
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

API Design 1: process and naming

Josh Bloch Charlie Garrod

217-214

Administrivia

• Homework 4b due Today (11:59 PM)

317-214

Review: libraries, frameworks both define APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup

internals, without rendering

}

/ render component on first view and

resizing

protected void

paintComponent(Graphics g) {

// draw a red box on his

componentDimension d = getSize();

g.setColor(Color.red);

g.drawRect(0, 0, d.getWidth(),

d.getHeight()); }

}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup

internals, without rendering

}

/ render component on first view and

resizing

protected void

paintComponent(Graphics g) {

// draw a red box on his

componentDimension d = getSize();

g.setColor(Color.red);

g.drawRect(0, 0, d.getWidth(),

d.getHeight()); }

}

your code

your code

API

API

417-214

Today’s topic: API Design
Review: what is an API?

• Short for Application Programming Interface

• Component specification in terms of operations, inputs, & outputs

– Defines a set of functionalities independent of implementation

• Allows implementation to vary without compromising clients

• Defines component boundaries in a programmatic system

• A public API is one designed for use by others
– Related to Java’s public modifier, but not identical

– protected members are part of the public api

517-214

Exponential growth in the power of APIs
This list is approximate and incomplete, but it tells a story

’50s-’60s – Arithmetic. Entire library was 10-20 calls!

’70s – malloc, bsearch, qsort, rnd, I/O, system calls,
formatting, early databases

’80s – GUIs, desktop publishing, relational databases

’90s – Networking, multithreading

’00s – Data structures(!), higher-level abstractions,
Web APIs: social media, cloud infrastructure

’10s – Machine learning, IOT, pretty much everything

617-214

What the dramatic growth in APIs has done for us

• Enabled code reuse on a grand scale

• Increased the level of abstraction dramatically

• A single programmer can quickly do things that would have
taken months for a team

• What was previously impossible is now routine

• APIs have given us super-powers

717-214

Why is API design important?

• A good API is a joy to use; a bad API is a nightmare

• APIs can be among your greatest assets
– Users invest heavily: learning, using

– Cost to stop using an API can be prohibitive

– Successful public APIs capture users

• APIs can also be among your greatest liabilities
– Bad API can cause unending stream of support requests

– Can inhibit ability to move forward

• Public APIs are forever – one chance to get it right

817-214

Why is API design important to you?

• If you program, you are an API designer
– Good code is modular – each module has an API

• Useful modules tend to get reused
– Once a module has users, you can’t change its API at will

• Thinking in terms of APIs improves code quality

917-214

Characteristics of a good API

• Easy to learn

• Easy to use, even without documentation

• Hard to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to evolve

• Appropriate to audience

1017-214

Outline

• The Process of API Design

• Naming

1117-214

Gather requirements–with a healthy degree of skepticism

• Often you’ll get proposed solutions instead

– Better solutions may exist

• Your job is to extract true requirements

– Should take the form of use-cases

• You may get requirements that don’t make sense
– Ask questions until you see eye-to-eye

• You may get requirements that are wrong
– Push back

• You may get requirements that are contradictory
– Broker a compromise

• Requirements will change as you proceed

1217-214

Requirements gathering (2)

• Key question: what problems should this API solve?
– Defines scope of effort

• Also important: what problems shouldn’t API solve?
– Bounds effort

• Requirements can include performance, scalability
– These factors can (but don’t usually) constrain API

• Maintain a requirements doc
– Helps focus effort, fight scope creep

– Saves rationale for posterity

1317-214

An often overlooked part of requirements gathering

• Ask yourself if the API should be designed (inception)

• Here are several good reasons not to design it
– It’s superfluous

– It’s impossible

– It’s unethical

– The requirements are too vague

• If any of these things are true, now is the time to raise red flag

• If the problem can’t be fixed, fail fast!
– The longer you wait, the more costly the failure

1417-214

Choosing an abstraction (model)

• The key: embed use cases in an underlying structure
– Note their similarities and differences

– Note similarities to physical objects (“reasoning by analogy”)

– Note similarities to other abstractions in the same platform

• This step does not have to be explicit
– You can start designing the spec without a clear model

– Generally a model will emerge

• For easy APIs, this step is almost nonexistent
– It can be as simple as deciding on static method vs. instantiable class

• For difficult APIs, can be the hardest part of the process

1517-214

Model examples

• Collections Framework - Core collection interfaces describe
data aggregates. Many implementations are provided including
decorators. Polymorphic algorithms are provided to operate on
collections independent of their representation.

• Swing and other GUI APIs -Trees of components representing
GUI elements are arranged by layouts. Events are delivered to
listeners, which modify components.

• java.io - Input and output stream interfaces, and many
implementations, including decorators (which implement a
stream backed by another).

1617-214

Start with short spec – 1 page is ideal

• At this stage, comprehensibility and agility are more important
than completeness

• Bounce spec off as many people as possible
– Start with a small, select group and enlarge over time

– Listen to their input and take it seriously

– API Design is not a solitary activity!

