipine is better in patients with higher baseline kidney function,
whereas lisinopril may be better for patients with kidney disease.

» ACCORD: CMHE revealed multiple conditions describing the phenogroup with decreased treatment effect
from intense hyperglycemic control. In this group, criteria tended to favor patients with less severe renal
disease (higher baseline GFR, lower baseline creatinine, lower baseline potassium) or decreased evidence of
cardiovascular disease (lower diastolic blood pressure, less bradycardia), though this was not true in all cases.
In contrast, the phenogroup with increased treatment effect from intense hyperglycemic control has a worse
baseline kidney function (GFR < 79.9 mL/min, urine creatinine < 42.9 mg/dL), higher baseline fasted glucose
levels (fasting blood glucose > 195), and lacked a documented history of cerebrovascular disease. These results
suggest that patients at with decreased renal function and poor baseline glucose control, which is commonly
seen in advanced diabetics, stand to gain the most from an intensive treatment regimen. Patients with a
history of cerebrovascular disease (e.g., stroke), on the other hand, may be at greater risk from hypoglycemic
complications related to intensive glucose control. This is consistent with clinical intuition that aggressive
treatment is required for the most severe forms of a disease, whereas early stage disease may not derive as
much benefit, increasing risk for net harm due to unintended side effects.
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5.4.3 Factual Regression

For completeness, we further evaluate the performance of the proposed approach in estimating factual risk
over multiple time horizons using the standard survival analysis metrics, including:
Brier Score (BS(t)): Defined as the Mean Squared Error (MSE) around the probabilistic prediction at a certain

time horizon.
BS(t) = E_ [[11{T >t} = P(T > t|X))|] (5.8)

Time Dependent Concordance Index (C'): A rank order statistic that computes model performance in
ranking patients based on their estimated risk at a specfic time horizon.

Cl(t) = P(F(t]x;) > F(tx;)|0; = 1,T; < T;, T; < t) (5.9)

We compute the censoring adjusted estimates of the Time Dependent Concordance Index (Antolini et al.,
2005; Gerds et al., 2013) and the Integrated Brier Score® (Gerds & Schumacher, 2006; Graf et al., 1999) to
assess both discriminative performance and model calibration at multiple time horizons. For each of the
datasets we perform 5-fold cross-validation over the hyperparameter grid as described in Appendix D.3, and
report the performance of the hyperparameter setting with the lowest Brier Score averaged over all folds.
Table 5.2 presents the discriminative performance and calibration of CMHE compared to Cox PH models in
factual regression. We find that CMHE had similar or better discriminative performance than a simple Cox
Model with a linear and MLP hazard functions. CMHE was also better calibrated as evidenced by overall lower
Integrated Brier Score, suggesting utility for factual risk estimation.

5.5 Discussion and Conclusion

We proposed a novel deep learning approach able to discover latent phenogroups that respond differentially
to an intervention in the presence of censored time-to-event outcomes. It provides a valuable adjunct to
traditional statistical techniques in healthcare survival research and can aid determination of treatment
efficacy. This new technique, CMHE, provides the opportunity to gain individualized patient insights by
identifying subjects who would benefit from a treatment as well as those who are at highest risk for harm. This
can be particularly useful in clinical practice when these personalized insights differ from population-level
expectations of the efficacy of the established as well as novel treatment protocols.

3Brier Score integrated over 1, 3 and 5 years. IBS = Y, ¢/t - BS(?)



Part III

Interpretable Approaches for Actionable
Time-to-Event Analysis
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Motivation

The motivations for this chapter are drawn from my interactions with clinicians in cardiovascular surgery and
medicine and our subsequent attempts to derive actionable insights helping improve patient care. Estimators
and methods included in Part I and II rely on the use of deep representation learning techniques in order to
model complex clinical covariates. While powerful, practical deployment and their use in real world clinical
scenarios is severely limited by the inability of these models to produce intepretable hypotheses which could
help provide diagnoses and guide personalized therapy.

In this part of the thesis, we thus take a tangential view to modelling time-to-event and survival problems
keeping interpretability as a paramount requirement. In light of this we propose two approaches involving
1) estimation of heterogeneous treatment effects using sparsity presevering regularization and, 2) disease
stratification and staging using integer risk scoring methods.

Chapter 6 extends the estimator introduced in Part Il with the ability to specify sparse feature selection
approaches involving structured regularization. As opposed the previous model, we do not require stochastic
sampling and instead propose an exact inference algorithm compatible with such sparsity regularization.
We demonstrate the ability of our approach in recovering parsimonious subgroups in real world studies of
cardio-vascular health helping improve understanding of heterogeneity in these studies.

Clinicians often rely on simplistic stratification of patients into stages and categories that guide subsequent
treatment and therapy. The ability for clinicians to quickly use an integer calculator that assigns scores to each
patient based on their risk level thus makes for an impactful contribution. Chapter 7 proposes, COXSLIM, a
methodology for data-driven recovery of an integer risk scoring model with censored time-to-event outcomes.
We model the problem as a Mixed Integer Non-Linear program involving constraints that impose model
structure in terms of maximum number of features employed and propose an efficient algorithm to solve the

aforementioned optimization problem.
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Chapter 6

Recovering Sparse and Interpretable
Subgroups with Heterogeneous Treatment
Effects with Censored Time-to-Event
Outcomes

6.1 Introduction

Data driven decision making across multiple disciplines including healthcare, epidemiology, econometrics
and prognostics often involves establishing efficacy of an intervention when outcomes are measured in terms
of the time to an adverse event, such as death, failure or onset of a critical condition. Typically the analysis of
such studies involves assigning a patient population to two or more different treatment arms often called the
‘treated’ (or ‘exposed’) group and the ‘control’ (or ‘placebo’) group and observing whether the populations
experience an adverse event (for instance death or onset of a disease) over the study period at a rate that is
higher (or lower) than for the control group. Efficacy of a treatment is thus established by comparing the
relative difference in the rate of event incidence between the two arms called the hazard ratio. However, not
all individuals benefit equally from an intervention. Thus, very often potentially beneficial interventions
are discarded even though there might exist individuals who benefit, as the population level estimates of

treatment efficacy are inconclusive.

In this chapter we assume that patient responses to an intervention are typically heterogeneous and
there exists patient subgroups that are unaffected by (or worse, harmed) by the intervention being assessed.
The ability to discover or phenotype these patients is thus clinically useful as it would allow for more precise
clinical decision making by identifying individuals that actually benefit from the intervention being assessed.
Towards this end our contributions in this chapter are as follows:

« We propose Sparse Cox Subgrouping, (SCS) a latent variable approach to model patient subgroups that
demonstrate heterogeneous effects to an intervention.

89
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« As opposed to existing literature in modeling heterogeneous treatment effects with censored time-to-event
outcomes our approach involves structured regularization of the covariates that assign individuals to
subgroups leading to parsimonious models resulting in phenogroups that are interpretable.

« We release a python implementation of the proposed SCS approach as part of the auton-survival package
(Nagpal et al., 2022b) for survival analysis:  https://autonlab.github.io/auton-survival/

6.2 Related Work

Large studies especially in clinical medicine and epidemiology involve outcomes that are time-to-events such
as death, or an adverse clinical condition like stroke or cancer. Treatment efficacy is typically estimated by
comparing event rates between the treated and control arms using the Proportional Hazards (Cox, 1972)
model and its extensions.

Identification of subgroups in such scenarios has been the subject of a large amount of traditional
statistical literature. Large number of such approaches involve estimation of the factual and counterfactual
outcomes using separate regression models (T-learner) followed by regressing the difference between these
estimated potential outcomes. Within this category of approaches, Lipkovich et al. (2011) propose the subgroup
identification based on differential effect search (SIDES) algorithm, Su et al. (2009) propose a recursive
partitioning method for subgroup discovery, Dusseldorp & Mechelen (2014) propose the qualitative interaction
trees (QUINT) algorithm, and Foster et al. (2011) propose the virtual twins (VT) method for subgroup discovery
involving decision tree ensembles. We include a parametric version of such an approach as a competing
baseline.

Identification of heterogeneous treatment effects (HTE) is also of growing interest to the machine learning
community with multiple approaches involving deep neural networks with balanced representations (Song
et al., 2016; Johansson et al., 2020), generative models Louizos et al. (2017) as well as Non-Parametric methods
involving random-forests (Wager & Athey, 2018) and Gaussian Processes (Alaa & van der Schaar, 2017a). There
is a growing interest in estimating HTEs from an interpretable and trustworthy standpoint (Lee et al., 2020;
Nagpal et al., 2020; Morucci et al., 2020; Wu et al., 2022; Crabbé et al., 2022). Wang & Rudin (2022) propose a
sampling based approach to discovering interpretable rule sets demonstrating HTEs.

However large part of this work has focused extensively on outcomes that are binary or continuous. The
estimation of HTEs in the presence of censored time-to-events has been limited. Xu et al. (2022) explore
the problem and describe standard approaches to estimate treatment effect heterogeneity with survival
outcomes. They also describe challenges associated with existing risk models when assessing treatment effect
heterogeneity in the case of cardiovascular health.

There has been some initial attempt to use neural network for causal inference with censored time-to-
event outcomes. Curth et al. (2021) propose a discrete time method along with regularization to match the
treated and control representations. Chapfuwa et al. (2021)’s approach is related and involves the use of
normalizing flows to estimate the potential time-to-event distributions under treatment and control. While
contributions are similar to Chapter 5 (Nagpal et al., 2022a), in that we assume treatment effect heterogeneity
through a latent variable model, the chapter differs in that
1) Our approach is free of the expensive Monte-Carlo sampling procedure and,

2) Our generalized EM inference procedure allows us to naturally incorporate structured sparsity regular-
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ization, which helps recovers phenogroups that are parsimonious in the features they recover that define
subgroups.

Survival and time-to-event outcomes occur pre-eminently in areas of cardiovascular health. One such area
is reducing combined risk of adverse outcomes from atherosclerotic disease (Herrington et al., 2016; Furberg
et al., 2002; Group, 2009; Buse et al., 2007) (a class of related clinical conditions from increasing deposits of
plaque in the arteries, leading to Stroke, Myorcardial Infarction and other Coronary Heart Diseases.) The
ability of recovering groups with differential benefits to interventions can thus lead to improved patient care
through framing of optimal clinical guidelines.

6.3 Proposed Model: Sparse Cox Subgrouping

Casel: Z € {0,+1} Case2: Z € {0,+1, -1}
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Figure 6.1: Potential outcome distributions under the assumptions of treatment effect heterogeneity. Case 1:
Amongst the treated population, conditioned on the latent Z, there are two subgroups that benefit and are
unaffected by the intervention. Case 2: There is an additional latent subgroup conditioned on which, the
treated population is harmed with a worse survival rate.

Notation As is standard in survival analysis, we assume that we either observe the true time-to-event or
the time of censoring U = min{7, C'} indicated by the censoring indicator defined as A = 1{T" < C'}. We
thus work with a dataset of right censored observations in the form of 4-tuples, D = {(x;, §;, wi, a;)}}'4,
where u; € R™ is the time-to-event or censoring as indicated by §; € {0, 1}, a; € {0, 1} is the indicator of
treatment assignment, and x; are individual covariates that confound the treatment assignment and the
outcome.

Assumption 5 (Independent Censoring) The time-to-event T' and the censoring distribution C' are independent
conditional on the covariates X and the intervention A.
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Model Consider a maximum likelihood approach to model the data D the set of parameters €2. Under
Assumption 5 the likelihood of the data D can be given as,
|D|

L(D) o [[AwilX =24, A = @) S(wi| X = xi, A = @), (6.1)
=1

here A(t) = Alimo P(tSTQZ;At'TZt) is the hazard and S(¢) = P(T > t) is the survival rate.
—
Assumption 6 (PH) The distribution of the time-to-event T conditional on the covariates and the treatment assign-

ment obeys proportional hazards.

From Assumption 6 (Proportional Hazards), an individual with covariates (X = ) under intervention
(A = a) under a Cox model with parameters § and treatment effect w is given as

At|A=a,X =x) = Xo(t) exp (,@Ta: +w-a), (6.2)

Here, Ao () is an infinite dimensional parameter known as the base survival rate. In practice in the Cox’s model
the base survival rate is a nuisance parameter and is estimated non-parametrically. In order to model the
heterogeneity of treatment response. We will now introduce a latent variable Z € {0, 1, —1} that mediates
treatment response to the model,

At|A=a,X =x,7Z =k) = A(t) exp(8" ) exp(w)*e,
exp(6, )

—Zj o (Hij) . (6.3)

and, P(Z =k|X =x) =

Here, w € R is the treatment effect, and @ € R¥*9 is the set of parameters that mediate assignment to the
latent group Z conditioned on the confounding features . Note that the above choice of parameterization
naturally enforces the requirements from the model as in Figure 6.1. Consider the following scenarios,

Case 1: The study population consists of two sub-strata ie. Z € {0, +1}, that are benefit and are unaffected
by treatment respectively.

Case 2: The study population consists of three sub-strata ie. Z € {0, 41, —1}, that benefit, are harmed or
unaffected by treatment respectively.

Following from Equations 6.1 & 6.3, the complete likelihood of the data D under this model s,

D] 0;
D) =1[>. (AO(ui>h<wvavk)> So(ui)"®EPP(Z = k|X = ;)
i=1keZz
where, Inh(x,a,k) =B x + k-a-wand InSy(-) = —Ag("), (6.4)

Note that Ag(-) = fot Ao(+) is the infinite dimensional cumulative hazard and is inferred when learning the

model. We will notate the set of all learnable parameters as @ = {6, 3, w, Ap}.

Shrinkage In retrospective analysis to recover treatment effect heterogeneity a natural requirement is
parsimony of the recovered subgroups in terms of the covariates to promote model interpretability. Such



6.3. PROPOSED MODEL: SPARSE COX SUBGROUPING 93

parsimony can be naturally enforced through appropriate shrinkage on the coefficients that promote sparsity.
We want to recover phenogroups that are ‘sparse’ in 6. We enforce sparsity in the parameters of the latent Z
gating function via a group ¢; (Lasso) penalty. The final loss function to be optimized including the group
sparsity regularization term is,

(9 D)+e R(0) where, R(8) = 3 |3 (6%)°
d keZ

and e > 0 is the strength of the shrinkage parameter. (6.5)

Identifiability is imposed by restricting the gating parameters for the (Z = 0) to be 0. Thus ; = 0.

Inference We will present a variation of the Expectation Maximization algorithm to infer the parameters
in Equation 6.3. Our approach differs from Nagpal et al. (2022a, 2021d) in that it does not require stochastic
Monte-Carlo sampling. Further, our generalized EM inference allows for the incorporation of the structured
sparsity in the M-Step.

A Semi-Parametric Q(-) Note that the likelihood in Equation 6.3 is semi-parametric and consists of para-
metric components and the infinite dimensional base hazard A(-). We define the Q(+) as:

QEED) =) vf<1npe(z = kX =) + mpupa(T|Z =k, X = mn) +R(6)
=1 keZ

The E-Step Requires computation of the posteriors counts v := p(Z = k|T, X = x, A = a).

Result 1 (Posterior Counts) The posterior counts - for the latent Z are estimated as,

Y =P(Z=klX=x,A=a,u)

__ h(@,a, k)" So(w)" N exp(6) ) (6.6)
Zjez h(x, aaj)éigo(u)h(w’avj) exp(Oij) ' ‘

Result 1 follows directly from the For a full discussion on derivation of the Q(-) and the posterior counts
please refer to Appendix E.1

The M-Step Involves maximizing the Q(-) function. Rewriting the Q(+) as a sum of two terms,

Q) =D Afnpupa,(TIZ=k X =zi,A=a;)+) Y Yinpe(Z=kX =x;)+R(6)
i=1 keZ i=1 keZ

A(w,3.A0) B(0)

Result 2 (Weighted Cox model) The term A can be rewritten as a weighted Cox model and thus optimized using
the corresponding ‘partial likelihood’,
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Updates for {3, w}: The partial-likelihood, PL(-) under sampling weights (Binder, 1992) is

n

PLQ:D) = Y Z*yf(lnhk(azi,ai,k)—ln > Z%’?hk(mj,aj,k)ﬂ (6.7)

i=1,6,=1keZ jERiskSet(u;) k€ Z

Here RiskSet(-) is the ‘risk set” or the set of all individuals who haven’t experienced the event till the corre-
sponding time, i.e. RS(¢) := {i : u; > t}. PL(:) is convex in {3, w} and we update these with a gradient
step.

