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Background:
The BARI2D [1] trial (n=2368) was originally inconclusive (HR: 0.875-1.217, 95% CI) in
determining optimal treatment (Medical Therapy vs. Revascularization) for Type-2 Diabetics
with ischemic heart disease to reduce major adverse cardiovascular events.

Methods:
We applied a data driven machine learning approach (Sparse Cox Mixtures) [2, 3] to the
BARI2D clinical study data to identify a selection rule to prioritize patients based on response to
medical therapy vs. early revascularization, and found evidence suggesting heterogeneous
benefits.

Results:
We trained our interpretable rule model on 1184 participants (~50%) of the study stratified by
treatment assignment and event incidence, and validated on the remainder of the study
population. Our model discovered 5 covariates (Serum Potassium, Total and LDL Cholesterol,
Age and use of Sulfonylurea) as effective predictors of treatment benefit.

Conclusion:
We identified a High Risk group (n=395, ~30%) that were harmed by medical therapy (HR:
1.67±0.66, 95% CI) while the rest benefitted (HR: 0.72±0.25, 95% CI). Validation of the rule on
held out participants supports the hypothesis of heterogeneous benefit. Among the held out set,
medical therapy harmed the High Risk group (n=395, ~30%) (HR: 1.34±0.51, 95% CI), while
the remaining validation set participants benefited (HR: 0.86±0.27, 95% CI).
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