• If you keep the spec short, it’s easy to read, modify, or scrap it
and start from scratch

• Don’t fall in love with your spec too soon!

• Flesh it out (only) as you gain confidence in it

1717-214

Sample early API draft

// A collection of elements (root of the collection hierarchy)

public interface Collection<E> {

// Ensures that collection contains o

boolean add(E o);

// Removes an instance of o from collection, if present

boolean remove(Object o);

// Returns true iff collection contains o

boolean contains(Object o) ;

// Returns number of elements in collection

int size() ;

// Returns true if collection is empty

boolean isEmpty();

... // Remainder omitted

}

1817-214

Write to your API early and often

• Start before you’ve implemented the API
– Saves you doing implementation you’ll throw away

• Start before you’ve even specified it properly
– Saves you from writing specs you’ll throw away

• Continue writing to API as you flesh it out
– Prevents nasty surprises right before you ship

– If you haven’t written code to it, it probably doesn’t work

• Code lives on as examples, unit tests
– Among the most important code you’ll ever write

– Forms the basis of Design Fragments
[Fairbanks, Garlan, & Scherlis, OOPSLA ‘06, P. 75]

1917-214

When you think you’re on the right track, then write
a prototype implementation

• Some of your client code will run; some won’t

• You will find “embarrassing” errors in your API
– They are obvious only in retrospect

– Fix them and move on

• You may also find subtle performance problems
– I found an inherently quadratic API at this state

– Which is why we have AbstractList.removeRange

2017-214

Then flesh out documentation so it’s usable by people
who didn’t help you write the API

• Now you have an artifact you can share more widely

• Distribute, but ensure people know it’s subject to change

• If you’re lucky, you’ll get bug reports & feature requests

• Use the API feedback while you can

2117-214

Try API on at least 3 use cases before release

• If you write one, it probably won’t support another

• If you write two, it will support more with difficulty

• If you write three, it will probably work fine

• Ideally, get different people to write the use cases

– This will test documentation & give you different perspectives

• This is even more important for plug-in APIs

• Ted Biggerstaff calls this “The Rule of Threes”
(Will, Tracz, Confessions of a Used Program Salesman, Addison-Wesley, 1995)

2217-214

Maintain realistic expectations

• Most API designs are over-constrained
– You won't be able to please everyone – don’t try!

• If you do, you’ll end up with a messy, bloated API

– Come up with a unified, coherent design that represents a compromise

– It can be hard to decide which “requirements” are important

• Expect to make mistakes
– Real-world use will flush them out

– Expect to evolve API

2317-214

Issue tracking

• Throughout process, maintain a list of design issues
– Individual decisions such as what input format to accept

• Write down all the options

• Say which were ruled out and why

• When you decide, say which was chosen and why

• Prevents wasting time on solved issues

• Provides rationale for the resulting API
– Reminds its creators

– Enlightens its users

• I used to use text files and mailing lists for this, but now there are
tools (github, Jira, Bugzilla, etc.)

2417-214

Sample tracker-based issues list example
Github’s issue tracker

2517-214

Key design artifacts

1. Requirements document

2. Issues list

3. Use-case code

Maintain throughout design and retain when done

• They guide the design process

• When API is done, they’re the basis of the design rationale
– Public explanation for design

– e.g., https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html

2617-214

The process of API design – Summary
Not sequential; if you discover shortcomings, iterate!

1. Gather requirements skeptically, including use cases

2. Choose an abstraction (model) that appears to address use cases

3. Compose a short API sketch for abstraction

4. Apply API sketch to use cases to see if it works
– If not, fix API sketch, or go back to step 3, 2, or even 1.

5. Show API to anyone who will look at it

6. Write prototype implementation of API

7. Flesh out the documentation & harden implementation

8. Keep refining it as long as you can

2717-214

Disclaimer – one size does not fit all

• This process has worked for me

• Others developed similar processes independently

• But I’m sure there are other ways to do it

• The smaller the API, the less process you need

2817-214

Puzzler: “Big Trouble”

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;
total.add(fiveThousand);
total.add(fiftyThousand);
total.add(fiveHundredThousand);

System.out.println(total);
}

3017-214

What Does It Print?

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;
total.add(fiveThousand);
total.add(fiftyThousand);
total.add(fiveHundredThousand);

System.out.println(total);
}

3117-214

(a) 0

(b) 500000

(c) 555000

(d) It varies

BigInteger is immutable!

What Does It Print?

3217-214

Another Look

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;
total.add(fiveThousand); // Ignores result
total.add(fiftyThousand); // Ignores result
total.add(fiveHundredThousand); // Ignores result

System.out.println(total);
}

3317-214

How do you fix it?

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;
total = total.add(fiveThousand);
total = total.add(fiftyThousand);
total = total.add(fiveHundredThousand);

System.out.println(total);
} Prints 555000

3417-214

The moral

• Blame the API designer
– (In fairness, this was my first OO API, 1996)

• Names like add, subtract, negate suggest mutation

• Better names: plus, minus, negation

• Generally (and loosely) speaking:
– Action verbs for mutation

– Prepositions, linking verbs, nouns, or adjectives for pure functions

• Names are important!