Updates for Ag: The base hazard A are updated using a weighted Breslow’s estimate (Breslow, 1972b; Lin,
2007) assuming the posterior counts ~ to be sampling weights (Chen, 2009),

~ " k.§.
Ao(H)F = u; <t Ji % 6.8
o =2 2 M < ) ©2)
= Re JERS(u;) kEZ

Term B is a function of the gating parameters 6 that determine the latent assignment Z along with sparsity
regularization. We update B using a Proximal Gradient update as is the case with Iterative Soft Thresholding
(ISTA) for group sparse ¢; regression.

Updates for 0: The update for 0 including the group regularization (Friedman et al., 2010) term R (),

~ d
6" = prox,. (0 - deB(O)), where prox, (y) = mmax{(), llyll2 — ne}. (6.9)

All together the inference procedure is described in Algorithm 3.

Algorithm 3: Parameter Learning for SCS with a Generalized EM

Input :Training set, D = {(x;, u;, a;, 0;)]~, }; maximum EM iterations, B, step size

while <not converged> do
forv € {1,2,...,B} do
S =P

o — h(,a.k)% So(u)"®* ) exp(0)] )
P Y ez h(,a.5)% 8o (w)h (@ ad) exp(6] z)

> Compute posterior counts (Equation 6.6).

BT B—n-VgPL(B,w;D)
W+ w — - VuPL(B,w; D) > Gradient descent update.

A kg,
Ao(t)™ = 2201 Dopez Hui <th— g: j}hk(%%k) >Breslow (1972b)’s estimator.
jERiskSet(u;) kEZ

6+ « ProX, (5 —n-VeB(0)) > Update 6 with gradient of Q.
end

end

Return:learnt parameters €2;
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6.4 Experiments

In this section we describe the experiments conducted to benchmark the performance of SCS against alterna-
tive models for heterogenous treatment effect estimation on multiple studies including a synthetic dataset
and multiple large landmark clinical trials for cardiovascular diseases.

6.4.1 Simulation

a) The Time-to-Event b) Learnt Decision Boundary ¢) ROC Curves
P(T>tA=q) ROC Curve
1.07 Lo
—|
0. \ A=1 ' \ 0.8
N\
0.6 \\ Tos
\ o]

Probability of Survival —

[a W
0.4 04
= —— Diminished
02 0.2 Enhanced
No Effect
o “ ] Random
: 2 4 6 8 10 12 14 - ’ . : 1073 1072 1071 100

Time in Years — FPR —

Figure 6.2: a) Population level Kaplan-Meier Estimates of the Survival Distribution stratified by the treatment
assignment. b) Distribution of the Latent Z in X and the recovered decision boundary by SCS. c) Receiver
Operator Characteristics of SCS in recovering the true phenotype.
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Figure 6.3: The phenotypes recovered with Sparse Cox Subgrouping on the Synthetic Data. As expected, the
recovered phenotypes conform to the modelling assumptions as in Figure 6.4.

In this section we first describe the performance of the proposed Sparse Cox Subgrouping approach on a
synthetic dataset designed to demonstrate heterogeneous treatment effects. We randomly assign individuals
to the treated or control group. The latent variable Z is drawn from a uniform categorical distribution that
determines the subgroup,

A ~ Bernoulli(1/2), Z ~ Categorical(1/3)
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Conditioned on Z we sample X;.o ~ Normal(p., o) as in Figure 6.2 that determine the conditional Hazard
Ratios HR(k), and randomly sample noisy covariates X3.4 ~ Uniform(—1, 1) . The true time-to-event 7" and
censoring times C' are then sampled as,

T(X =x,A=a,Z = k) ~ Gompertz(5 = 1,7 = 0.25 - HR(k)?®), C|T ~ Uniform(0,T")
Finally we sample the censoring indicator A ~ Bernoulli(0.8) and set the observed time-to-event,

U=TifA=1,elsewesetU = C.

Figure 6.2 presents the ROC curves for SCS’s ability to identify the groups with enhanced and diminished
treatment effects respectively. In Figure 6.3 we present Kaplan-Meier estimators of the Time-to-Event distri-
butions conditioned on the predicted Z by SCS. Clearly, SCS is able to identify the phenogroups corresponding
to differential benefits.

6.4.2 Recovering subgroups demonstrating Heterogeneous Treatment Effects from Land-
mark studies of Cardiovascular Health

ALLHAT BARI2D
1007 - 1.00 -
—— Amlodipine —— FEarly Revascularization
4 0.951 Lisinopril 4 0.951 Medical Therapy
g 0.901 .‘2 0.901
> >
5 0.851 5 0.851
wn n
8 0.80 3 0.80 .
- -
075 075 \
> >
€3] _ €3]
0701 [HR (95%-CI): 1.01-1.12] 0701 [HR (95%-CI): 0.81-1.14]
0.65 - ‘ : ‘ — | 0.65 ‘ ; ‘ . —
1 Year 2 Years 3 Years 4 Years 5 Years 6 Years 1 Year 2 Years 3 Years 4 Years 5 Years 6 Years
Time in Years — Time in Years —
ALLHAT BARI2D
Size 18,102 Size 2,368
Outcome Combined CVD Outcome Death, MI or Stroke
Intervention Lisinopril Intervention Medical Therapy
Control Amlodipine Control Early Revascularization
Hazard Ratio 1.06, (1.01, 1.12) Hazard Ratio 1.02, (0.81, 1.14)
5-year RMST  24.86, (8.89, 37.35) 5-year RMST 23.26, (-27.01, 64.84)

Figure 6.4: Event-free Kaplan-Meier survival curves stratified by the treatment assignment and summary
statistics for the ALLHAT and BARI2D studies. (Combined CVD: Coronary Heart Disease, Stroke, other treated
angina, fatal or non-fatal Heart Failure, and Peripheral Arterial Disease.)

Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack (Furbergetal.,2002) The ALL-
HAT study was a large randomized experiment conducted to assess the efficacy of multiple classes of blood

pressure lowering medicines for patients with hypertension in reducing risk of adverse cardiovascular
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conditions. We considered a subset of patients from the original ALLHAT study who were randomized to
receive either Amlodipine (a calcium channel blocker) or Lisinopril (an Angiotensin-converting enzyme
inhibitor). Overall, Amlodipine was found to be more efficacious than Lisinopril in reducing combined risk of
cardio-vascular disease.

Bypass Angioplasty Revascularization Investigation in Type II Diabetes (Group, 2009)

Diabetic patients have been traditionally known to be at higher risk of cardiovascular disease however appro-
priate intervention for diabetics with ischemic heart disease between surgical coronary revascularization or
management with medical therapy is widely debated. The BARI2D was a large landmark experiment con-
ducted to assess efficacy between these two possible medical interventions. Overall BARIZD was inconclusive
in establishing the appropriate therapy between Coronary Revascularization or medical management for
patients with Type-II Diabetes.

Figure 6.4 presents the event-free survival rates as well as the summary statistics for the studies. In our
experiments, we included a large set of confounders collected at baseline visit of the patients which we utilize
to train the proposed model. A full list of these features are in Appendix E.2.

6.4.3 Baselines

Cox PH with /; Regularized Treatment Interaction (COX-INT)

We include treatment effect heterogeneity via interaction terms that model the time-to-event distribution
using a proportional hazards model as in Kehl & Ulm (2006). Thus,

At X =2, A=a)=X)exp(B'z+a-0x) (6.10)

The interaction effects 0 are regularized with a lasso penalty in order to recover a sparse phenotyping rule
defined as G(z) = 0" x.

Binary Classifier with /; Regularized Treatment Interaction (BIN-INT)

Instead of modelling the time-to-event distribution we directly model the thresholded survival outcomes
Y = 1{T < t} at a five-year time horizon using a log-linear parameterization with a logit link function. As
compared to COX-INT, this model ignores the data-points that were right-censored prior to the thresholded
time-to-event, however it is not sensitive to the strong assumption of Proportional Hazards.

ET >t X=x,A=al=0(B8 x+By+a 0 x),
and, o (-) is the logistic link function. (6.11)

Cox PH T-Learner with /; Regularized Logistic Regression (COX-TLR)

We train two separate Cox Regression models on the treated and control arms (T-Learner) to estimate the
potential outcomes under treatment (A = 1) and control (A = 0). Motivated from the ‘Virtual Twins’
approach as in Foster et al. (2011), a logistic regression with an ¢; penalty is trained to estimate if the risk of
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the potential outcome under treatment is higher than under control. This logistic regression is then employed

as the phenotyping function G(-) and is given as,

G(z) = E[1{fi(z,t) > fo(z, 1)}|X = =]
where, fo(x,t) = P(T > t|do(A =a), X = x). (6.12)

The above models involving sparse ¢; regularization were trained with the glmnet (Friedman et al., 2009)
package in R.

The ACC/AHA Long term Atheroscleoratic Cardiovascular Risk Estimate

The American College of Cardiology and the American Heart Association model for estimation of risk of
Atherosclerotic disease risk (Goff Jr et al., 2014) involves pooling data from multiple observational cohorts
of patients followed by modelling the 10-year risk of an adverse cardiovascular condition including death
from coronary heart disease, Non-Fatal Myocardial Infarction or Non-fatal Stroke. While the risk model was
originally developed to assess factual risk in the observational sense, in practice it is also employed to assess

risk when making counterfactual decisions.

6.4.4 Protocol

We compare the performance of SCS and the corresponding competing methods in recovery of subgroups
with enhanced (or diminished treatment effects). For each of these studies we stratify the study population
into equal sized sets for training and validation while persevering the proportion of individuals that were
assigned to treatment and experienced the outcome in the follow up period. The models were trained on the
training set and validated on the held-out test set. For each of the methods we experiment with models that
do not enforce any sparsity (e = 0) as well as tune the level of sparsity to recover phenotyping functions that
involve 5 and 10 features. The subgroup size are varied by controlling the threshold at which the individual
is assigned to a group. Finally, the treatment effect is compared in terms of Hazard Ratios, Risk Differences as

well as Restricted Mean Survival Time over a 5 Year event period.

6.4.5 Results and Discussion

We present the results of SCS versus the baselines in terms of Hazard Ratios on the ALLHAT and BARI2D
datasets in Figures 6.5 and 6.6. In the case of ALLHAT, SCS consistently recovered phenogroups with more
pronounced (or diminished) treatment effects. On external validation on the heldout dataset, we found
a subgroup of patients that had similar outcomes whether assigned to Lisinopril or Amlodipine, whereas
the other subgroup clearly identified patients that were harmed with Lisinopril. The group harmed with
Lisinopril had higher Diastolic BP. On the other hand, patients with Lower kidney function did not seem to
benefit from Amlodipine.

In the case of BARI2D, SCS recovered phenogroups that were both harmed as well as benefitted from
just medical therapy without revascularization. The patients who were harmed from Medical therapy were
typically older, on the other hand the patients who benefitted primarily included patients who were otherwise
assigned to receive PCI instead of CABG revascularization, suggesting PCI to be harmful for diabetic patients.
Tables 6.1 and 6.2 present the features that were selected by the proposed model for the studies.
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Amlodipine versus Lisinopril in the ALLHAT Study
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Figure 6.5: Conditional Average Treatment Effect in Hazard Ratio versus subgroup size for the latent

phenogroups extracted from the ALLHAT study.
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Early Revascularization versus Medical Therapy in the BARI2D Study
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Figure 6.6: Conditional Average Treatment Effect in Hazard Ratio versus subgroup size for the latent

phenogroups extracted from the BARI2D study.
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ALLHAT BARI2D
Name | Description Name | Description
BV2SBP | Baseline Seated Diastolic Pressure age | Age upon entry
BLGFR | Baseline est Glomerular Filteration Rate asp | Aspirin use
BLMEDS | Antihypertensive Treatment hxhtn | History of hypertension requiring tx
CURSMOKE | Current Smoking Status hxchl | Hypercholesterolemia req tx
SEX | Sex of Participant priorstent | Prior stent

Table 6.1: List of selected features with sparsity level: ||0]]p < 5

ALLHAT BARI2D
Name | Description Name | Description
BV2SBP | Baseline Seated Diastolic Pressure age | Age upon entry
BLGFR | Baseline est Glomerular Filtration Rate asp | Aspirin use
BLMEDS | Antihypertensive Treatment hxhtn | History of hypertension requiring tx
CURSMOKE | Current Smoking Status hxchl | Hypercholesterolemia req tx
SEX | Sex of Participant priorstent | Prior stent
ASPIRIN | Aspirin Use acei | ACE Inhibitor
ACHOL | Total Cholesterol acr | Urine albumin/creatinine ratio mg/g
BLWGT | Weight upon entry insul_circ | Circulating insulin
BMI | Body mass index upon entry screat | Serum creatinine (mg/dl)
OASCVD | Other atherosclerotic cardiovascular disease tchol | Total Cholesterol

Table 6.2: List of selected features with sparsity level: ||8]|o < 10

6.5 Concluding Remarks

We presented Sparse Cox Subgrouping (SCS) a latent variable approach to recover subgroups of patients
that respond differentially to an intervention in the presence of censored time-to-event outcomes. As
compared to alternative approaches to learning parsimonious hypotheses in such settings, our proposed
model recovered hypotheses with more pronounced treatment effects which we validated on multiple studies
for cardiovascular health. While powerful in its ability to recover parsimonious subgroups there exists
limitations in SCS in its current form. The model is sensitive to proportional hazards and may be ill-specified
when the proportional hazards assumptions are violated as is evident in many real world clinical studies
(Maron et al., 2018; Bretthauer et al., 2022). Another limitation is that SCS in its current form looks at only
a single endpoint (typically death, or a composite of multiple adverse outcome). In practice however real
world studies typically involve multiple end-points. We envision that extensions of SCS would allow patient
subgrouping across multiple endpoints, leading to discovery of actionable sub-populations that similarly

benefit from the intervention under assessment.
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Chapter 7

Learning Integer Risk Scores for Disease
Staging with Censored Time-to-Event
Outcomes

7.1 Introduction

Clinicians routinely rely on simple heuristically learnt risk scoring models for patient risk assessment and for
subsequent prioritization to certain therapies or intervention. Such models are typically built on intuition
and heuristic judgement followed by extensive validation on an observational cohort of patients to verify
performance in terms of both discriminate performance and calibration.

1.  Congestive Heart Failure 1 point
2. Hypertension 1 point | +
3. Age>75 1 point | +
4. Diabetes Mellitus 1 point | +
5. Prior Stroke or Transient Ischemic Attack 2 points | +
SCORE | =
SCORE 0 1 2 3 4 5 6

RISK | 1.9% | 2.8% | 4.0% | 59% | 85% | 12.5% | 18.2%

Figure 7.1: The popular integer risk scoring model CHADS, with calibrated risk for Atrial Fibrillation risk
estimation. Current approaches involving risk estimation rely on heuristics to determine coefficients or
optimization are limited to binary outcomes. We propose extensions that naturally allow modelling of

time-to-event outcomes as are common in healthcare settings.

