Joint Modeling of Electronic Health Records and Clinical Notes

Chirag Nagpal
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA
chiragn@cs.cmu.edu

https://github.com/chiragnagpal/747NN4NLP

Abstract

Significant progress has been made with
modeling Electronic Health Records us-
ing Deep Learning Methods for Clinical
Tasks. However, the text data present in
the medical reports has not yet been lever-
aged comprehensively in such models. In
this paper we propose to jointly model the
medical profile of a patient using both the
diagnosis codes as well as the textual re-
ports accompanying them: a) by learning
embeddings from natural language text in
the form of notes by physicians and b)
the Patients Historical Diagnoses and Pro-
cedures represented by ICD Codes. We
further go onto exploit the learnt embed-
dings on predicting future clinical events
and show the benefit of incorporating the
textual information for better modeling the
health profile of patients.

1 Introduction

Electronic Health Records (EHR) contain a coarse
view of the medical profile of a patient. Depend-
ing on the system in use, hospitals record various
variables including the patients’ demographic in-
formation, all past histories of medical procedures
performed, and diseases diagnosed. The availabil-
ity of this longitudinal EHR data offers the possi-
bility of deploying several machine learning and
data mining techniques for medical data evalua-
tion and prediction thereby revolutionizing medi-
cal informatics.

Deep Neural Models have made significant con-
tributions to mining of such data, with various
tasks being performed, including prediction of
medical conditions and events which are encoded
as ICD-9 codes in the subsequent admissions, pre-
dicting current conditions using Clinical Notes &
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Prediction of susceptibility to morbidity based on
all prior data.

We observe that a significant amount of infor-
mation is encoded in notes and reports correspond-
ing to the patients including the doctors impres-
sion of any lab or radiology tests performed, any
palliative treatments recommended if necessary
etc. While there has been work to model this data
using Neural Models, there has not been much re-
search to glean from the notes and reports of pa-
tients alongside the ICD-9 Codes jointly using a
single model. We propose to leverage this knowl-
edge jointly with the patients past history in order
to predict future admissions.

Our contributions in this paper can be sum-
marised as follows

e Learn Embeddings for each patient from the
ICD-9 Codes treating the Patients profile as a
Language Model.

e Learn Embeddings from the Natural Lan-
guage Text in Doctors Notes in each Patients
Admission.

e Exploit the learnt embeddings to predict the
future admission events jointly with prior pa-
tient history, using deep multimodal fusion.

2 Prior Work

Deep Learning has been applied extensively in the
past to clinical tasks. Lipton et al. (2015) em-
ployed LSTM RNNs (Gers et al., 1999) to model
continuous time domain signals like patient vital
signs. One of the first such attempts to model
EHR data using Recurrent Neural Networks was
the Doctor Al System (Choi et al., 2016a). Doc-
tor Al attempted to jointly predict the future ICD
events along with time to next admission using
Gate Recurrent Units (Graves et al., 2009). An-
other work of the same author (Choi et al., 2016b)
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attempts to learn embeddings from the ICD-9 in-
formation that includes the Medication, Proce-
dure and Diagnostic Codes for which they em-
ploy Skipgrams (Mikolov et al., 2013) along with
ReLU activations (Nair and Hinton, 2010).

3 Dataset

We use the MIMIC-III dataset (Johnson et al.,
2016), which stands for ‘Medical Information
Mart for Intensive Care’. The Dataset consists
of vital signs, medications, laboratory measure-
ments, observations and notes charted by care
providers, fluid balance, procedure codes, diag-
nostic codes, imaging reports, hospital length of
stay, survival data of over 38,000 Patients aggre-
gated over corresponding to over 50,000 distinct
admissions aggregated over a period of 11 years.
Being a one of the larger and publically available
dataset, it is the most popular for clinical informat-
ics tasks.