3517-214

Outline

• The Process of API Design

• Naming

3617-214

Names Matter – API is a little language

• Primary goals
– Client code should read like prose (“easy to read”)

– Client code should mean what it says (“hard to misread”)

– Client code should flow naturally (“easy to write”)

• To that end, names should:
– be largely self-explanatory

– leverage existing knowledge

– interact harmoniously with language and each other

Naming is perhaps the single most important factor in API usability

3717-214

The easy part: typographical naming conventions

• Package or module – org.junit.jupiter.api,
com.google.common.collect

• Class or Interface – Stream, FutureTask, LinkedHashMap,
HttpClient

• Method or Field – remove, groupingBy, getCrc

• Parameter – numerator, modulus

• Constant Field – MIN_VALUE, NEGATIVE_INFINITY

• Type Parameter – T, E, K, V, X, R, U, V, T1, T2

The language specification demands that you follow these

3817-214

How to choose names that are easy to read & write

• Choose key nouns carefully!
– Related to finding good abstractions, which can be hard

– If you can’t find a good name, it’s generally a bad sign

• If you get the key nouns right, other nouns, verbs, and
prepositions tend to choose themselves

• Names can be literal or metaphorical
– Literal names have literal associations

• e.g., matrix suggests inverse, determinant, eigenvalue, etc.

– Metaphorical names enable reasoning by analogy

• Helps you and your users

• e.g., mail suggests send, cc, bcc, inbox, outbox, folder, etc.

3917-214

Names drive development, for better or worse

• Good names drive good development

• Bad names inhibit good development

• Bad names result in bad APIs unless you take action

• The API talks back to you. Listen!

4117-214

Vocabulary consistency

• Use words consistently throughout your API
– Never use the same word for multiple meanings

– Never use multiple words for the same meaning

– i.e., words should be isomorphic to meanings

4217-214

Vocabulary consistency as it relates to scope

• The tighter the scope, the more important is consistency
– Within APIs, consistency is critical

– In related APIs on a platform, it’s highly desirable

– Across the platform, it’s desirable

– Between platforms, it’s nice-to-have

• If forced to choose between local & platform consistency, choose local

• But look to platform libraries for vocabulary
– Ignoring obsolete and unpopular libraries

• Finally, look to similar APIs on other platforms for naming ideas

APIs are actually little language extensions

4317-214

Avoid abbreviations except where customary

• Back in the day, storage was scarce & people abbreviated everything
– Some continue to do this by force of habit or tradition

• Ideally, use complete words

• But sometimes, names just get too long
– If you must abbreviate, do it tastefully

– No excuse for cryptic abbreviations

• Of course you should use gcd, Url, cos, mba, etc.

4417-214

Grammar is a part of naming too

• Nouns for classes
– BigInteger, PriorityQueue

• Nouns or adjectives for interfaces
– Collection, Comparable

• Nouns, linking verbs or prepositions for non-mutative methods
– size, isEmpty, plus

• Action verbs for mutative methods
– put, add, clear

• If you follow these, they quickly become second nature

4517-214

Names should be regular – strive for symmetry

• If API has 2 verbs and 2 nouns, support all 4 combinations
– Unless you have a very good reason not to

• Programmers will try to use all 4 combinations
– They will get upset if the one they want is missing

• In other words, good APIs are generally orthogonal

addRow removeRow

addColumn removeColumn

4617-214

Don’t mislead your user

• Names have implications
– Learn them and uphold them in your APIs

• Don’t violate the principle of least astonishment

• Ignore this advice at your own peril
– Can cause unending stream of subtle bugs

public static boolean interrupted()

Tests whether the current thread has been interrupted.
The interrupted status of the thread is cleared by this method....

4717-214

Don’t lie to your user

• Name method for what it does, not what you wish it did

• If you can’t bring yourself to do this, fix the method!

• Again, ignore this at your own peril

public long skip(long n) throws IOException

Skips over and discards n bytes of data from this input stream. The
skip method may, for a variety of reasons, end up skipping over some
smaller number of bytes, possibly 0. This may result from any of a
number of conditions; reaching end of file before n bytes have been
skipped is only one possibility. The actual number of bytes skipped is
returned…

4817-214

Good naming takes time, but it’s worth it

• Don’t be afraid to spend hours on it; I do.
– And I still get the names wrong sometimes

• Don’t just list names and choose
– Think about goals and anti-goals for names

– Think of names consistent with these goals

– Write out realistic client code and compare

• Discuss names with colleagues; it really helps.

4917-214

Lecture summary

• APIs took off in the past thirty years, and gave us super-powers

• Good APIs are a blessing; bad ones, a curse

• Following an API design process greatly improves API quality

• Naming is critical to API usability

5017-214

To be continued…