Figure 7.1 demonstrates the popular CHADS risk scoring model (Gage et al., 2004). Such scoring systems are
ubiquitous in healthcare and can help clinicians assess patient risk and subsequent therapy. Outcomes such
as Death, or occurrence of an event are typically Time-to-Event outcomes and treating them as binary often
results is mis-estimated risk estimates especially at longer time horizons. Further, large number of patients
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might be censored or lost to follow up from the study something that cannot be modelled naturally with
binary outcomes.

Contributions The main contributions of this chapter include:

1. We propose a mixed integer non-linear program to recover risk scoring systems with time-to-event
outcomes and an efficient algorithm to optimize the same that involves a cutting plane approximation of
the proposed non-linear program.

2. We demonstrate that the formulation allows for addition of several constraints that help improve usability
of the risk scoring system including, level of sparsity and range of possible coefficient values.

3. We demonstrate, through several real world examples that our approach is able to recover patient strata
with high discriminative capability as well as calibration. Further, we demonstrate that our approach has
better performance than similar approaches that are limited to binary classification.

7.2 Methodology

In this section we present COXSLIM an integer scoring system for censored time-to-event outcomes.

7.2.1 Setup

We start with a dataset of n examples {(x;, ¢;, §;) }I*_;, where example i consists of a features &; = [x;1,..., 2 4] €
RY, a time-to-event t; € R, and a binary indicator §; € {0, 1} that indicates if ¢; represents a time-to-event
or censoring time. We consider a maximum likelihood approach to model the time-to-event data. Thus the
likelihood L is given as

n

L(D) < [T A#IX = 2:)" S(t|X = x;) where, (7.1)
=1

Here A(t) = lima; 0 P(KTQAJ;M'TN) is the hazard rate of the event and S(t) is the corresponding

survival function. We assume a proportional hazards (PH) approach to model the above likelihood. Thus the
individual hazard rate for an individual with covariates x is modelled as

At X =x) = Ao(t) exp (w'z/c). (7.2)

Here Ao (t) is the infinite dimensional baseline hazard rate of failure and ¢ € R is a constant hyperparameter
that sets the base of the exponent. In practice the above model is learnt by minimizing the partial likelihood
equation given as follows,

PL(D;w,c) Zlg £0 <'w @i/c — log Z exp (w my/c)> (7.3)
JER(t:)

Here R(t) is the ‘risk set’ or the set of all individuals with {¢; : ¢; > t}. Notice that the partial likelihood is
independent of A(-).
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Model Requirement ~ Example

Feature Selection Choose between 5 to 10 total features

Group Sparsity Include either male or female in the model but not both

Optimal Thresholding ~ Use at most 3 thresholds for a set of indicator variables: 33, 1{age < k} < 3

Logical Structure If male is in model, then include hypertension or bmi > 30

Side Information Predict Stage > 5 when male = TRUE and hypertension = TRUE

Table 7.1: Model requirements that can be addressed by adding operational constraints

7.2.2 Learning Integer Hazard Scoring Systmes with Time-to-Event Outcomes

We determine the values of the coefficients by solving the following mixed integer nonlinear program
(MINLP):

Definition 3 (Hazard Scoring Problem) The hazard scoring problem is a discrete optimization problem of the form:
min PL(D;w,c) st. weW and [wl, < R™, (7.4)

where:
PL(D;w,c) =Y 1" 1520 (“’Tf’” — log Zje’R(ti) exp (@)) is the partial likelihood;

lwll, = Z?zl 1{w; # 0} is the £y-seminorm;
W C Z9*1is a set of feasible coefficient vectors, e.g, W = {—5,5}%+1;
R™ ¢ Z is a user-specified parameter to impose sparsity in the learnt coefficient set.

This problem captures what we desire in a scoring system. The objective minimizes the partial likelihood
over the event rate which inturn helps recovering models that are well calibrated with good discriminative
performance. Further it penalizes the £y-seminorm (the count of non-zero coefficients) for sparsity. The trade-
off parameter e controls the balance between these competing objectives, and represents the maximum log-
likelihood that is sacrificed to remove a feature from the optimal model. The constraints restrict coefficients
to a set of small integers such as W := {—5,...,5}9"! and may be customized to encode other model

requirements such as those in Table 7.1.
We optimize the problem in Equation 7.4 by solving the following MINLP:

min L+e€eR
w
n
s.t. L= 154 (mei/c ~log Y exp (me.j/c)) partial likelihood (7.5a)
i=1 JER(t:)
R= Z Q; model size (7.5b)
JE€ld]
Wi a; > w; JjE€d wj>0 = a;=1 (7.5¢)
*W;mnaj > —Wy YRS [d] w; <0 = a;=1 (75d)

Lejo,..., L™ loss (7.5€)
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Re {0, ey Rmax} model size (7.5f)
w; € {ijm R W;nax} Jj€ld coef for variable j (7.58)
a; €{0,1} Jj€[d] oy = 1[w; # 0] (7.5h)

+ L and R are “auxiliary" variables that represent the overall loss and the model size, respectively. In theory,
these variables are redundant in that they could be replace by the quantities in equation 7.5a and equa-
tion 7.5b. In practice, we include them because they allow us to set upper and lower bounds on feasible
models via “variable definition constraints" in equation 7.5e and equation 7.5f.

+ The formulation accounts for model size using the indicator variables a; := 1{w; # 0]. These variables are
set to 1 whenever w; # 0 through the constraints in equation 7.5¢ and equation 7.5d.

« The coefficient for each variable is constrained to small integer values in Constraints . These constraints
restrict each w; to integers from iji“ to W@, By default, we set these values to ijin = —5 and
max __
WX = 45,

Cutting-Plane Formulation We recover an optimal solution to the MINLP in equation 7.5 with the lattice
cutting-plane algorithm in (Ustun & Rudin, 2019). The cutting-plane algorithm solves a surrogate problem that
replaces loss function with a linearized “cutting-plane" approximation. This problem is a MINLP equation 7.5
with the following form:

n}li)n L+eR
s.t. L>PL(w") + VPL(w")(w —w'") te|T) loss cuts (7.6a)
R=Ya; model size (7.6b)

jeld]

Wi a; > w; JEd wj>0 = a;=1 (7.6¢)
~Whha; > —w; JE[d wj<0= a;=1 (7.6d)
Lelo,..., L™ loss (7.6e)
Re{0,...,R™} model size (7.6f)
wj € {Wmn L Wiy j€1d] coef for variable j (7.68)
a; €{0,1} Jj€[d] oy = 1{w; # 0] (7.6h)

The main difference with the MIP formulation in equation 7.6 and the MINLP formulation in equation 7.5 is
that we now compute the loss using a cutting-plane approximation of the loss function. The cutting-plane
approximation is captured through T cuts equation 7.6a. Each cut is a supporting hyperplane to the loss
function at a specific point w! - where the values of w' represent integer-feasible solutions. Since we with the
Cox partial likelihood (i.e, a convex loss function), the cutting-plane approximation is an under-approximation.
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7.2.3 Estimation the Conditional Survival Function

Once the parameters of the model in w are learnt using the cutting plane formulation of MINLP formulation
(Equation 7.6), the individualized survival at a time horizon ¢, @(T > t|X = @, w) can be estimated using
a non-parametric maximum likelihood estimation procedure, more commonly known as the Breslow’s
Estimator (Lin, 2007; Breslow, 1972b).
BT > 1 X o)™ and, A !
>t X =z, w) =exp( — t ¢ ’ang, t) =
( | ) p( o )) 0 ;ZjeR(ti) eXP(chmj)

(7.7)

Here, Ao(t) is the estimated baseline cumulative hazard. We also consider an alternate approach to model
the conditional survival function that involves building a conditional Kaplan-Meier for each estimate level
using the integer scoring output.

7.3 Experiments

Datasets We compare and evaluate the systems using real-world datasets for clinical decision making. Each
of the datasets includes demographic information such as sex, age, as well as clinical variables specific to the
study or the results of a medical procedure.

flchain (Assay of Serum Free Light Chain): This is a public dataset introduced by Dispenzieri et al. (2012)
aiming to study the relationship between serum free light chain and mortality. It includes covariates like age,
gender, serum creatinine and presence of monoclonal gammapothy. We removed all the individuals with
missing covariates and experiment with the remaining subset of 6,524 individuals.

support The support dataset is derived from a study of the survival risk of critically-ill patients who were
discharged from the ICU conducted by Connors et al. (1995). Here, we have records of 9,105 patients. The
outcome variable indicates that a patient has died within six months of discharge. The features cover chronic
health conditions (e.g., diabetic status, number of comorbidities), vital signs (e.g., mean blood pressure),
and results of lab tests (e.g., white blood cell count). The dataset is publically available for research here:
https://hbiostat.org/data/.

seer-lymphoma (Surveillance, Epidemiology and End Results Study)* We consider a cohort of 60,486 patients
who were diagnosed with lymphoma or leukemia cancer between 2000-2004 and monitored as part of the
National Cancer Institute SEER study (National Cancer Institute, 2019). Here, the outcome variable indicates
if a patient dies within five years from any cause, and 45.83% of patients die within the first five years from
diagnosis. The cohort includes patients from New Jersey, Greater California, Kentucky, Lousisiana and Georgia.
The features reflect the morphology and histology of the tumor (e.g., size, metastasis, stage, node count
and location, number and location of notes) as well as interventions that were administered at the time of

diagnosis (e.g., surgery, chemo, radiology).
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Figure 7.2: Left: The learnt integer risk scoring system on f1chain. Right: KM-curves stratified by scores

assigned by COXSLIM. Each curve represents an increase of hazard by a factor of v/2.
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1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year
No Censoring
RiskSLIM 0.034 0.113 0.223 0.815 0.79 0.778 0.010 0.096 0.223
RiskSLIM-KM 0.034 0.095 0.146 0.815 0.79 0.778 0.008 0.021 0.021
CoxSLIM 0.034 0.091 0.131 0.830 0.810 0.829 0.009 0.014 0.027
CoxSLIM-KM 0.034 0.091 0.130 0.833 0.810 0.829 0.013 0.012 0.021
25% + Censoring
RiskSLIM 0.033 0.114 0.223 0.821 0.803 0.791 0.011 0.104 0.230
RiskSLIM-KM 0.033 0.093 0.141 0.821 0.799 0.796 0.012 0.027 0.045
CoxSLIM 0.033 0.090 0.133 0.830 0.809 0.829 0.011 0.024 0.046
CoxSLIM-KM 0.033 0.091 0.131 0.833 0.809 0.828 0.014 0.024 0.042
50% + Censoring

RiskSLIM 0.033 0.114 0.225 0.817 0.807 0.799 0.015 0.112 0.238
RiskSLIM-KM 0.033 0.095 0.147 0.817 0.807 0.799 0.018 0.053 0.094
CoxSLIM 0.033 0.093 0.143 0.828 0.807 0.827 0.018 0.055 0.095
CoxSLIM-KM 0.034 0.096 0.141 0.821 0.804 0.821 0.020 0.056 0.092

Table 7.2: Discriminative performance and Calibration of CoxSLIM vs. RiskSLIM on the f1chain data. All of
the metrics are reported on the held-out test set and adjusted for censoring using Inverse Propensity of

Censoring Weighting.
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Figure 7.3: Left: The learnt integer risk scoring system on support. Right: KM-curves stratified by scores

assigned by COXSLIM. Each curve represents an increase of hazard by a factor of v/2.
expc = 1/v2 expc=1/2 expc = le
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Survival Probability
Survival Probability
Survival Probability

1 2 3 4 1 2 3 4 1 2 3 4
Time in Years Time in Years Time in Years

support

Brier Score Area Under ROC Curve ECE

6-Month 1-Year 5-Year 6-Month 1-Year 5-Year 6-Month 1-Year 5-Year

No Censoring

RiskSLIM 0.229 0.236 0.257 0.647 0.644 0.67 0.019 0.088 0.29
RiskSLIM-KM 0.228 0.228 0.181 0.646 0.644 0.67 0.009 0.011 0.010
CoxSLIM 0.232 0.224 0.174 0.644 0.670 0.701 0.019 0.014 0.026
CoxSLIM-KM 0.232 0.225 0.175 0.644 0.670 0.701 0.024 0.021 0.033

25% + Censoring

RiskSLIM 0.229 0.244 0.284 0.644 0.641 0.663 0.060 0.139 0.341
RiskSLIM-KM 0.231 0.233 0.195 0.644 0.641 0.663 0.081 0.081 0.088
CoxSLIM 0.230 0.228 0.185 0.663 0.678 0.716 0.081 0.079 0.090
CoxSLIM-KM 0.229 0.227 0.185 0.663 0.678 0.712 0.079 0.077 0.078

50% + Censoring

RiskSLIM 0.240 0.260 0.329 0.645 0.654 0.674 0.131 0.208 0.408
RiskSLIM-KM 0.245 0.249 0.218 0.645 0.653 0.676 0.175 0.187 0.204
CoxSLIM 0.247 0.248 0.212 0.642 0.669 0.693 0.172 0.184 0.191
CoxSLIM-KM 0.246 0.246 0.214 0.642 0.669 0.692 0.171 0.182 0.188

Table 7.3: Discriminative performance and Calibration of CoxSLIM vs. RiskSLIM on the support data. All of
the metrics are reported on the held-out test set and adjusted for censoring using Inverse Propensity of
Censoring Weighting.
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Figure 7.4: Left: The learnt integer risk scoring system on seer-lymphoma. Right: KM-curves stratified by

Time in Years

scores assigned by Cox-SLIM. Each curve represents hazard increase of /2.
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seer-lymphoma

Brier Score Area Under ROC Curve ECE
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year
No Censoring
RiskSLIM 0.176 0.262 0.319 0.665 0.687 0.712 0.034 0.204 0.333
RiskSLIM-KM 0.175 0.218 0.205 0.665 0.687 0.712 0.003 0.007 0.004
CoxSLIM 0.175 0.213 0.192 0.680 0.717 0.765 0.022 0.027 0.02
CoxSLIM-KM 0.175 0.212 0.192 0.680 0.717 0.765 0.009 0.007 0.003
25% + Censoring
RiskSLIM 0.173 0.270 0.336 0.664 0.685 0.709 0.036 0.244 0.374
RiskSLIM-KM 0.174 0.221 0.212 0.664 0.685 0.709 0.051 0.077 0.074
CoxSLIM 0.174 0.216 0.200 0.678 0.715 0.763 0.053 0.082 0.081
CoxSLIM-KM 0.174 0.215 0.198 0.678 0.715 0.763 0.051 0.076 0.070
50% + Censoring
RiskSLIM 0.172 0.283 0.359 0.662 0.682 0.705 0.079 0.295 0.425
RiskSLIM-KM 0.177 0.233 0.231 0.662 0.682 0.705 0.108 0.170 0.178
CoxSLIM 0.176 0.228 0.219 0.675 0.711 0.76 0.108 0.170 0.181
CoxSLIM-KM 0.177 0.228 0.216 0.675 0.711 0.759 0.108 0.167 0.171

Table 7.4: Discriminative performance and Calibration of CoxSLIM vs. RiskSLIM on the seer-1ymphoma data.
All of the metrics are reported on the held-out test set and adjusted for censoring using Inverse Propensity of

Censoring Weighting.
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Dataset Description n d 5-YrSurvival
flchain effect of light chains on survival 6,524 39 86.54%
support survival post ICU discharge 9,105 90 24.55%
seer-lymphoma lymphoma/leukemia survival 60,486 55 54.16%

Table 7.5: Datasets used in Section 7.3. n and d denote the number of examples and features in each dataset,
respectively. All datasets are publicly available.

Methods For all the datasets we experiment with 70% of the data as the training set and test the performance
of the learnt scoring system on the remaining 30% held out set. The set of possible model coefficients W are
restricted to be between {—5, ..., 5} and we fix the maximum size of the model R™** to be 6. We compare
the performance of our proposed COXSLIM to RISKSLIM (Ustun & Rudin, 2017, 2019) involving learning of
integer scoring systems with binary outcomes.

