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Abstract

Algorithms like CKY can be used along
with Probabilisitc Context Free Grammar
to carry out parsing of Natural Language
sentences. However, CKY like algorithms
are greedy, as they produce parses only
with the highest probability with respect
to the training grammar. In this study, we
explore the use of supervised learning, to
rerank parses based on prior evidence of
more likely parses.

1 Introduction

CKY like dynamic algorithms can be used along
with Probabilistic grammars to generate parses
over a given Natural Language sentence, however
these techniques, being greedy dynamic programs,
are deterministic and generate only the most prob-
able parse for a given sentence.

There have been improvements in parsing,
by using techniques like grammar markovisa-
tion(Klein and Manning, 2003), which lend more
statistical support and local context while car-
rying out parsing, However, the inherent algo-
rithm, CKY is still deterministic with respect to
the Grammar.

A good compromise was the use of coarse-to-
fine pruning(Charniak et al., 2006), that employs
a coarse grammar to prune parses with low proba-
bility and then fine grammar. Intuitively, this can
be thought of as a technique that allows only very
natural parses, while high scoring special cases are
pruned out as outliers due to lack of statistical sup-
port.

Reranking, on the other hand treats parsing as a
supervised learning problem, considering that the
best parses of a sentence all share certain com-
mon structural and statistical properties that are
not unique to the sentence they parse. In other
words, one can assume that good parses across
sentences look similar.

The motivation behind this generic assumption,
can be easily understood with a parse of a sentence
that is right branching as opposed to centrally ex-
panding. Intuitively one would assume the more
central parse to be better, than one that is com-
pletely right branching.

In this study we experiment with training super-
vised classifiers on features extracted from the top
k-parses using the Berkeley parser.(Petrov et al.,
2006)

2 Corpus Statistics

Tr=15,Te=15 | Tr=inf,Te=40
Training Trees 9753 39832
Test Trees 421 1578

Table 1: Corpus Statistics

3 Feature Extraction

Since we treat reranking as a supervised learning
problem, the performance is highly sensitive to the
extracted features from the trees. We extract fea-
tures that are shared globally across multiple parse
trees. A list of features as extracted is below

e Position of Gold Tree in K-Best List
e Length of Sentence

e Size of Parse Tree

e Size of Longest Right Branch

e Difference of Longest Right Branch & Size
of Parse Tree

e The Rule present in the Grammar (Label -
>Children)

o Right Child and PoS Tag of Span and Rule
e Left Child and PoS Tag of Span and Rule

e Right Context of Span and Rule
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o Left Context of Span and Rule

e Span Structure

These features are as described in the paper
(Hall et al., 2014)

It is interesting to note how the decoding time
changes with change in training dataset size. From
Figure 2 it is clear that the decoding time increases
with the increase in training data and then de-
creases. This behaviour can be explained easily
by the use of cache table in our model.

For models built on small datasets, large num-
ber of trigrams are unseen, and the model backsoff
to a lower order model, the decoding for which is
fast. One the other hand as the training dataset
increases, the model not only has to take into ac-
count the higher level ngram model, but also re-
cursively decode lower level model, increasing the
decoding time. As the dataset size increases, SO
does the repetition of certain trigrams, thus the
model would have higher number of cache table
entries and the probability of a cache miss will de-
crease, speeding the decoding time for the model.

4 Classification

We experiment with 3 different Classifiers, 1) the
simple Perceptron model to learn a linear decision
boundary, 2) a Maxent Classifier and Finally 3) a
Max Margin SVM classifier.

4.1 Linear Perceptron

Perceptron is one of the simplest techniques to
train a linear decision boundary to perform binary
classification. To train perceptron, we use the K-
Best Parses as training data along with the Gold
trees.

We iterate over all the K-best Trees and find the
one which scores the highest. If the one with the
highest score is same as the Gold Tree, we ignore
and move to the next set of K Best Parses, else we
update our weights.

This is carried out iteratively, till the percep-
tron converges. In practice however, most data is
never linearly separable and hence, the perceptron
is never guaranteed to converge.

Prec | Rec F1
83.59 | 84.5 | 84.04

Time

Tr=40, Te=40 5932

Table 2: Linear Perceptron

4.2 Max Entropy

Max Entropy or Logistic Regression Models aim
to reduce the Log-Loss on the Dataset. MaxEnt
models also generally use L2 regularisation on the
weights.

In order to perform Max Ent classification, we
used Stochastic Gradient Descent on the Log Loss
of the training Data. The dimensionality of our
dataset can be very large in terms of the weights.
However, features extracted from a tree are sparse.

Thus, we perform the SGD on Loss function,
without any regularisation.

Prec Rec F1
77.29 | 85.18 | 81.04

Time
4694

Tr=40, Te=40

Table 3: Max Ent

4.3 Max Margin Classification

In our experiments Max margin classification with
a 0/1 Loss outperformed Linear Perceptron and
Max Ent models. For Max Margin classification,
we iterate over all samples in the KBest List and
find the one that violates the decision function the
most and use it for the training by assigning it a 1
Loss.

Prec Rec F1
86.47 | 85.88 | 86.17

Time

Tr=40, Te=40 19106

Table 4: Max Margin Classifier

5 Conclusion

In this study, we implemented 3 different super-
vised classifiers to rerank parses generated from
the berkeley parser. In our implementation, the
Max Margin classifier performed the best, with a
score of 86.17 F1.

Our Max Entropy model performed the worst,
one of the reasons for the same could be lack of
regularisation (which we avoid due to computa-
tional complexity), thus leading to overfitting.

In all of the experiments, parameter tuning was
found to be challenging. However, for the per-
ceptron, the parameter tuning was most challeng-
ing. It is possible that our perceptron probably did
not converge to an optimal solution, generally, in
such high dimensional, sparse feature spaces, data
is linearly separable, allowing perceptron to per-
form decently, however, our perceptron could not
outperform the 0-best baseline.
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More number of iteration, along with a decay-
ing learning rate, could perhaps address some of
these challenges for the perceptron.
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