4 Clinical Tasks

We want to empirically validate if it is possible to
predict the Diagnostic Codes, given just data from

models to learn the per word embeddings. We ob-
served, and corroborated from previous research
(Ayyar, 2017) that since these reports were hand
generated, there were significant instances of mis-
spellings, and thus the use of Character Level, or
Subword Level Embeddings may perform better,
and be robust to these idiosyncarcies of the data.

For both CBOW & SG we used a context win-
dow of 5 and extracted embeddings of dimension-
ality 128 & 256. Since each admission has multi-
ple reports that correspond to 16 different tests, we
aggregate the word vector representations for each
individual test by averaging over them. These av-
eraged vectors for each test are then concatenated
together to represent the patients stay in a contin-
uous space.

Table 2 & Figure 1 represents the performance
of a Logistic Regression Classifier trained on the
various different embeddings we extract in terms
of Area Under the Receiver Operator Curve (AU-
ROC). We observe that Skipgrams with a dimen-
sionality of 256 outperformed all other represen-
tations, although the improvement was only of a
small margin.

the patient health records. This has significant EMBEDDING | TASK-EH TASK-HF Task-HA
clinical impact, certain rare and harder to diagnose CBOW-128 0.6673 0.7885 07867
diseases have a tendency to be under-reported. Us- CBOW-256 0.6685 0.7856 0.7871
ing the available information, We define three pre- SG-128 0.6756 0.7970 0.7991
dictive clinical tasks for related, cardio-circulatory SG-256 0.6803 0.7999 0.8006

conditions which are listed below, along with there
corresponding ICD-9 codes in Table 1

IcpD CODE DISEASE

TAask-EH 401 Essential Hypertension
TASK-HF 428 Heart Failure
TASK-HA 427 Cardiac Arrhythmia

Table 1: Clinical Tasks

S Embedding Clinical Reports

The clinical reports are broadly grouped into 16
categories, and consist mostly of some natural lan-
guage text recorded by the medical practitioner,
that includes multiple medical concepts and some
metadata about the patient, including admission
units, serial numbers, name of Caregivers in-
volved, Dates.

We first build regular expressions to strip all the
metadata from the clinical reports inorder to learn
embeddings. We then proceed to utilise, Contin-
uous Bag of Words (CBOW) and Skipgram (SG)

Table 2: AU-ROC for Various Embeddings

5.1 Experimental Protocol

We proceed to utilize the previously learnt embed-
dings in order to train a classifier in a supervised
fashion, thus for each admission corresponding to
a patient, we aim to predict if the patient would be
diagnosed with one of the described tasks at the
end of there current admission. We perform train-
ing on an 80% of the admissions and test on a held
out set of 20% of the admissions. We create the
splits in a patient independent fashion, such that
no single patient lands in both the splits.

5.2 Model Learning
In this section we describe the Baseline Mod-
els, along with the Deep Neural Models that we
trained.
5.2.1 Baselines

e Logistic Regression With £2 Regularisation
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Figure 1: ROC Plots of LR Model trained on Different Learnt Representations
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Figure 2: ROC Plots of the Various Models trained on SG-256

Figure 3: Standard MLP vs. MT-MLP

Logistic Regression is a simple baseline,
which is useful as a diagnostic tool for de-
termining the hardness of the Learning Task.
We apply an ¢2 penalty on the weights vec-
tor with «, the regularisation parameter set to
10~

e Random Forest Ensemble

We use a Random Forest Estimator with 100
trees, with Gini Index as the criteria for split-
ting.

5.2.2 Neural Models

We describe the Multilayer Perceptron Models we
train in the following section. Figure 3 presents
a representative view of the neural models de-
scribed.

e Multi-Layer Perceptron (MLP)

The MLP model consists of a Single Linear
Layer with Sigmoid activation along with a
final Linear layer trained to optimize cross
entropy loss.

e Multi-Task Multilayer Perceptron (MT-
MLP)

The multitask MLP is a variation of the MLP
model, it consists of A Single Linear Layer
with Sigmoid Activations of the same dimen-
sionality as the input. For each task, we then
add final layer, each of which is optimized
for Cross Entropy Loss. Finally the Cross
Entropy is aggregated for each task. We hy-
pothsize that since the three tasks are related
conditions, the multitask model will be able
to generalise better by learning a more robust
intermediate representation.