For RiskSLIM, our horizon of a positive outcome is determined using best judgment for each dataset. For
flchain and seer-1lymphoma we consider an outcome to be positive if a patient survived the first 1 year from
entry into the study. For support we consider survival post the first 6-months from discharge as a positive
outcome. In order to demonstrate the superiority of COXSLIM in the presence of higher amounts of censoring
we also experiment by synthetically augmenting the amount of censoring in the above datasets by randomly
sampling a certain percentage of the uncensored individuals and censoring there event times drawn from a
uniform distribution.

Evaluation Our goal is to train a risk score that is sparse, has small integer coefficients, and performs well
in terms of the following measures:

Expected /1 Calibration Error (ECE): The ECE measures the average absolute difference between the observed
and expected (according to the risk score) event rates, conditional on the estimated risk score. At time ¢, let

~

the predicted risk score be s(¢t) = P(T > t|X). Then, the ECE approximates
ECE(t) = E[|P(T > t|s(t)) — s(t)|]

by conditioning on the set of all possible estimated integer risk scores {w " z|x € D}.

Brier Score (BS): The Brier Score involves computing the Mean Squared Error around the binary forecast of
survival at a certain event quantile of interest. Brier Score is a proper scoring rule and can be decomposed
into components that measure both discriminative performance and calibration.

BS(t) = Ep[(1{T > t} — B(T > 1|X))’]

Area under ROC Curve (AUC): Involves treating the survival analysis problem as binary classification at
different horizons of event times and computing the corresponding area under the curve.

Each of the metrics described above are adjusted for censoring by using standard Thompson-Horvitz
style Inverse Propensity of Censoring Weights (IPCW) estimates learnt with a Kaplan-Meier estimator over

the censoring times.
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Results In this section we describe the results of the proposed COXSLIM approach vs RISKSLIM in terms of
both Calibratation and Discriminative performance. We found that for all three datasets we were able to solve
the CoxSLIM problem to optimality within a running time of < 10 minutes with 8 parallel threads using the
IBM CPLEX solver, while RiskSLIM took longer to converge. CoxSLIM consistently had better discrimination
performance as evidenced from the higher area under ROC scores at different horizons of time Tables 7.2,
7.3 and 7.4. Further While RiskSLIM was calibrated at the horizon it was trained on, calibration deteriorated
significantly at longer time horizons. We also report the Kaplan-Meier adjusted survival curves for both
CoxSLIM and RiskSLIM. We find that KM adjustment greatly improves calibration, but the general trend
still favours CoxSLIM. For completeness, we also present the sparse integer scoring system outputs from
CoxSLIM and RiskSLIM in Figures 7.2, 7.3 and 7.4 as well as the corresponding survival curves stratified by the
estimated risk score by CoxSLIM.

In order to better present the qualitative differences between various different bases for the risk scoring
models, we also experiment with different values of the scaling base ¢ coefficient and find that smaller values
lead to better stratification with more granular scoring stages, however this comes at a cost of calibration.

7.4 Conclusion

We proposed COXSLIM an integer risk scoring method that allows learning highly interpretable scoring
systems involving censored time-to-event outcomes in a data driven manner. Our formulation involves a
mixed integer program and allows for specification of several operational constraints helping improve utility
of the learnt scoring systems. We benchmark the performance of COXSLIM to existing solutions and found
that across multiple real world risk estimation studies, COXSLIM recovered highly calibrated risk scoring
systems with improved discriminative power.

In the future we aim to extend COXSLIM to situations where we are interested in stratifying patients with
heterogeneous treatment response. Such a model could involve interaction effects with treatment assignment
as well as additional constraints that ensure conditions for faithful recovery in counterfactual inference such

as positivity are respected.



Discussion and Future Work

In this thesis, I presented multiple modeling approaches for time-to-event data. Part I of the thesis focused on
flexible and accurate survival modeling involving deep representation learning and probabilistic inference.
Part Il on the other hand focused on making survival predictions actionable as tools for decision support
by recovering subgroups that respond differentially to interventions. Finally, in Part III I proposed using
advanced numerical optimization techniques to extract sparse and frugal hypotheses from time-to-event data.
Overall through my thesis contributions, I hope to engender discussion both amongst the Machine Learning
and Healthcare community on the complex challenges that are involved when modeling time-to-event data
which appears ubiquitously across multiple areas of application.

This thesis, however, has only scratched the surface of the multitude of challenges that stem from time-
to-event data, and multiple avenues are open for furthering academic research along these directions. Some
potentially promising future directions include:

Heterogeneous Treatment Effects and Subgroup Discovery in the Presence of Competing Events Clinical
studies often involve multiple outcomes that may respond differently to an intervention. Such outcomes
might potentially be non-independent competing risks and subgroup discovery and heterogeneous treatment
effect estimation requires careful assumptions in order to correctly estimate counterfactual phenotypes.

Integer Risk Scoring for Heterogeneous Treatment Effects Typical integer risk scoring methods as pre-
sented in Chapter 7 typically involve observational outcomes. In our contributions we extend this to the
setting where outcomes are times-to-event, however for actionable clinical decision support it would be
imperative for these calculators to represent differential treatment responses. In such settings, one must
ensure careful covariate balance, especially when models are trained on observational data.

Uncertainty Estimation with Time-to-Events In a large number of applications, input covariates may be
unavailable, subject to measurement error, or may not be reflective of the outcome of interest. In such
scenarios, data-driven decision-making could benefit from individual level confidence intervals for a specific
prediction. A large amount of recent deep learning research has focused on uncertainty estimation with
ensembling and bayesian approaches but has restricted focus to scalar or temporal outcomes. In the case of
time-to-event models such intervals are functions of time making analysis harder.

Time-to-Recurrent Events Standard practice in clinical medicine and reliability analysis is to perform
inference over the time-to-first major adverse event, such as Death or Stroke or failure of a component. In
as much, the focus of this thesis was in Time-to-the-First event. While there are extensions of the models
proposed in this thesis in the situation with multiple recurrent events, academic literature on this topic is
sparse, especially when estimating treatment effects. Potential extensions could involve counting process
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based semi-parametric extensions of the Cox model or parametric models defined on distributions that have

a circular support.

Other than the methodological extensions listed above there are open opportunities for applications of

the thesis research across multiple real world risk estimation problems, including:

Healthcare Disease staging with complex multi-modal data, including genetic markers, histopathology,
natural language, imaging such as CT scans and Chest X-rays. Another promising research direction is the
discovery of treatment effect heterogeneity across a wide spectrum of randomized trials especially but not
limited to epidemiology, psychology, and oncology. Finally, there is ample opportunity to validate existing
standard clinical risk scoring methods temporally across multiple time horizons of clinical interest and
improve upon them especially within minority groups utilizing methodologies presented in this thesis.

Discourse and Conversational Analysis Computation social scientists are often interested in modeling
Discourse and Human-Machine Interaction from the perspective of improving the longevity of discourse
by keeping participants engaged. Such problems are typically modeled as binary but can be re-framed as
modeling time-to-events of potential interest such as the user dropping out of conversation or time till the

conversation involves the onset of a certain topic or level of sentiment.

Policy Impact Evaluation and Development Economics Randomized experiments and observational stud-
ies in policy impact evaluation and development economics often involve outcomes that are temporal.
Estimators proposed in this thesis can be directly applied to such studies with higher statistical power.

Finance and Econometrics Large number of problems arising in mathematical finance such as the time till
a financial instrument achieves a certain value or time before an analyst re-adjusts there earnings expectation

for a certain financial entity are inherently temporal and maybe better modeled as time-to-event.

Predictive Maintenance and Reliability Engineering In the case of reliability and predictive maintenance
presents an opportunity to extend proposed methods to incorporate econometric notions of reward or utility
beyond just survival time.
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Appendix A

Appendix to Chapter 1

A.1 Loss Function Formulation

At test time, DSM describes the survival function of the test individual as a weighted mixture of K survival
distribution primitives, and the K weights are a softmax over the output of a neural network. The loss
function of DSM is designed to handle both the censored and uncensored data.

Uncensored Loss. The maximum likelihood estimator for the uncensored data can be written as

D
InP(Dy|®) = In <HIP’(T = ;]| X = x;, @))
1=1

DI

K
=S In <ZIP(T = t;|Z, B, i )P(Z| X = xi,w)>
k

=1 =1

= Zln <Z~(]E [P(T = t;|Z, ﬂkﬂ?k)])

|xi,w)

(Applying Jensen’s Inequality)

D]

> Z < E [InP(T=t|Z, Bkaﬁk)])
i1 \Z~(xiw)
DI

=> <50FTMAX(K)(ln f(tilﬂk“??ki)))
=1

£ ELBOy(0)

Here x; are the input covariates of the i-th observation, and f(t) is the probability density function (PDF)
of the primitive distribution. 5, and 7, for the i-th observation are parameterized as
Br; = Br +act(®g(z:) '¢),
M, = 1k + act(®g(w) ' €)

where act(+) is the SELU activation function if Weibull is used as the primitive distribution and the Tanh
activation function if Log-Normal is used as the primitive distribution. ®(.) is a Multilayer Perceptron.
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Censoring Loss. As above, the lower bound of the censored observations can be written as

D

InP(D¢c|O) = 1n (HP(T >t X = Xi7®)>
=1

2

> ( E [nP(T > t]Z, 5k,77k)]>
S\ 2n(xw)
2

— Z (SOFTMAX(K) (In S(hlﬁm%)))
=1

£ ELBO((O)

S(t) is the survival function of the primitive distribution.
For the scenario of M competing risks, ELBOy;, (©) and ELBO(,, (©) are computed for the m-th competing
risk by treating other events as censoring. The total loss can be written as

M
L= Z ELBOy,, (@) + « - ELBO¢,, (@) + Epriorn

m=1
A.1.1 Results in Tabular Format

In this section, we provide the comparison of the performances of DSM with the baseline approaches using
C'? at different event time horizons. The C*@ was evaluated at the 25%, 50%, 75% quantiles of event times.
The mean and the 90% confidence interval of the C'*? were computed using 5-fold cross validation.

The results of two single-risk datasets, SUPPORT and METABRIC, are respectively shown in Table A.2 and
Table A.4. To investigate the models’ robustness to censoring, we also artificially increased the amount of
censoring in training set by censoring a randomly chosen subset which included 25% or 50% of the originally
uncensored observations in the training data, on both SUPPORT and METABRIC. The results of added censoring
are also shown.

The results of two datasets with competing risks, SYNTHETIC and SEER, are shown respectively in Table
A.5 and Table A.6. cs-CPH and cs-RSF stand for the cause-specific versions of CPH and RSF models.

A.2 Hyperparameter Tuning for the Baselines

We compared the performance of Deep Survival Machines (DSM) to several competing baseline approaches. In
this section, we provide details of the hyperparameter tuning for each baseline approach. The hyperparame-
ters tuned for Random Survival Forests (RSF) (Ishwaran et al., 2008) and DeepHit (Lee et al., 2018) are described
as below, and the best set of hyperparameters was chosen based on the time-dependent Concordance-Index
C'? (Antolini et al., 2005) on the validation set. For Cox Proportional Hazards (CPH) model (Cox, 1972), we
used the default settings in the python PySurvival library." For DeepSurv (Katzman et al., 2018), We directly
used the hyperparameters provided in the DeepSurv GitHub repository.” For Fine-Gray (FG) model (Fine &
Gray, 1999), we used the default settings in the R cmprsk package.’
https://square.github.io/pysurvival/

https://github.com/jaredleekatzman/DeepSurv/tree/master/experiments/deepsurv
Shttps://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf


https://square.github.io/pysurvival/
https://github.com/jaredleekatzman/DeepSurv/tree/master/experiments/deepsurv
https://cran.r-project.org/web/packages/cmprsk/cmprsk.pdf
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Table A.1: Time-dependent Concordance-Index on SUPPORT dataset at different quantiles of event times for
different levels of censoring.

Default Censoring.

Time-dependent Concordance-Index (C*?)

Models Quantiles of Event Times

25% 50% 75%
CPH 0.794 £0.002 0.756 +0.004 0.733 £ 0.003
DeepSurv | 0.804 £ 0.004 | 0.767 £ 0.003 | 0.746 £ 0.003
DeepHit 0.822 +£0.003 | 0.778 +0.002 | 0.701 £ 0.007
RSF 0.830 £ 0.005 | 0.779 £ 0.004 | 0.729 4+ 0.007
DSM 0.832 +0.002 | 0.788 +0.003 | 0.750 4+ 0.003

25%+ Censoring.

Time-dependent Concordance-Index (C*?)

Models
Quantiles of Event Times
25% 50% 5%

CPH 0.796 £ 0.003 0.754 £0.002 0.727 4 0.003
DeepSurv | 0.800 £ 0.004 | 0.762 £ 0.002 | 0.738 £ 0.003
DeepHit 0.813 £ 0.004 | 0.770 £0.004 | 0.711 4 0.008
RSF 0.830 £0.004 | 0.774 £0.001 | 0.723 & 0.005
DSM 0.831 =£0.002 | 0.783 £0.003 | 0.742 £ 0.003

50%+ Censoring

Time-dependent Concordance-Index (C*?)

Models
Quantiles of Event Times
25% 50% 75%

CPH 0.793 £ 0.006 0.750 £0.004 0.721 £ 0.006
DeepSurv | 0.795+£ 0.004 | 0.756 £ 0.004 | 0.731 £ 0.003
DeepHit 0.814 +£0.004 | 0.771 £0.005 | 0.709 £ 0.006
RSF 0.827 +£0.002 | 0.770 £0.003 | 0.716 £ 0.005
DSM 0.828 = 0.002 | 0.778 £0.004 | 0.735 £ 0.004

Random Survival Forests (RSF): The number of trees in the forest was selected from [10, 20, 50, 100]

and the maximum depth of the trees was set to 4.

DeepHit (DH): We followed the experiment settings provided in the DeepHit GitHub repository.” The

*https://github.com/ch18856/DeepHit/

number of layers in the shared sub-network and in each cause-specific (CS) sub-network was selected from


https://github.com/chl8856/DeepHit/
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Table A.2: Brier Score on SUPPORT dataset at different quantiles of event times for different levels of censoring.

Default Censoring.

Brier Score

Models Quantiles of Event Times

25% 50% 75%
CPH 0.115£0.002 0.171£0.002 0.193 + 0.001
DeepSurv | 0.110 £0.002 | 0.165 + 0.002 | 0.186 %+ 0.001
DeepHit 0.164 £ 0.003 | 0.285 +=0.009 | 0.342 +0.020
RSF 0.118 £0.003 | 0.181 £0.002 | 0.203 £ 0.002
DSM 0.107 £0.002 | 0.159 £0.002 | 0.188 + 0.002

25%+ Censoring.
Brier Score

Models Quantiles of Event Times

25% 50% 75%
CPH 0.125+0.007 0.190 +£0.003 0.224 4+ 0.001
DeepSurv | 0.118 £0.003 | 0.181 £ 0.003 | 0.213 £ 0.001
DeepHit 0.178 +0.004 | 0.336 +0.006 | 0.436 % 0.006
RSF 0.128 £0.003 | 0.204 £ 0.003 | 0.243 £+ 0.001
DSM 0.115+0.002 | 0.176 = 0.003 | 0.211 £+ 0.002

50%+ Censoring
Brier Score

Models Quantiles of Event Times

25% 50% 75%
CPH 0.140 £0.004 0.225£0.005 0.278 + 0.005
DeepSurv | 0.131 £ 0.004 | 0.210 £ 0.004 | 0.259 &£ 0.002
DeepHit | 0.192 +£0.005 | 0.365 £+ 0.010 | 0.481 +0.017
RSF 0.143 +£0.004 | 0.240 +=0.004 | 0.301 £+ 0.002
DSM 0.126 +0.003 | 0.202 £0.004 | 0.244 + 0.002

[1,2, 3, 5]; the number of nodes in each layer was selected from [50, 100, 200, 300]; the activation function
was selected from [RELU, ELU, Tanh]; and the coefficients «y, for trading off the ranking losses of the k
competing risks were chosen from [0.1, 0.5, 1.0, 3.0, 5.0]. We generated 10 settings by randomly sampling
each hyperparameter from the given lists of candidates 10 times, and selected the best set of hyperparameters
which had the highest validation C*. The hyperparameters for each dataset are shown in Table A.7.
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Table A.3: Time-dependent Concordance-Index on METABRIC dataset at different quantiles of event times for

different levels of censoring.

