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Abstract

Kneser-Ney is a popular technique for
building Ngram language models. In this
paper we explore the performance of an
exact Kneser-Ney with discounting Lan-
guage Model on a machine Translation
task and determine its sensitivity to param-
eters like Training Data size, discounting.
We also explore techniques to improve de-
coding and storing such a language model.

1 Introduction

Kneser-Ney language model was first proposed
by (Kneser and Ney, 1995) and further explored
in (Chen and Goodman, 1999) aimed to improve
language model estimation by incorporating dis-
counting along with back-off.

For all our experiments, we train a Trigram
Kneser-Ney language model on an English data
set consisting of around 9 Million sentences. In-
order to measure the performance of the Language
Model, we employ the LM for a French to En-
glish Machine Translation task consisting of 2000
French Sentences and estimate the BLEU Score.
Detailed corpus statistics are presented in.

There are various techniques that can be carried
out in order to improve the computational over-
head both in terms of memory required to build
and store the lanaguage model, as well as the
time required to carry out decoding. We have ex-
plored two such techniques in this study, the use
of caching as described in (Pauls and Klein, 2011)
and rank tables to store Ngram counts.

2 Corpus Statistics

Total Number of Trigrams | 41736000
Total Number of Bigrams 8374231
Total Number of Unigrams 495172

Table 1: Corpus Statistics

3 Training Dataset Size

It is found that Kneser-Ney Model, is sensitive
to training dataset size. In general, in our exper-
iments, we found that the model prediction im-
proves as the training dataset size increases.
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Figure 1: The Performance of the LM increases
with dataset size.
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Figure 2: Time taken to Decode LM vs. dataset
size.

It is interesting to note how the decoding time
changes with change in training dataset size. From
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Figure 2 it is clear that the decoding time increases
with the increase in training data and then de-
creases. This behaviour can be explained easily
by the use of cache table in our model.

For models built on small datasets, large num-
ber of trigrams are unseen, and the model backsoff
to a lower order model, the decoding for which is
fast. One the other hand as the training dataset
increases, the model not only has to take into ac-
count the higher level ngram model, but also re-
cursively decode lower level model, increasing the
decoding time. As the dataset size increases, SO
does the repetition of certain trigrams, thus the
model would have higher number of cache table
entries and the probability of a cache miss will de-
crease, speeding the decoding time for the model.

4 Discounting

Discounting refers to the amount of probability
mass subtracted from the higher order language
model and redistributed to the lower order lan-
guage models. Generally, discount, d is kept 0 <
d < 1 discount value of 0.75 is considered to work
well on most datasets.

A very low discount value, would be subopti-
mal, as it would effectively reduce the Kneser-Ney
model to a Trigram Language model, on the other
hand very high discounting would reduce it to a
lower order model.

In Figure 3 we experiment with different dis-
count values and determine the ideal discount
value with respect to the BLEU score.
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Figure 3: Time taken to Decode LM vs. dataset
size.

From the figure it is clear that the performance
of the model is the best for a discount of 0.9, af-
ter this, the performance decreases. It appears as
if the ideal value of discount heavily depends on

the given dataset. The nature of this parameter is
such that an appropriate dicount value, can only be
determined experimentally by estimating LM per-
formance on some ground truth.

5 Cache Table
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Figure 4: Time taken to Decode LM vs. Cache
size.

Our exact Kneser-Ney model takes around 556
seconds to decode the Trigram probabilities for
the 2000 Test Sentences. We experiment with a
cache table in order to speed up the decoding pro-
cess. Caching helps because instead of recursive
lookup into multiple hashtables, caching allows
the LM access to the Trigram probability in a sin-
gle lookup.

In our cache table implementation we find that a
table of size 2**21 performs reasonably well, and
reduces the lookup time to 290 seconds, which is
a speed up of a factor of ~ 1.9.

6 Rank Table

Inorder to reduce the memory overhead of stor-
ing the language model, we utilise a rank table to
store the Trigram counts. In our experiments we
found that while there are 41736000 unique tri-
grams, there are only about 10240 unique trigram
counts.

Thus, we store the rank counts in an int ar-
ray along with a mapping from the trigram encod-
ing to the rank table, in another int array. This
further reduces the memory consumption of our
model by around ~ 80 MB.

7 Conclusion

In this study we implement a full Trigram Kneser-
Ney Model with discounting, and test its perfor-
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mance on a dataset. We tune parameters of our
model in order to ensure maximum performance
of our implemented model for the Machine Trans-
lation task.

We find that the model performs well with a dis-
count value of 0.90, with a BLEU score of around,
25.00, incomparison a simple Trigram model had
a BLEU score of only ~ 22.34. On our testbed,
decoding this model, takes around 556 seconds
and a RAM of around 1.1 GB.

We further improve the decoding time by the
use of a cache table of the size of 2**21. This
speeds up the decoding by a factor of almost 2.

Inorder to reduce the memory footprint we im-
plement a ranking table, and also cleverly use
Java’s char data type which allows us to store
counts as a 16-bit unsigned value and reduce the
overall memory footprint to about 960MB ( in-
cluding the Cache Table).
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