We utilise the PyTorch Framework to implement
the Neural Models as described above, and train
using Adam (Kingma and Ba, 2014) with a Learn-
ing Rate of 10~3 for 3000 epochs on the Train-
ing Set. Table 3 and 2 presentes the AU-ROC and
ROC Curves for the Test Dataset. We observe that
MLP-MT outperforms MLP for each class, it is
also worth mentioning that since the MLP-MT
model is trained jointly and shares parameters, it
has lesser overall number of parameters, and thus
trains much faster.



MODEL TASK-EH TASK-HF TASK-HA

RF 0.6596 0.7695 0.7822
LR 0.6709 0.7959 0.7948
MLP 0.6812 0.7992 0.8036
MLP-MT 0.6818 0.8002 0.8037

Table 3: AU-ROC for Models on SG-256

6 Predicting diagnosis codes using the
patient visit data

In this section, we describe the systems we built
to predict the diagnosis codes of patients given the
existing visit data. We first describe the correspon-
dence between the health care data and natural
language. We then describe baseline approaches
that try to model and predict the clinical diagno-
sis codes using sequence to sequence models. We
show a procedure to incorporate the embeddings
learnt in the previous sections in the prediction
models. We conclude by discussing the scope of
the project and the subsequent approaches that we
are going to work on.

6.1 Correspondence between Clinical data
and natural language

The sequentiality of ICD codes in a diagnosis
points out a close analogy between them and nat-
ural languages. Specifically, we can view the se-
quence of ICD codes of one admission as a sen-
tence and each ICD code as a word in a natural
language. This leads us to apply the techniques
typically used in NLP such as continuous bag-of-
words (CBOW), etc. Diving even further, given
that typically the diseases follow a hierarchical
structure, we can view these structures similar to
the parse trees in NLP. In addition, there might ex-
ist ‘health grammars’ similar to syntactical gram-
mars in NLP. In this case, a health grammars might
refer to (latent) deterministic biological and envi-
ronmental patterns(variables) that model and dic-
tate the progression of one’s health condition over
time. A progression from Blood Pressure to hy-
pertension might serve as an example of the same.
It might be useful in such cases to model such cor-
relations and predict them.

6.2 Prediction Tasks on Clinical data

Having established the connection between words
in natural languages and clinical code distribu-
tions, we discuss and apply in this subsection the
techniques used in NLP to predict the diagnosis

Table 4: Prediction Tasks

Task Description
Task A Is there a structure in output codes?
Task B Predict diagnosis for next visit
Task C | Predict most important code in next visit
Task C Predict using first N codes

Perplexity Training for Baseline A with different hidden sizes in
RNN per epoch
5.5 == 64 hidden
== 128 hidden|
200 hidden|
== 256 hidden|
5 == 512 hidden|

45

Figure 4: Training per epoch of Baseline A

codes per visit. We have outlined the tasks of in-
terest in the table 4. We begin the discussion with
a method to predict all the codes in a given visit.
This would enable us to find if there is some corre-
lation between the type of diseases that ‘co occur’.
This task is similar to language modeling in NLP
and we use a baseline model inspired by RNNLM
for this. We then move on to the more interest-
ing task: Predicting the diagnosis codes of visit at
time t+1 given the diagnosis codes of visit at time
t. A model that can perform this task is partic-
ularly useful as it can act as a preventive mech-
anism. This task is specifically similar to the task
of statistical machine translation if we consider the
codes corresponding to visit at time t as the source
and those of visit at time t+1 as the target lan-
guage. It is interesting to note here that there might
be multiple visits (lets say, N) by a single patient,
in which case we move away from the analogy.
We have also built a baseline system to predict
the most important diagnosis code in a visit. All
the models were built using Dynet (Neubig et al.,
2017) and we have included the DIAGNOSIS.csv
file from the dataset in the repository provided for
reproducibility of the code.