A.3 DataPreprocessing

Default Censoring.

Time-dependent Concordance-Index (C*?)

Models
Quantiles of Event Times
25% 50% 75%
CPH 0.620 £ 0.016  0.620 £ 0.013  0.629 £ 0.010
DeepSurv | 0.634 £0.018 | 0.635=£0.011 | 0.637 £ 0.0010
DeepHit 0.691 £ 0.016 | 0.626 = 0.011 | 0.585 + 0.006
RSF 0.713 £ 0.017 | 0.673 £0.010 | 0.644 £0.010
DSM 0.720 £0.0116 | 0.676 £0.009 | 0.652 £ 0.009
25%+ Censoring.
Time-dependent Concordance-Index (C*?)
Models
Quantiles of Event Times
25% 50% 5%
CPH 0.607 £0.015 0.616 £0.012 0.628 = 0.010
DeepSurv | 0.619 £0.018 | 0.627 £0.012 | 0.633 £ 0.011
DeepHit 0.688 +0.020 | 0.618 £0.015 | 0.593 £ 0.002
RSF 0.710 £0.016 | 0.668 £0.009 | 0.642 4 0.010
DSM 0.712 £ 0.010 | 0.671 £0.010 | 0.645 4 0.010
50%+ Censoring
Time-dependent Concordance-Index (C*?)
Models
Quantiles of Event Times
25% 50% 75%
CPH 0.603 +£0.014 0.613£0.012 0.630 £ 0.010
DeepSurv | 0.617 £0.018 | 0.612 £ 0.014 | 0.622 £ 0.012
DeepHit 0.666 £ 0.020 | 0.601 £0.011 | 0.583 £ 0.006
RSF 0.700 +£0.016 | 0.662 £0.010 | 0.635 4 0.010
DSM 0.708 £ 0.009 | 0.664 £0.010 | 0.638 & 0.010

Both SUPPORT (single risk) and SEER (competing risks) datasets have missing values. The number and

percentage of instances with missing values in each feature of the two datasets are provided in Table A.8 and

Table A.9.
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Table A.4: Brier Score on METABRIC dataset at different quantiles of event times for different levels of

censoring.

Default Censoring.

Brier Score

Models Quantiles of Event Times

25% 50% 75%
CPH 0.127 £ 0.006  0.209 £ 0.003  0.249 + 0.002
DeepSurv | 0.124 £ 0.006 | 0.195+£ 0.004 | 0.226 £ 0.007
DeepHit 0.137 +0.003 | 0.239 +0.002 | 0.284 4+ 0.004
RSF 0.119 +£0.006 | 0.193 +£0.003 | 0.227 + 0.004
DSM 0.116 £0.006 | 0.187 £ 0.003 | 0.222 4+ 0.005

25%+ Censoring.
Brier Score

Models Quantiles of Event Times

25% 50% 75%
CPH 0.135+£0.007 0.230 £0.003 0.288 £+ 0.003
DeepSurv | 0.131 £ 0.006 | 0.216 £ 0.004 | 0.260 £ 0.007
DeepHit 0.149 +0.003 | 0.271 +£0.002 | 0.335 £+ 0.002
RSF 0.127 £0.007 | 0.214 £0.003 | 0.263 &+ 0.004
DSM 0.125 £ 0.007 | 0.210 £0.003 | 0.264 + 0.005

50%+ Censoring
Brier Score

Models Quantiles of Event Times

25% 50% 75%
CPH 0.148 £0.009 0.264 £0.004 0.352 +0.005
DeepSurv | 0.145+£ 0.008 | 0.251 £ 0.006 | 0.322 &£ 0.009
DeepHit 0.166 = 0.003 | 0.321 +£0.004 | 0.418 +£0.010
RSF 0.141 +0.008 | 0.248 +0.004 | 0.324 4+ 0.006
DSM 0.137 +£0.008 | 0.238 +0.003 | 0.305 + 0.007

21 out of the 30 features in SUPPORT have missing values. For the following 7 features, we used the
suggested normal values¥or imputation, which are Serum Albumin (Day 3): 3.5, Pa02/(.01*Fi02) (Day 3): 333.3,
Bilirubin (Day 3): 1.01, Serum Creatinine (Day 3): 1.01, BUN (Day 3): 6.51, White Blood Cell Count (Day 3): 9, Urine
Output (Day 3): 2,502, as these values are found to be working well in baseline physiologic data imputation.
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Table A.5: C* for competing risks on SYNTHETIC data.

(a) Event 1.
Models Quantiles of Event Times
25% 50% 75% 100%
cs-CPH 0.570 £0.016 0.553 £0.012 0.542 +0.009 0.528 £ 0.009
FG 0.610 £ 0.001 | 0.587 £0.002 | 0.568 +0.003 | 0.548 £ 0.004
cs-RSF 0.680 +£0.011 | 0.663 + 0.009 | 0.644 4+ 0.007 | 0.569 + 0.005
DeepHit | 0.796 £ 0.009 | 0.765 £ 0.005 | 0.726 £ 0.005 | 0.635 =+ 0.007
DSM 0.798 £0.010 | 0.759 £ 0.008 | 0.724 +0.004 | 0.670 £ 0.005
(b) Event 2.
Models Quantiles of Event Times
25% 50% 75% 100%
cs-CPH | 0.591 £ 0.024 0.563 £0.018 0.548 £0.015 0.533 £ 0.013
FG 0.634 £ 0.008 | 0.595 £ 0.008 | 0.575 4+ 0.007 | 0.552 £ 0.005
cs-RSF 0.687 = 0.007 | 0.663 £0.011 | 0.638 = 0.010 | 0.571 £ 0.011
DeepHit | 0.803 £0.004 | 0.761 £ 0.005 | 0.726 £ 0.004 | 0.618 £ 0.014
DSM 0.803 £0.011 | 0.762 £ 0.009 | 0.729 +0.006 | 0.672 £ 0.006

123

5 out of the 21 patient covariates in SEER have missing data. For these 5 features in SEER, as well as

the remaining 14 features in SUPPORT, we followed the data imputation practice used in Lee et al. (2018):

missing data was imputed by the mean for numeric features and the mode for categorical features. We first

divided the data into train/validation subsets, and the missing values in each subset were imputed with the

mean/mode values of the train set.

A.4 Benchmarking Machine Specifications

All experiments except the experiments for DeepHit were run on a Linux version 3.10.0-1062.9.1.el7.x86_64
machine with an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz (8-core CPU) and RAM 32 GB. The experiments
for DeepHit were run on a TITAN X (Pascal) GPU cluster (1 GPU) with an Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz (32-core CPU), NVIDIA driver version 418.74 and CUDA 10.1.



Table A.6: C*? for competing risks on SEER data.

(a) Breast Cancer (BC).

Models Quantiles of Event Times

25% 50% 75% 100%
cs-CPH 0.891 £0.004 0.849£0.004 0.827+0.004 0.807 £ 0.003
FG 0.876 +0.002 | 0.840 £ 0.002 | 0.816 + 0.002 | 0.798 4+ 0.002
cs-RSF 0.897 £0.002 | 0.852 £0.005 | 0.823 £ 0.004 | 0.801 £ 0.003
DeepHit | 0.899 £0.001 | 0.863 £ 0.003 | 0.838 +0.003 | 0.815 £ 0.002
DSM 0.904 £ 0.001 | 0.861 £0.003 | 0.840 + 0.004 | 0.820 4+ 0.003

(b) Cardiovascular Disease (CVD).

Models Quantiles of Event Times

25% 50% 75% 100%
cs-CPH 0.897 £ 0.007  0.890 £ 0.006  0.891 £0.002 0.889 + 0.002
FG 0.842 £ 0.008 | 0.844 £0.006 | 0.854 £0.004 | 0.857 £ 0.004
cs-RSF 0.845 +0.006 | 0.832 £0.008 | 0.823 £ 0.008 | 0.816 + 0.009
DeepHit | 0.902 £ 0.003 | 0.893 £0.003 | 0.893 £0.001 | 0.889 £ 0.001
DSM 0.894 +0.004 | 0.893 £0.004 | 0.893 £0.001 | 0.890 £ 0.001

Table A.7: The hyperparameters of DeepHit for each dataset.

Dataset

Shared Sub-network

CS Sub-network

Activation

Type

No.Layers No.Nodes No.Layers No.Nodes
SUPPORT Single Risk 3 100 3 300 eLU 0.1
METABRIC Single Risk 3 100 1 100 Tanh 5.0
SYNTHETIC | Competing Risks 3 300 2 50 eLU 0.1
SEER Competing Risks 1 100 2 50 elLU 0.5
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Table A.8: Statistics of the missing values in each feature of SUPPORT dataset.

Feature Name

No. Instances

Feature Name

No. Instances

Years of Education 1,634 (17.9%) | Income 2,982 (32.8%)
SUPPORT Coma Score 1(0.0%) Average TISS (Days 3-25) 82 (0.9%)
Race 42 (0.5%) Mean Arterial Blood Pressure (Day 3) 1(0.0%)
White Blood Cell Count (Day 3) | 212(2.3%) Heart Rate (Day 3) 1(0.0%)
Respiration Rate (Day 3) 1(0.0%) Temperature (Day 3) 1(0.0%)
Pa02/(.01*Fi02) (Day 3) 2,325(25.5%) | Serum Albumin (Day 3) 3,372 (37.0%)
Bilirubin (Day 3) 2,601 (28.6%) | Serum Creatinine (Day 3) 67 (0.7%)

Serum Sodium (Day 3)

1(0.0%)

Serum pH Arterial (Day 3)

2,284 (25.1%)

Glucose (Day 3)

4,500 (49.4%)

BUN (Day 3)

4,352 (47.8%)

Urine Output (Day 3)

4,862 (53.4%)

ADL Patient (Day 3)

5,641 (62.0%)

ADL Surrogate (Day 3)

2,867 (31.5%)

Table A.9: Statistics of the missing values in each feature of SEER dataset.

Feature Name

No. Instances

Feature Name

No. Instances

Surgery Type

36, 524 (55.8%)

Surgery-Beyond Primary Site

59, 295 (90.6%)

Surgery-Primary Site

28,957 (44.2%)

Surgery-Distant Lymph Nodes/ Other Tissues

35,143 (53.7%)

No. Lymph Nodes Examined

35,143 (53.7%)
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Appendix B

Appendix to Chapter 3

B.1 Additional details on DCM implementation

B.1.1 Non Applicability of the Partial Likelihood for the Proposed Model

In this section, we demonstrate that we cannot directly maximize the partial likelihood to learn our model.
In the case of the Cox model, the hazard rate for an individual with covariates x; at time ¢, A(¢|x;) is given as

A(tlzi) = Xo(t) exp(f (B, i)

Here, Ao (t) is the baseline hazard. Now the partial likelihood PL(0) is defined as

A(t]z) Xoft) exp (£(8; )
(B.1)
151_11 ]Eg A(t|z;) Z!_I je§tz Xolt) exp (f(6;x;)) 1
1 exp (f(0;2:)) (B.2)

5o > exp(f(6iz)))
T jER(L:)
Under our model, the hazard rate for an individual with covariates x; at time ¢, A(¢|x;) is given as

Pley  DEHenZ =RP(Z =K

S(tlz:) % S(tlz:, Z = k)P(Z = k|z;)

A(|zi) =

Clearly, we do not have the proportional hazards form for DCM and so cannot directly optimize the Partial
Likelihood independent of the baseline hazard rate.

B.1.2 Spline Estimates

We want to extract the probabilities estimates P(7'|Z, X ) in order to compute the posterior P(Z|T, X')

P(T'|Z, X) for the uncensored observations. We only have access to the estimated survival function from the
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Breslow’s estimate, S(T > t|X = x;).

P(T>tX =2, Z=k)=1-P(T <t|X =a;,Z=k)
=1—-cdf(T <t| X =a;, Z =k)
Now,cdf(T < t| X =a;, Z=k)=1-P(T >t|X =x;,Z =k)

%cdf(T <HX =w;, Z =k) = i(l —PT >t X ==, Z = k:)) [taking derivative wrt. ¢]
— pdf(T = t|X = 2;,Z = k) = —;P(T S tX =2, Z = k)
0 .
-7 exp(fi(0:@:))
8t5k(t)

Here pdf(-) and cdf(-) are the probability density and the cumulative density functions respectively. Now
replacing the baseline survival function S(.) with the interpolated spline estimate, Sj(.) we get the spline
estimate of P(T' = t|Z, X) as

B(T = 1|7, X) = _% G, (1) Un(0:2)
= —exp (fr(8;2:)) Si(t)

~

BT > t|wi, 2= k) D =
Si(t)

exp (fk(e,mz)) 10 =~

= —exp (fu(6;2:))

Here, %:S’Vk(t) is the derivative of the baseline survival rate interpolated with a polynomial spline.

B.2 Hyper-Parameter tuning for the Baselines

In this section we specify the hyper parameter choices along with a short description over which we perform
grid search for the baselines.

Table B.1: DSM Hyper-parameter Grid

Hyper-parameter Grid
Outcome Distribution { ‘Weibull’ }
No. Clusters (k) { 3, 4 %}
No. of Hidden Layers { ‘0>, “1°, 27 }
Hidden Layer Dim. { ¢50°, ‘100’ }
Batch Size { “128’, ‘256’ }
Learning Rate { “le-4’, “1e-3’ }
Activation { “SeLU’ }

Deep Survival Machines (DSM): The choice of hyper parameters for DSM include the number of underlying
survival distributions (k) the choice of each outcome survival distribution, the number of hidden layers and
neurons for the representation learning network and the activations. We also tune the learning rate and
batch size. The choices of hyperparam values is given in Table B.1.
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Table B.2: DHT and FSN Hyper-parameter Grid

Hyper-parameter Grid
No. of Hidden Layers { ‘12, ‘20 }
Hidden Layer Dim. { “50°, ‘100’ }
Batch Size { “128°, ‘256’ }
Learning Rate { “1le-4>, “1e-3’ }
Activation { ‘RelU’ }

Deep Hit (DHT): For Deep Hit, we tune the the Number of Hidden Layers, dimensionality of the hidden layers
and the activation function. We also tune the learning rate and minibatch size. Note that Deep Hit requires
grid discretization of the output event time space. For the SUPPORT and FLCHAIN datasets we discretize the
output grid by dividing it into bins of max(7’) bins. Since, the SEER is a discrete event time dataset we divide
the output grid for Deep Hit into max(T)/10 bins.

Faraggi-Simon Net (FSN)/DeepSurv: Similar to Deep Hit, for FSN we tune the the Number of Hidden Layers,
dimensionality of the hidden layers and the activation function. We also tune the learning rate and minibatch
size.

Both FSN and DHT were implemented using the pycox (Kvamme et al., 2019) python package. Table B.2
describes the hyper-parameter choices for both DHT and FSN.

Table B.3: RSF Hyper-parameter Grid

Hyper-parameter Grid
Max Depth {5}
No. of Trees {‘50° }
mtry {‘sqrt’ ,50 , 75, ‘all’ }
min_node_split {9150’ , 200’, ‘250’ }

Random Survival Forest (RSF): For the RSF model we tune the number of trees and the maximum depth of
each tree using the implementation as paart of the pysurvival Python package (Fotso et al., 2019-). Table
B.3 presents the chosen grid parameters.

