
Parsing with Unlexicalised Probabilistic Context Free Grammar

Chirag Nagpal
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania
chiragn@cs.cmu.edu

Abstract

CKY is one of the most popular dynamic
programming algorithms used to parse
text, given a certain Context Free Gram-
mar. CKY can also be extended easily
to parse Probabilistic Context Free Gram-
mar, and hence a popular choice to gener-
ate parse trees to determine phrase struc-
ture in Natural Language text. In this
study, CKY is implemented in order to
parse Natural Language text from the Wall
Street Journal corpus.

1 Introduction

CKY is a dynamic programming approach to parse
text from Natural Language data. Given enough
training dataset, CKY is able to perform reason-
ably fast and accurate parsing. In this study, we
implement a CKY to parse sentences from the
Penn Tree Bank Corpus. We first generate the
Probabilistic grammar rules from the Penn Tree
Bank corpus files 200-2199. We then test our
model on enetences from files 2200-2299 .

Inorder to report results, the parser is tested for
two tasks.

• Training Data consists of all sentences, Test
Data consists of sentences with length of at
most 40 words.

• Training and Test Data consists of sentences
at most length of 15 words.

2 Corpus Statistics
Tr=15,Te=15 Tr=inf,Te=40

Training Trees 9753 39832
Test Trees 421 1578

Table 1: Corpus Statistics

Tr. Te. No of Trees Total time Avg. Time
1000 40 1578 888817 563.26
1000 20 725 107161 147.80
1000 15 421 33250 78.98
1000 10 153 4328 28.29

Table 2: Decoding Time Vs. Sentence Length

From the table it is evident that the decoding is
varies polynomially with respect to the the sen-
tence size. As CKY is a dynamic program, this
is an expected behaviour.

3 No Markovisation

We first experiment with a probabilistic grammar
without any markovisation, that is that our gram-
mar stores only the parent and child of the rule.

Prec Rec F1 Time
Tr=15, Te=15 73.08 63.88 68.18 904
Tr=inf, Te=40 64.63 52.58 57.99 25036

Table 3: No Markovisation h=0, v=1

4 Lossless Markovisation

In order to provide context to the grammar,Parsing
is carried out with lossless markovisation. This
refers to a markovisation in which the right sib-
ling retains the preterminal of its left sibling in-
definitely.

Prec Rec F1 Time
Tr=15, Te=15 78.84 70.15 74.24 2245
Tr=inf, Te=40 69.6 59.73 64.29 112797

Table 4: Lossless Markovisation

As compared to no markovisation, lossless
markovisation takes longer time, this is explained
by the increase in the number of symbols and rules

Chirag Nagpal
If you use this as reference for your course reports, please DO NOT CHEAT, and please be nice and cite.



in the grammar. However, lossless binarisation
significantly improves the F1 score as compared
to no annotation.

5 Horizontal and Vertical Markovisation

In order to improve the statistical support for the
symbols in the Grammar, we experiment with dif-
ferent values for the level of horizontal and vertical
markovisation. This allows us to alter the granu-
larity of our grammar, and hence improve the pars-
ing.

Prec Rec F1 Time
Tr=15, Te=15 83.73 79.99 81.81 7875
Tr=inf, Te=40 77.27 72.74 74.93 888817

Table 5: Markovisation h=2, v=2

The performance for h=2, v=2 is significantly
improved as compared to Lossless markovisation,
running time also increases significantly. One
would expect the running time to not increase as
the number of symbols are lesser as compared to
Lossless Markovisation, however in case of loss-
less markovisation, most symbols and rules had
nulls, so they could be pruned, reducing the run-
ning time.

6 Tag Splitting

Certain Preterminal symbols like ’IN’, ’CC’ give
rise to only very distinct kind of words. (For ex-
ample, the tag ’IN’ can give rise to words like ’of’,
’like’, ’as’ etc.) Depending on the word they gen-
erate, the grammar can be improved by annotat-
ing the preterminal symbols corresponding to its
leaf. This is known as ’Tag-splitting’. We explic-
itly perform this splitting in our grammar for the
three symbols, ’IN’, ’CC’ and ’AUX’.

Prec Rec F1 Time
Tr=15, Te=15 83.52 80.43 81.95 7754
Tr=inf, Te=40 78.96 74.34 76.58 869646

Table 6: Markovisation h=2, v=2 + Tag Splitting

For both the cases, Tag Splitting has a consider-
able improvement in performance in terms of F1
score. It is interesting to note that for the Tr=15,
Te=15 case, Tag-Splitting leads to a decrease in
Precision, this maybe explained by the lack of
statistical support for Tag-Splitting in this cases.
However even with this reduction in Precision, the
Recall increasing, inreasing the overall F1 Score.

7 Internal Rule Annotation

We further perform annotation by annotating all
Nonterminal symbols which generate only one
child. This is known as internal annotation.

Prec Rec F1 Time
Tr=15, Te=15 83.7 80.61 82.13 8016
Tr=inf, Te=40 79 74.37 76.61 859406

Table 7: Markovisation h=2, v=2 + Tag Splitting

In both tests, Unary annotation increased the
Precision and Recall leading to a significant in-
crease in the overall F1 score. The running time
for Tr=15, Te=15 increases, which is expected, as
unary annotation would lead to an increase in the
number of symbols in our grammar.

However, for Tr=inf, Te=40 the running time
decreased, since the running time depends on the
current system load of the testbed, we attribute this
decrease in running time to chance.

8 Conclusion

We implemented an unlexicalised CKY parser
with various granularities of markovisation. We
further extended the grammar to add certain Tag
Splitting annotations and Unary rule annotation.
In order to improve decoding time the following
strategies were used

• Iterate over only the parents, indexed by the
child for the Binary Rules.

• Storing both the Unary and Binary pointers as
arrays, as array lookups are faster than other
specialised data structures.

• Prune iterations over certain rules, if score is
less than a certain threshold. This greatly in-
creases speed of decoding, however at a cost
of some F1 score. Thus there is a trade off
associated with this step. However this can
be made up for by intelligent markovisation
strategies and annotations like Tag-Splitting,
as demonstrated.

• In the current implementation, the tree con-
struction that is carried out is done using a
unary rule in the beginning, the use of a bi-
nary rule, may improve or worsen the F1
score with respect to the goldset.

Chirag Nagpal
If you use this as reference for your course reports, please DO NOT CHEAT, and please be nice and cite.



Acknowledgments

We would like to convey our gratitude to Profes-
sor Taylor Berg-Kirkpatrick, Wanli Ma and Kartik
Goyal for all the help for this assignment.

References
Dan Klein and Christopher D Manning. 2003. Ac-

curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Asso-
ciation for Computational Linguistics.

Chirag Nagpal
If you use this as reference for your course reports, please DO NOT CHEAT, and please be nice and cite.