6.3 Baseline for Task A: Predicting all the
diagnosis codes in a particular visit

We have first extracted the clinical codes corre-
sponding to each visit irrespective of the patient



Perplexity Training for Baseline B with different hidden sizes in
RNN per epoch
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Figure 5: Training per epoch of Baseline B

== 512 Hidden

identity. There were 64314 sequences in total and
we have trained to predict the same sequence using
a unidirectional RNN in a language model fashion
in the sequence of the clinical codes. The ICD
codes in the diagnosis are listed in the order of
their priority. Therefore, we felt that it is important
to consider the order while training the model. We
have used 128 neurons as the hidden representa-
tion and 64 dimensional vectors as embeddings for
the ICD codes. Learning rate was 0.01 and SGD
was used as the optimizer without dropout. There
was no batching performed. The performance of
the model was evaluated based on the predictions
for all the codes and the order as well. As this is
usually the case also with language modeling, we
have used the measure typically used in LM: per-
plexity to optimize and measure the performance
of the model. In addition, we have also consid-
ered the option of using a sorted code error rate
for tuning the hyper parameters with the intention
to at least predict all the diagnosis codes even if
the ordering was missed by the model.

6.4 Baseline for Task B: Predicting the
diagnosis codes for the next visit

This is a model that predicts the clinical codes
corresponding to the next visit using the clinical
codes corresponding to the current visit. We have
used a sequence to sequence architecture using
two RNNs : one for encoding the codes corre-
sponding to the current visit and another for de-
coding the codes for the next visit conditioned on
the encoder’s output. We have used the same con-
figuration for RNNs as was described in the sub-
section before. However, the losses back propa-
gated via this model only include those in the de-
coder. We have not used any attention mechanism
in this baseline.

Table 5: Performance evaluation of systems to pre-
dict diagnostic codes. The joint model has only
been evaluated in task B.

Config Train Ppl | Validation Ppl
Baseline Task A 5.73 6.24
Baseline Task B 7.32 8.81
Baseline Task C 0.42 0.48

Baseline Task C (N=5) 0.44 0.57
Joint Model ( Task B) 7.22 8.63

6.5 Baseline for Task C: Predicting the most
significant code in the next visit

This is a model that is trained to predict the most
significant disease code in the next visit. The train-
ing architecture and the parameter space for this
baseline are equivalent to the previous case except
that the output now is not a sequence but a sin-
gle code. We have tried using only N codes for
the encoder, varying N from 1 through 5 to see if
that plays a role in the prediction. In this case,
the evaluation metric is accuracy of the predicted
class. However, for comparison, we still refer to it
as perplexity in the table 5.

6.6 Joint Model: Incorporating the learnt
Embeddings into the model training

All the baseline models have been trained only us-
ing the medical codes. However, the handwritten
reports mentioned in sections 4 play a significant
role in understanding the status of the patient. We
hypothesize that incorporating the details of the re-
port can enhance the training of the model. Along
these lines, we train this model which demon-
strates one possible way to incorporate the report
embeddings learnt in the earlier section into the
training procedure. We have used the report em-
beddings as the initial state for the RNN while
training on the medical codes for this. Other meth-
ods of training such as adding the embeddings as
additional features, etc will be a subject for further
exploration.

7 Conclusion and Scope of the project

We hshow that the textual information in the med-
ical reports can assist in the process of predictive
analysis for clinical tasks. We plan to explore dif-
ferent joint training strategies for the Check Point
2. In the current systems we have used a nomi-
nal variant of sentence level embedding obtained
by a linear combination of the word level embed-



dings within. In addition, the training of these em-
beddings was carried out independent to the final
model that predicts the medical codes. We plan to
look at

e Better modeling strategies at the sentence and
document level

e Techniques to jointly train both the textual as
well as medical codes

o Using structured models such as Tree LSTMs
for the input modalities, and exploring graph-
ical regularisation techniques for the output
space predictions as described in (Nagpal
et al., 2017)
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