Table B.4: AFT and CPH Hyper-parameter Grid

Hyper-parameter Grid
{2 Penalty { “1e-37, “1e-27, ‘le-1’ }

For Cox Proportional Hazards (CPH) and Accelerated Failure Time (AFT) the only hyperamaeter is the
2 penalty on the parameters. The grid choice is presented in Table B.4.
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B.3 Additional Results

B.3.1 Tabulated Results

In this section we present tabulated results for our experiments for the entire population and the minority
demogrpahic on the three datasets.

Tables B.5 and B.6 present the C'd, AUC, ECE and Brier Score for the Entire Population and Minority
Demographic on the FLCHAIN dataset, respectively.

Tables B.7 and B.8 present the C'4, AUC, ECE and Brier Score for the Entire Population and Minority
Demographic on the SUPPORT dataset, respectively.

Tables B.9 and B.10 and present the C'd, AUC, ECE and Brier Score for the Entire Population and Minority
Demographic on the SEER dataset, respectively.
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Figure B.1: cHd (higher means better discrimination) and ECE (lower means better calibration) of proposed
represents different quantiles at which we evaluate the individual metrics. (Minorities in the dataset are
SEER has multiple minority classes. In Figure B.1 we break results down by the top four largest minorities

approach versus baselines at different quantiles of event times for the minority demographics. The rows

in the subset of SEER we are working with, ‘Black/African American

denoted by different colors in the legend)
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B.3.2 Unawareness to Group Membership

In the case of CPH and FSN the baseline survival rate is estimated non-parametrically. In Table B.11 we attempt

to see how unawareness to the demographic compares to Deep Cox Mixtures. Note that we report Brier Score
here as it gives sense of both discrimination and calibration.

B.3.3 Decoupled Survival Models

In the case of CPH and FSN the baseline survival rate is estimated non-parametrically. In Table B.12 we attempt
to see how training separate models for each demographic compares to Deep Cox Mixtures by reporting Brier
Scores. (Note that we report Brier Score here as it gives sense of both discrimination and calibration.)

B.3.4 Dynamics of the Proposed MCMC EM Algorithm

EM Convergence on heldout data

4.9 —— LR: 0.001, BS:128
LR: 0.001, BS:256
4.8 —— LR: 0.0001, BS:128
—— LR: 0.0001, BS:256
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Figure B.2: The estimated (6, §) on a heldout set from the SUPPORT dataset for different hyper-parameters
(LR: Learning Rate, BS: Batch size).

Figure B.2 presents the estimated Q (0, 8) function for heldout dataset for the SUPPORT dataset. Empiri-

cally our proposed monte carlo EM monotonically decreases the Q (6, #) suggesting good learning dynamics.
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Ct(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.6621 + 0.0143 | 0.6696 + 0.0110 | 0.6621 =+ 0.0087
AFT 0.7914 + 0.0107 | 0.7938 &+ 0.0080 | 0.7911 = 0.0060
RSF 0.7898 + 0.0102 | 0.7908 £ 0.0078 | 0.7880 = 0.0059
FSN 0.6353 + 0.0146 | 0.6519 + 0.0104 | 0.6608 £ 0.0081
DSM 0.8008 + 0.0100 | 0.7988 + 0.0078 | 0.7937 £ 0.0061
DHT 0.7669 &+ 0.0104 | 0.7666 £+ 0.0078 | 0.7636 £ 0.0059
DCM 0.7991 + 0.0103 | 0.7988 =+ 0.0077 | 0.7943 = 0.0060
AUC(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.6680 + 0.0149 | 0.6827 £+ 0.0120 | 0.6821 =+ 0.0094
AFT 0.8032 = 0.0110 | 0.8170 = 0.0085 | 0.8257 =+ 0.0063
RSF 0.8015 + 0.0105 | 0.8142 + 0.0083 | 0.8235 =+ 0.0064
FSN 0.6416 + 0.0150 | 0.6673 £+ 0.0109 | 0.6904 =+ 0.0090
DSM 0.8124 + 0.0102 | 0.8218 £ 0.0083 | 0.8283 = 0.0066
DHT 0.7771 £+ 0.0106 | 0.7878 + 0.0082 | 0.7936 £ 0.0064
DCM 0.8107 = 0.0106 | 0.8219 & 0.0082 | 0.8291 £ 0.0065
ECE(t) (})
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.0386 = 0.0031 | 0.0699 £ 0.0042 | 0.0992 =+ 0.0044
AFT 0.0141 #+ 0.0024 | 0.0216 £ 0.0034 | 0.0212 + 0.0034
RSF 0.0155 #+ 0.0022 | 0.0198 £ 0.0027 | 0.0215 + 0.0037
FSN 0.0214 + 0.0027 | 0.0334 £+ 0.0035 | 0.0381 =+ 0.0046
DSM 0.0144 4+ 0.0025 | 0.0214 £ 0.0030 | 0.0223 £ 0.0029
DHT 0.0283 &+ 0.0029 | 0.0410 =+ 0.0036 | 0.0505 + 0.0041
DCM 0.0122 + 0.0024 | 0.0169 =+ 0.0033 | 0.0200 = 0.0034
Bs(t)({)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.0671 = 0.0027 | 0.1211 £ 0.0035 | 0.1665 = 0.0037
AFT 0.0584 + 0.0023 | 0.0991 + 0.0028 | 0.1244 &+ 0.0025
RSF 0.0603 &+ 0.0023 | 0.1004 + 0.0027 | 0.1250 =+ 0.0026
FSN 0.0672 = 0.0026 | 0.1199 £ 0.0029 | 0.1589 =+ 0.0027
DSM 0.0578 4 0.0022 | 0.0975 + 0.0028 | 0.1224 £ 0.0026
DHT 0.0631 + 0.0022 | 0.1086 + 0.0026 | 0.1399 =+ 0.0024
DCM 0.0582 + 0.0023 | 0.0979 =+ 0.0028 | 0.1228 = 0.0026
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Table B.5: Results for various performance metrics on FLCHAIN (entire population) along with bootstrapped std errors.
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Ct(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.6444 + 0.0193 | 0.6692 + 0.0160 | 0.6737 = 0.0124
AFT 0.7822 + 0.0158 | 0.7838 + 0.0112 | 0.7875 = 0.0087
RSF 0.7796 + 0.0147 | 0.7799 £ 0.0113 | 0.7830 = 0.0089
FSN 0.5746 + 0.0211 | 0.6014 + 0.0156 | 0.6212 £ 0.0131
DSM 0.7849 + 0.0153 | 0.7886 + 0.0113 | 0.7909 =+ 0.0087
DHT 0.7607 + 0.0153 | 0.7610 £ 0.0116 | 0.7631 = 0.0092
DCM 0.7873 £ 0.0164 | 0.7893 £ 0.0116 | 0.7911 = 0.0091
AUC(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.6492 + 0.0202 | 0.6842 + 0.0175 | 0.6983 £ 0.0136
AFT 0.7944 + 0.0163 | 0.8069 £+ 0.0122 | 0.8230 = 0.0095
RSF 0.7918 + 0.0152 | 0.8028 + 0.0124 | 0.8189 =+ 0.0099
FSN 0.5774 +0.0219 | 0.6115 £+ 0.0164 | 0.6477 £ 0.0148
DSM 0.7966 + 0.0158 | 0.8118 £ 0.0123 | 0.8259 = 0.0095
DHT 0.7710 &+ 0.0157 | 0.7822 £+ 0.0127 | 0.7938 £ 0.0104
DCM 0.7991 #+ 0.0169 | 0.8122 £ 0.0126 | 0.8265 = 0.0100
ECE(t) (})
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.0378 = 0.0044 | 0.0642 £ 0.0056 | 0.0878 £ 0.0071
AFT 0.0221 4+ 0.0035 | 0.0289 &+ 0.0045 | 0.0329 &+ 0.0046
RSF 0.0220 + 0.0036 | 0.0330 + 0.0046 | 0.0368 =+ 0.0053
FSN 0.0325 =+ 0.0043 | 0.0416 £ 0.0059 | 0.0545 =+ 0.0068
DSM 0.0243 4+ 0.0038 | 0.0323 £ 0.0048 | 0.0347 £ 0.0056
DHT 0.0328 + 0.0037 | 0.0411 £ 0.0051 | 0.0525 =+ 0.0056
DCM 0.0209 £ 0.0035 | 0.0298 + 0.0054 | 0.0294 =+ 0.0049
Bs(t)({)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.0693 =+ 0.0043 | 0.1223 £+ 0.0053 | 0.1626 £ 0.0057
AFT 0.0613 #+ 0.0035 | 0.1031 £ 0.0040 | 0.1262 =+ 0.0037
RSF 0.0624 + 0.0036 | 0.1041 + 0.0041 | 0.1273 £ 0.0038
FSN 0.0715 =+ 0.0043 | 0.1278 £ 0.0051 | 0.1673 = 0.0050
DSM 0.0609 £+ 0.0035 | 0.1015 £ 0.0041 | 0.1244 &+ 0.0037
DHT 0.0648 + 0.0035 | 0.1107 £ 0.0038 | 0.1394 =+ 0.0039
DCM 0.0607 & 0.0035 | 0.1021 = 0.0042 | 0.1249 = 0.0039

Table B.6: Results for various performance metrics on FLCHAIN (minority) along with bootstrapped std errors.
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Ct(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.6899 + 0.0057 | 0.6713 £ 0.0040 | 0.6686 + 0.0034
AFT 0.6826 = 0.0057 | 0.6662 =+ 0.0040 | 0.6657 £ 0.0034
RSF 0.7513 £ 0.0063 | 0.7104 £ 0.0045 | 0.6751 = 0.0040
FSN 0.6988 + 0.0059 | 0.6779 + 0.0044 | 0.6736 £ 0.0037
DSM 0.7459 + 0.0059 | 0.7042 + 0.0038 | 0.6718 £ 0.0033
DHT 0.7302 £ 0.0067 | 0.6871 £ 0.0043 | 0.6575 = 0.0038
DCM 0.7425 £ 0.0059 | 0.7057 &£ 0.0042 | 0.6753 == 0.0036
AUC(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.7011 = 0.0061 | 0.6990 + 0.0049 | 0.7214 =+ 0.0049
AFT 0.6936 = 0.0061 | 0.6943 =+ 0.0049 | 0.7209 = 0.0049
RSF 0.7663 + 0.0066 | 0.7379 £+ 0.0054 | 0.7273 £ 0.0054
FSN 0.7091 + 0.0062 | 0.7050 =+ 0.0052 | 0.7249 =+ 0.0050
DSM 0.7606 =+ 0.0063 | 0.7337 £ 0.0047 | 0.7236 =% 0.0050
DHT 0.7421 4+ 0.0070 | 0.7123 £+ 0.0052 | 0.7042 =+ 0.0052
DCM 0.7576 &+ 0.0065 | 0.7347 £ 0.0049 | 0.7256 £ 0.0054
ECE(t) (})
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.0201 = 0.0029 | 0.0265 =+ 0.0038 | 0.0310 =+ 0.0041
AFT 0.0281 4+ 0.0031 | 0.0617 £ 0.0048 | 0.0402 =+ 0.0046
RSF 0.0241 #+ 0.0032 | 0.0368 £ 0.0044 | 0.0348 + 0.0041
FSN 0.0220 = 0.0029 | 0.0267 £ 0.0036 | 0.0262 =+ 0.0040
DSM 0.0341 4+ 0.0033 | 0.0621 £ 0.0043 | 0.0315 &£ 0.0047
DHT 0.0220 + 0.0026 | 0.0351 £ 0.0037 | 0.0457 + 0.0044
DCM 0.0179 £ 0.0030 | 0.0268 + 0.0038 | 0.0256 = 0.0037
BS(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.1334 + 0.0023 | 0.1995 £ 0.0019 | 0.2136 £ 0.0016
AFT 0.1354 4+ 0.0025 | 0.2051 £+ 0.0023 | 0.2147 £ 0.0016
RSF 0.1240 + 0.0023 | 0.1899 + 0.0018 | 0.2109 =+ 0.0017
FSN 0.1315 = 0.0023 | 0.1981 =+ 0.0020 | 0.2122 =+ 0.0018
DSM 0.1271 4 0.0024 | 0.1955 £ 0.0022 | 0.2130 £ 0.0017
DHT 0.1271 + 0.0024 | 0.1971 £+ 0.0016 | 0.2206 £ 0.0014
DCM 0.1258 + 0.0024 | 0.1905 =+ 0.0020 | 0.2118 = 0.0019
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Table B.7: Results for various performance metrics on SUPPORT (entire population) along with bootstrapped std. errors.
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S OI0)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.7161 £ 0.0126 | 0.6982 &+ 0.0089 | 0.6905 = 0.0078
AFT 0.7101 + 0.0126 | 0.6941 + 0.0089 | 0.6883 £ 0.0078
RSF 0.7503 = 0.0120 | 0.7198 + 0.0084 | 0.6974 =+ 0.0084
FSN 0.7203 £ 0.0129 | 0.7025 + 0.0090 | 0.6961 £ 0.0074
DSM 0.7548 + 0.0132 | 0.7220 £ 0.0093 | 0.6939 &+ 0.0079
DHT 0.7321 & 0.0145 | 0.6943 =+ 0.0099 | 0.6680 =+ 0.0088
DCM 0.7570 = 0.0130 | 0.7234 =+ 0.0089 | 0.6939 = 0.0079
AUC(t) (D)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.7261 + 0.0127 | 0.7348 £+ 0.0109 | 0.7446 £ 0.0107
AFT 0.7199 + 0.0127 | 0.7311 £+ 0.0109 | 0.7446 =+ 0.0108
RSF 0.7667 = 0.0121 | 0.7536 £ 0.0106 | 0.7522 =+ 0.0122
FSN 0.7283 + 0.0128 | 0.7375 £ 0.0110 | 0.7518 £+ 0.0101
DSM 0.7690 + 0.0130 | 0.7594 + 0.0113 | 0.7478 £ 0.0109
DHT 0.7400 = 0.0143 | 0.7265 £+ 0.0123 | 0.7129 £ 0.0120
DCM 0.7701 == 0.0129 | 0.7588 £ 0.0109 | 0.7424 =+ 0.0113
ECE(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.0473 + 0.0071 | 0.0610 + 0.0084 | 0.0685 =+ 0.0079
AFT 0.0530 =+ 0.0075 | 0.0891 =+ 0.0091 | 0.0741 =+ 0.0085
RSF 0.0401 + 0.0064 | 0.0608 + 0.0077 | 0.0603 £ 0.0080
FSN 0.0418 + 0.0067 | 0.0579 &+ 0.0090 | 0.0601 =+ 0.0097
DSM 0.0506 =+ 0.0070 | 0.0818 £ 0.0094 | 0.0650 =+ 0.0087
DHT 0.0483 £+ 0.0070 | 0.0635 &+ 0.0087 | 0.0696 £ 0.0089
DCM 0.0397 + 0.0059 | 0.0550 = 0.0080 | 0.0561 = 0.0085
BS(t) (1)
uantiles
Model Q
t = 25th t = 50th t = 75th
CPH 0.1340 + 0.0050 | 0.1943 + 0.0042 | 0.2069 =+ 0.0037
AFT 0.1363 = 0.0054 | 0.2026 £ 0.0049 | 0.2090 =+ 0.0039
RSF 0.1263 + 0.0048 | 0.1870 £+ 0.0039 | 0.2031 =+ 0.0039
FSN 0.1319 + 0.0051 | 0.1934 + 0.0044 | 0.2037 £ 0.0040
DSM 0.1275 = 0.0050 | 0.1919 =+ 0.0047 | 0.2056 = 0.0040
DHT 0.1298 + 0.0049 | 0.1963 + 0.0039 | 0.2186 =+ 0.0036
DCM 0.1261 £ 0.0048 | 0.1868 £ 0.0044 | 0.2073 £ 0.0044

Table B.8: Results for various performance metrics on SUPPORT (minority) along with bootstrapped std. errors.
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S OI0)
uantiles
Model Q }
t = 25th t = 50th t = 75th
CPH 0.8766 + 0.0027 | 0.8354 £+ 0.0024 | 0.8082 = 0.0020
AFT 0.8823 + 0.0026 | 0.8416 + 0.0024 | 0.8155 =+ 0.0020
RSF 0.8838 + 0.0025 | 0.8421 + 0.0025 | 0.8153 £ 0.0021
FSN 0.8850 &+ 0.0025 | 0.8447 £ 0.0023 | 0.8204 £ 0.0019
DHT 0.8915 + 0.0024 | 0.8517 + 0.0024 | 0.8224 + 0.0020
DSM 0.8949 + 0.0022 | 0.8559 + 0.0022 | 0.8281 =+ 0.0019
DCM 0.8933 + 0.0024 | 0.8550 = 0.0022 | 0.8270 = 0.0019
AUC(t) (1)
uantiles
Model @ ‘
t = 25th t = 50th t=75th |
CPH 0.8828 £ 0.0028 | 0.8526 = 0.0025 0.8337 £ 0.0022
AFT 0.8893 £ 0.0026 | 0.8596 &+ 0.0025 0.8424 + 0.0021
RSF 0.8899 £ 0.0026 | 0.8594 &+ 0.0026 0.8416 + 0.0023
FSN 0.8921 £ 0.0026 | 0.8632 =+ 0.0024 0.8477 £+ 0.0021
DHT 0.8983 =+ 0.0025 0.8701 £ 0.0025 0.8495 + 0.0022
DSM 0.9022 + 0.0023 0.8748 £+ 0.0023 0.8566 + 0.0020
DCM 0.9002 = 0.0025 | 0.87350 =+ 0.0023 | 0.8552 % 0.0020
ECE(t) (1)
uantiles
Model Q }
t = 25th t = 50th t = 75th
CPH 0.0356 + 0.0008 | 0.0577 £ 0.0012 | 0.0718 £ 0.0015
AFT 0.0168 + 0.0008 | 0.0187 £+ 0.0011 | 0.0192 £ 0.0011
RSF 0.0052 =+ 0.0007 | 0.0092 £ 0.0010 | 0.0147 £ 0.0013
FSN 0.0124 + 0.0008 | 0.0140 £ 0.0011 | 0.0111 + 0.0011
DHT 0.0076 + 0.0008 | 0.0115 + 0.0011 | 0.0133 £ 0.0012
DSM 0.0067 = 0.0007 | 0.0211 £+ 0.0012 | 0.0259 =+ 0.0014
DCM 0.0055 = 0.0008 | 0.0087 = 0.0010 | 0.0103 = 0.0011
BS(t) (1)
uantiles
Model Q }
t = 25th t = 50th t = 75th
CPH 0.0501 + 0.0007 | 0.0887 =+ 0.0009 | 0.1206 =+ 0.0009
AFT 0.0470 &+ 0.0006 | 0.0827 £ 0.0009 | 0.1107 &£ 0.0009
RSF 0.0447 4+ 0.0006 | 0.0802 + 0.0008 | 0.1095 &+ 0.0010
FSN 0.0462 + 0.0006 | 0.0800 + 0.0008 | 0.1075 = 0.0009
DHT 0.0450 #+ 0.0006 | 0.0788 £ 0.0008 | 0.1074 + 0.0010
DSM 0.0451 4+ 0.0006 | 0.0797 £ 0.0008 | 0.1073 =+ 0.0009
DCM 0.0450 + 0.0006 | 0.0785 = 0.0008 | 0.1064 =+ 0.0010
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Table B.9: Results for various performance metrics on SEER (entire population) along with bootstrapped errors.
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(1) (1)
uantiles
Model Q }
t = 25th t = 50th t = 75th
CPH 0.8804 &+ 0.0043 | 0.8405 &+ 0.0039 | 0.8121 &£ 0.0037
AFT 0.8865 + 0.0042 | 0.8466 + 0.0036 | 0.8204 £ 0.0035
RSF 0.8797 + 0.0048 | 0.8379 £ 0.0038 | 0.8105 = 0.0035
FSN 0.8870 & 0.0043 | 0.8490 &+ 0.0038 | 0.8248 =+ 0.0036
DHT 0.8920 + 0.0039 | 0.8540 + 0.0038 | 0.8255 =+ 0.0037
DSM 0.8908 + 0.0038 | 0.8506 + 0.0038 | 0.8243 =+ 0.0036
DCM 0.8933 & 0.0037 | 0.8558 & 0.0036 | 0.8296 = 0.0034
AUC(t) (1)
uantiles
Model Q ‘
t = 25th t = 50th t=75th |
CPH 0.8888 + 0.0043 | 0.8604 + 0.0042 | 0.8398 =+ 0.0042
AFT 0.8952 4+ 0.0042 | 0.8676 £ 0.0039 | 0.8491 =+ 0.0040
RSF 0.8867 + 0.0048 | 0.8571 + 0.0041 | 0.8373 =+ 0.0039
FSN 0.8963 &+ 0.0043 | 0.8702 + 0.0040 | 0.8538 =+ 0.0041
DHT 0.9002 #+ 0.0039 | 0.8754 4 0.0041 | 0.8540 + 0.0041
DSM 0.9033 + 0.0036 | 0.8770 £+ 0.0039 | 0.8591 &+ 0.0037
DCM 0.9020 + 0.0037 | 0.8775 &+ 0.0038 | 0.8595 = 0.0038
ECE(t) (1)
uantiles
Model Q }
t = 25th t = 50th t = 75th
CPH 0.0399 + 0.0018 | 0.0642 £ 0.0021 | 0.0764 =+ 0.0028
AFT 0.0173 + 0.0016 | 0.0271 £ 0.0022 | 0.0278 + 0.0029
RSF 0.0112 + 0.0016 | 0.0219 + 0.0023 | 0.0270 =+ 0.0029
FSN 0.0152 + 0.0016 | 0.0198 £ 0.0025 | 0.0196 =+ 0.0029
DHT 0.0107 = 0.0015 | 0.0134 £ 0.0020 | 0.0170 + 0.0024
DSM 0.0125 #+ 0.0016 | 0.0292 &+ 0.0023 | 0.0311 + 0.0031
DCM 0.0105 % 0.0016 | 0.0145 =+ 0.0024 | 0.0169 =+ 0.0024
BS(¢) (1)
uantiles
Model Q }
t = 25th t = 50th t = 75th
CPH 0.0563 = 0.0014 | 0.0989 £ 0.0019 | 0.1285 + 0.0020
AFT 0.0522 + 0.0013 | 0.0907 + 0.0019 | 0.1168 =+ 0.0021
RSF 0.0508 + 0.0014 | 0.0899 + 0.0018 | 0.1190 £ 0.0021
FSN 0.0515 + 0.0013 | 0.0877 £+ 0.0017 | 0.1133 =+ 0.0020
DHT 0.0509 + 0.0012 | 0.0861 =+ 0.0017 | 0.1135 =+ 0.0021
DSM 0.0509 + 0.0013 | 0.0882 £ 0.0018 | 0.1140 = 0.0020
DCM 0.0508 + 0.0012 | 0.0862 =+ 0.0017 | 0.1127 = 0.0020

Table B.10: Results for various performance metrics on SEER (minority) along with bootstrapped standard errors.
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FLCHAIN BS(¢) (})

Model

Quantiles

t = 25th

t = 50th

t = 75th

AFT
CPH
FSN

0.05847 £ 0.00225
0.07009 £ 0.00266
0.06604 £ 0.00250

0.09935 £ 0.00273
0.12779 £ 0.00303
0.11902 =+ 0.00280

0.12486 4 0.00248
0.17540 % 0.00278
0.15870 £ 0.00251

DCM

0.05803 =+ 0.00226

0.09754 =+ 0.00281

0.12222 £+ 0.00257

SUPPORT BS(#) (})

Model

Quantiles

t = 25th

t = 50th

t = 75th

AFT
CPH
FSN

0.13538 £ 0.00252
0.13345 £ 0.00236
0.13206 £ 0.00244

0.20508 £ 0.00235
0.19951 £ 0.00192
0.19777 £ 0.00201

0.21490 £ 0.00165
0.21363 £+ 0.00161
0.21309 £+ 0.00188

DCM

0.11684 £ 0.00851

0.18516 + 0.00882

0.21641 £ 0.00706

SEER BS(¢) (1)

Model

Quantiles

t = 25th

t = 50th

t = 75th

AFT
CPH
FSN

0.04728 £ 0.00061
0.05031 = 0.00068
0.04634 £ 0.00060

0.08327 £ 0.00085
0.08912 =+ 0.00085
0.08038 £ 0.00080

0.11150 £ 0.00092
0.12113 £ 0.00090
0.10797 £ 0.00095

DCM

0.04503 £ 0.00058

0.07854 £ 0.00080

0.10641 £ 0.00095
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Table B.11: Brier Scores (Lower is better) for various performance metrics along with bootstrapped standard

errors on the three datasets compared with baselines unaware of the protected group membership
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FLCHAIN BS(¢) (})

Model

Quantiles

t = 25th

t = 50th

t = 75th

AFT
CPH
FSN

0.05847 £ 0.00225
0.07009 £ 0.00266
0.06604 £ 0.00250

0.09935 £ 0.00273
0.12779 £ 0.00303
0.11902 =+ 0.00280

0.12486 4 0.00248
0.17540 % 0.00278
0.15870 £ 0.00251

DCM

0.05803 =+ 0.00226

0.09754 =+ 0.00281

0.12222 £+ 0.00257

SUPPORT BS(#) (})

Model

Quantiles

t = 25th

t = 50th

t = 75th

AFT
CPH
FSN

0.13538 £ 0.00252
0.13345 £ 0.00236
0.13206 £ 0.00244

0.20508 £ 0.00235
0.19951 £ 0.00192
0.19777 £ 0.00201

0.21490 £ 0.00165
0.21363 £+ 0.00161
0.21309 £+ 0.00188

DCM

0.11684 £ 0.00851

0.18516 + 0.00882

0.21641 £ 0.00706

SEER BS(¢) (1)

Model

Quantiles

t = 25th

t = 50th

t = 75th

AFT
CPH
FSN

0.04728 £ 0.00061
0.05031 = 0.00068
0.04634 £ 0.00060

0.08327 £ 0.00085
0.08912 =+ 0.00085
0.08038 £ 0.00080

0.11150 £ 0.00092
0.12113 £ 0.00090
0.10797 £ 0.00095

DCM

0.04503 £ 0.00058

0.07854 £ 0.00080

0.10641 £ 0.00095

Table B.12: Brier Scores (Lower is better) for various performance metrics along with bootstrapped standard
errors on the three datasets compared with baselines unaware of the protected group membership



Appendix C

Appendix to Chapter 4

C.1

Identifiability

Theorem 1 (Identifiability) Under the Directed Acyclic Graph in Figure. 4.2,

Proof.

p(Y |do(T = 1), X) = /Z p(Y|X, Z,T = t)p(Z|X)

p(Y|do(T = t), X) = /Zp(Y|do(T = 1), Z, X)p(Z|do(T = 1), X)

(conditioning on and marginalizing out Z)
Now, p(Y|do(T = 1), Z, X) = p(Y|T =t, Z, X)
and, p(Z|do(T' =1t),Z) =p(Z|T =t,X)
(From Pearl (2009)’s Backdoor Adjustment Formula)

p(V|do(T = 1), X) = /Zp(Y\do(T — 1), 2, X)p(Z|T = t, X)

(But, under the DAG assumptions, Z | T'|X)

Thus, p(Y'|do(T = #), X) = / p(Y|X, Z,T = )p(Z|X) n
Z

C.2 Parameter Inference with EM

In this section we provide an alternate approach to perform parameter inference using Expectation Maxi-

mization and compare it to the proposed ELBO optimization.

C.21

Inference

The complete-data log-likelihood used in EM is given by

N K

=1 k=1
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here, P/"(x;) = p(zi = k|x;) ,Pf(x;) = p(yi|xi, ti, z = k) and 1 is the indicator function.

E-Step As is standard in EM, let us define Q(©, @) as the expected value of the complete-data log-likelihood
equation C.1 respect to the conditional distribution of the latents given the current parameters ®":

Q(0,0") = E |£(0,D) | {y:x: ti}1: 0] .

Since the only quantity in equation C.1 that depends explicitly on z; is the indicator 1{z; = k}, we can
compute () by replacing these indicators with the posterior probability of z; = k:

E[1{z =k}] = hl(k) = p(zi = klyi, %, ;; ©)

_ pyilzi = kx4, t; ONp(z = k|x;, ®)

B p(yilxi, ti, O

_ p(yilzi = k,xi, 1, ©") p(xilzi = k; ©")p(2i = k; ©F)
 plyilxi ti, O p(xi; ©)

The terms in the numerator can be evaluated using equation 4.1-equation 4.3, equation 4.4 from the model.

(c.2)

The terms in the denominator are normalization constants that ensure the probabilities sum to one.

M-Step We use a gradient ascent method in the M-step to maximize @) with respect to the parameters:

N K
! = argmax (Z > [P (x) P ()] — Aﬂ(w)) - (€3)

i=1 k=1

The posterior probabilities hl(-k) are fixed from the E-step. Using Bayes’ rule as in equation C.2, P]"(x;) =
p(z; = k|x;) can be expressed in terms of model parameters py, X, ) defined by equation 4.1-equation 4.3.
Similarly, Pf(y;) depends on parameters w and -y, according to the outcome model equation 4.4. The use of
gradient ascent allows for any differentiable nonlinear function f(-) in equation 4.4.

Instead of computing ) over the entire dataset, we sample a mini-batch from the dataset and perform
the E-step and M-step over just the mini-batch in each iteration. We observe that this mini-batch procedure

is faster than regular EM over the entire dataset.

C.2.2 Comparison to ELBO Optimization

In order to compare the performance of EM vis-a-vis the variational inference-motivated ELBO optimization,
we compare the train and test negative log-likelihood for both approaches on 100 realizations of the IHDP
dataset, with the number of latent components, K = 3 and stochastic gradient descent learning rate of
1 x 1073, We then average over the resulting 100 curves, Figure C.1 presents the results; it is clear from the
figure that the ELBO approach has less tendency to overfit and results in an overall better fit compared to the
EM approach. This motivates our choice to directly optimize the ELBO.

C.3 Parameter Initialization

Gradient based optimization strategies can be subject to local minima and hence their performance is
dependent on parameter initialization. To initialize the model with ‘good’ values ensuring better convergence,
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Figure C.1: The negative log-likelihood (NLL) versus the number of optimization epochs for EM and ELBO.
Notice how the Test NLL continues to decrease for ELBO vs. EM, suggesting the ELBO approach is less sensitive
to overfitting.

we set the mean for each component, iy, and 7y, equal to the sample mean of the entire data, i.e. u? =
% > Xeontyiy To = % >~ Xdisc.i» and the covariance of every component to ¥ = diag(c), where o is a
vector consisting of the sample variances of the continuous covariates Xcont. We pre-train the parameters wy
in the outcome model equation 4.4 using standard cross-entropy loss without the subgroup and treatment
assignment term v, t. Finally, we initialize the treatment coefficients, vy, randomly with positive values for
all £.

C.4 Model Fitting

Our implementation of HEMM has two free parameters, the number of groups K and the strength of the
sparsity prior, A. For the OP10ID dataset we divide the dataset into 3 parts with 70% as TRAIN for model
training, 10% as DEV for parameter tuning, and 20% as TEST for evaluation. The partition is done so that
the joint distribution of outcome and treatment is approximately the same in the 3 sets: prrain (Y, 7)) =~
prest(Y, T) ~ ppey (Y, T'). For IHDP we use the stnadard 80/20 TRAIN/TEST split as is popular in literature.

We perform a grid search over K € {2,3,4} and A € {0,1073,1072,1071}. For each (K, \) pair, we
perform 5 runs with randomly initialized values of the treatment coefficients ~y,. All other parameters are
initialized as described in Section C.3. For Adam, we use a step size of 10~* and mini-batch sizes of 10, 20 & 1000
for SYNTHETIC, IHDP, and OPIOID respectively, and stop parameter update if the ELBO on the DEV is lower at
the end of an epoch. We also search over the space of models where the outcome and counterfactual have the
same or different parameterisation based on treatment assignment. From all the (K, \) pairs and random
initializations above, we select the model that has the best performance on the DEV set in predicting the
outcome y;, in terms of the Area Under the Receiver Operating Characteristic (AU-ROC). For the SYNTHETIC
dataset, we simply set K = 2 and A\ = 0. In this case there is no need for a DEV set and the data is split 50/50
between TRAIN and TEST.
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Appendix D

Appendix to Chapter 5

D.1 Identifiability

Proof of Remark 1. P(T'|do(A) = a, X) =

/Z/(ﬁP(T\do(A) =a,X,Z,¢)P(Z, ¢|do(A) = a, X)

Because, Z L ¢ | X.But, P(Z|do(A4) = a,X) = P(Z|X) and,
P(¢|do(A) = a, X) = P(¢|X) (From Pearl’s 3" Rule of do-Calculus.)

- /qs /Z P(Tdo(4) = a, X, Z, $)P(Z|X)P($|X)
://P(TyA:a,X, 7, $)P(Z|X)P($|X) (Pearl’s 27 Rule)
oJz

=Ezpp(x) PTA=0a,X,2,¢4)]. N

D.2 Learning

We propose to maximize the likelihood in Equation 5.5 using a stochastic Expectation Maximization algorithm
(Algorithm 2).

E-Step: Involves first computing the posterior counts of the joint of the latent Z and ¢ as follows:

EH{Z =k, ¢ =m}{t,@,a}] =P(Z =k,¢ =ml[{t,z,a}) =
Pt|Z =k, ¢ =m,xz,a) P(Z =k, ¢ =m|x,a)
du2>m Pt Z=k¢=m,z,a) P(Z=Fk¢=m|x,a)

(D.1)

Note that for the censored individuals P(¢|-) is P(T" > t|-). In practice the P(¢|-) are obtained through spline
interpolation. Now the latent variable specific soft posterior counts can be computed by marginalizing out the
complementary Latent Variable. Thus, soft posterior countsof Zarey = ., P(Z = k, ¢ = m|{t, z, a}),
andof pare,( =) , P(Z =k, ¢ =m|{t,z,a}).
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M-Step: as in standard EM, involves maximizing the Q(-) function on the data, D defined as:

D)
QO =D > > (" mPHZ=k¢=mma)+
=1 k m
®
D] D]
YD) A'mP(Z=klz,a)+> ) ("InP(¢=mlz,a). (D.2)
=1 k =1 m
©

Note that (B) and (C) can be directly optimized with a gradient based approach. However, (A) is the semi-
parametric Cox event rate which is hard to optimize in the presence of soft posterior weights. We instead
replace the soft weights in (o) with the hard posterior counts sampled as follows: 1) ~ Categorical(y), £ ~

Categorical(().
We thus arrive at Q(-) given as,
R D
QO)=> > > -y lig=m} - WMPEZ =k, =m,z,a) +® + © (D.3)
i=1 k m

Remark 2 Q(-) is an unbiased estimate of the Q(-) in Equation D.2.

~

Proof. Follows immediately from the fact that E[Q] = Q(-).

We can now rewrite as,
2
= Z Z 1{1/12':]@} Z 1{£¢=m} InP(t|Z =k, ¢=m,z,a)
=1 k m
2
= Z Z 1{¢i:k} Z 1{§i:m} : 1HP(t|Z = k‘, ¢ =m,x, a) (D.4)
k i=1 m

Proportional Hazards, Partial Likelihood

Maximizing (A’) is equal to maximizing P Ly () over each k where,

D]
InPLL(D,Y,E,0) = Z 1{¢i:k}<hk(ﬂ3i) + awg, — In Z exp (hk(mj) + ang)).
i:0;=1 JER(t:)

Combining P Ly (-) with (B) and (C) we arrive at the Q in Equation 5.6.

D.3 Factual Regression Experiments

We compare the performance of CMHE in 5 Fold CV to a Linear Cox model and a Deep Cox Model in 5 fold
cross validation with a2 Hidden Layer MLP with dimensionality of 50 and Tanh activations. Each model
was trained with Adam with learning rates tuned from {10e~3, 10e~*} and minibatch size of {128, 256}.
For CMHE we tuned the number of treatment effect phenotypes from ¢ from {2, 3} and the base survival
rate phenogroups from {1,2,3}.
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D.4 Rule Learning

We used the python package, scope-rules' to explain the learnt phenotypes with parsimonius rules. The
rules were restricted to have a maximum length of 4 and a precision of 0. 8. Explanations with the highest F

score on the train set are reported in Table 5.1.

D.5 Synthetic Dataset

We employ the python package sklearn” to generate the confounders x.

[€1, 2], Z ~ sklearn.datasets.make_blobs(K = 3)
[€3, x4] ~ Uniform(—2,2)
¢ = 1{|xs| + || > 2}
A ~ Bernoulli(1/2)
T*|((Z = k,¢ = m, A= a) ~ Gompertz(B] x + (—a™))
d ~ Bernoulli(3/4), C' ~ Uniform(0,t")
ifd=1:T =T"elseif, =0:T = C.

D.6 Tabulated Results

Latent Phenogroups with Enhanced Treatment Effects Latent Phenogroups with Diminished Treatment Effects

Model CATE (RMST) in Days Model CATE (RMST) in Days
1 Year ‘ 3 Year ‘ 5 Year 1 Year ‘ 3 Year ‘ 5 Year
ALLHAT-A ALLHAT-A
DR-C 2.68 £0.08 | 14.61 £0.52 | 28.03 +1.19 DR-C 1.60 £+ 0.08 7.64 £+ 0.46 13.62 £ 1.0
VT 3.08 £0.11 | 17.36 £0.65 | 35.31 4= 1.44 VT 2.244+0.10 9.36 + 0.54 15.52 + 1.16
| CMHE | 3.58+0.10 | 18.52+ 056 | 37.43+1.23 | | CMHE | 1.38+0.06 | 580+0.38 | 10.09 4 0.86 |
ALLHAT-B ALLHAT-B
DR-C 4,23 £0.15 | 21.57 £0.79 | 40.37 £ 1.68 DR-C 3.57 £ 0.20 12.16 = 1.08 15.89 & 2.29
VT 5.34+£0.17 | 28.68 £0.93 | 54.16 = 1.96 VT 2.64 +0.14 8.34 + 0.80 7.49 4+ 1.80
| CMHE | 5.64+0.13 | 30.44+0.74 | 5954+ 159 | | CMHE | 2.3940.18 | 6.20+1.02 | 228+218 |
ACCORD ACCORD
DR-C 0.36 = 0.18 4,154+ 0.94 13.76 = 2.21 DR-C -0.06 £ 0.32 -4,51 £ 1.86 -8.59 +4.34
VT 1.40 £ 0.24 6.19 +1.16 18.11 £ 2.65 VT -0.33 +0.24 | -10.53 £1.47 | -26.92 + 3.50
| CMHE | 1.224024 | 971+£1.11 | 27.02£2.43 | | CMHE | 012029 | -10.45+ 1.79 | -24.52 £ 4.15 |

Table D.1: Tabulated results of the proposed method versus baselines in counterfactual phenotyping. We report the
Conditional Average Treatment Effect in Restricted Mean Survival Time over multiple time horizons.

https://github.com/scikit-learn-contrib/skope-rules
“Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 12

(2011): 2825-2830.
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D.7 List of Confounding features

Name | Description

female | Indicator if sex is Female

bl_age | Agein years
cvd_hx_bl | CVD History at Baseline: 0=No, 1=Yes
raceclass | Race Class: White, Black, Hispanic, Other

Name | Description sbp | Systolic Blood Pressure (mmHg)
RACE | Race of Participant dbp | Diastolic Blood Pressure (mmHg)
HISPANIC | If Participant was Hispanic hr | Heart Rate (bpm)

ETHNIC | Ethnicity x1diab | Diagnosis of type 2 diabetes of >3 months duration

. x2mi | Myocardial infarction
SEX | Sex of Participant

x2stroke | Stroke

ESTROGEN | Estrogen supplementation x2angina | Angina/Ischemic changes (Graded Exercise/Imaging)
BLMEDS | Antihypertensive treatment cabg | CABG
MISTROKE | History of Stroke ptci | PTCI/PTCA/Atherectomy

HXCABG | History of coronary artery bypass cvdhist | Participant has history of clinical CVD events
orevasc | Other revascularization procedure
x2hbacll | HbAlc between 7.5% and 11.0% inclusive

x2hbac9 | HbAlc between 7.5% and 9.0% inclusive

STDEPR | Prior ST depression/T-wave inversion
OASCVD | Other atherosclerotic cardiovascular disease

DIABETES | Prior history of Diabetes x3malb | Micro or macro albuminuria within past 2 years
HDLLT35 | HDL cholesterol < 35mg/dl; 2x in past 5 years x31vh | LVH by ECG or Echocardiogram within past 2 years
LVHECG | LVH by ECG in past 2 years x3sten | Low ABI (<0.9)/>= 50% stenosis of coronary, carotid or,
WALL25 | LVH by ECG in past 2 years lower extremity artery within past 2 years

x411meds | On lipid lowering medication currently or,
untreated LDL-C > 130 mg/dL within past 2 years
x4gender | Gender for low HDL-C within past 2 years

LCHD | History of CHD at baseline
CURSMOKE | Current smoking status.

ASPIRIN | Aspirin use x4hd1f | HDL-c <50 mg/dL within past 2 years, female
LLT | Lipid-lowering trial x4hd1lm | HDL-c <40 mg/dL within past 2 years, male
RACE2 | Race (2 groups) x4bpmeds | Participant currently on BP medications

BLMEDS?2 Antihypertensive treatment x4notmed | Participant not on BP medication and,

. . most recent BP within past 2 years
GEOREGN | Geographic Region

x4smoke | Current cigarette smoker

AGE | Age upon entry x4bmi | BMI > 32 kg/m2 within past 2 years
BLWGT | Weight upon entry chol | Total Cholesterol (mg/dL)
BLHGT | Height upon entry trig | Triglycerides (mg/dL)
BLBMI | Body Mass Index upon entry v1dl | Very low density lipoprotein (mg/dL)

BV2SBP | Baseline SBP 1d1 | Low density lipoprotein (mg/dL)

hdl | High density lipoprotein (mg/dL)
BV2DBP | Baseline DBP 8 Y IpoP 8

fpg | Fasting plasma glucose (mg/dL)

EDUCAT | Education alt | ALT (mg/dL)
APOTAS | Baseline serum potassium cpk | CPK (mg/dL)
BLGFR | Baseline est glomerular filtration rate potassium | Potassium (mmol/L)

screat | Serum creatinine (mg/dL)
gfr | eGFR from 4 var. MDRD eq. (ml/min/1.73 m2)

Table D.2: List of confounding variables used for experi-
ualb | Urinary albumin (mg/dL)

ments involving the ACCORD dataset.

ucreat | Urinary creatinine (mg/dL)

uacr | Creatine to albumin ratio

Table D.3: List of confounding variables used for experi-
ments involving the ALLHAT dataset.
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Appendix to Chapter 6

E.1 Derivation of the Inference Algorithm

Censored Instances: Note that in the case of the censored instances we will condition on the thresholded
survival (T' > u). The the posterior counts thus reduce to:

YF=PZ=kX=x,A=a,T>u)
P >tlZ=kX=x,A=a)p(Z =k|X =x)
S PT>tZ =k X=x,A=a)P(Z =k|X =)

(E.1)

Uncensored Instances The posteriors are v* = pg(Z = k| X = =, T = u),

Posteriors for the uncensored data are more involved and involve the base hazard Ay(:). Posteriors for
uncensored data are independent of the base hazard function, Ay(-) as,

k_ Aef@hy(x, a)So(u) @@ hy(x, a)Sp(u;)+@)
Y Xettfhy(x, a)So(u)he@a) 3 by (2, a)Sp(u;)hk@e)
k k

B

Combining Equations E.1 and E.2 we arrive at the following estimate for the posterior counts

YV =P(Z=kX=x,A=a,u)
 Pu|Z=kX=x,A=a)P(Z=Kk|X =x)
YpPwlZ =k X=x,A=a)P(Z=k|X =x)
h(x, a, k)% S (u)"®0k) exp (9] x)

- RS : - (E.2)
Zjez h(z, avﬂ)él SO(U)h(‘”’aﬂ) exp(@}az)
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E.2 Additional Details on the ALLHAT and BARI 2D Case Studies

Tables E.1 and E.2 represent additional confounding variables found in the ALLHAT and BARI2D trials
respectively.

Name Description

hxmi History of MI
age Age upon entry
dbp_stand Standing diastolic BP
sbp_stand Standing systolic BP

sex Sex
asp Aspirin use
smkcat Cigarette smoking category
betab Beta blocker use
Name | Description ccb | Calcium blocker use
ETHNIC Ethnicity hxhtn History of hypertension requiring tx
SEX Sex of Participant insulin Insulin use
ESTROGEN Estrogen supplementation weight Weight (kg) upon entry
BLMEDS Antihypertensive treatment bmi BMI upon entry
MISTROKE History of Stroke qabn Abnormal Q-Wave
HXCABG History of coronary artery bypass trig Triglycerides (mg/dl) upon entry
STDEPR | Prior ST depression/T-wave inversion dmdur | Duration of diabetes mellitus
OASCVD | Other atherosclerotic cardiovascular disease ablvef Left ventricular ejection fraction <50%
DIABETES Prior history of Diabetes race Race
HDLLT35 HDL cholesterol <35mg/dl; 2x in past 5 years priorrev Prior revascularization
LVHECG LVH by ECG in past 2 years hxcva Cerebrovascular accident
WALL25 LVH by ECG in past 2 years screat Serum creatinine (mg/dl)
LCHD History of CHD at baseline hmg Statin
CURSMOKE Current smoking status. hxhypo History of hypoglycemic episode
ASPIRIN | Aspirinuse hbalc Hemoglobin Alc(%)
LLT Lipid-lowering trial priorstent Prior stent
AGE Age upon entry spotass Serum Potassium(mEq/ L)
BLWGT Weight upon entry hispanic Hispanic ethnicity
BLHGT Height upon entry tchol Total Cholesterol
BLBMI Body Mass Index upon entry hdl HDL Cholesterol
BV2SBP Baseline SBP insul_circ Circulating insulin (IU/ml)
BV2DBP | Baseline DBP tzd | Thiazolidinedione
APOTAS Baseline serum potassium 141 LDL Cholesterol
BLGFR Baseline est glomerular filtration rate tabn Abnormal T-waves
ACHOL Total Cholesterol nsgn Nonsublingual nitrate
AHDL Baseline HDL Cholesterol sulf Sulfonylurea
AFGLUC Baseline fasting serum glucose hxchf Histoty of congestive heart failure req tx
arb Angiotensin receptor blocker
Table E.1: List of confounding variables used for experi- acr | Urine albumin/creatinine ratio mg/g
ments involving the ALLHAT dataset. diur | Diuretic

apa Anti-platelet
hxchl Hypercholesterolemia req tx
acei ACE inhibitor
abilow | Low ABI(<=0.9)
biguanide Biguanide
stabn Abnormal ST depression

Table E.2: List of confounding variables used for experi-
ments involving the BARI2D dataset.
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