Principles of Software Construction:
Objects, Design, and Concurrency

API| Design 1: process and naming

Josh Bloch Charlie Garrod

g:lm'nvgiv Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

[]
institute f
17-214 1 SOFTWARE
RESEARCH

Administrivia

* Homework 4b due Today (11:59 PM)

[]
institute f
17-214 2 SOFTWARE
RESEARCH

Review: libraries, frameworks both define APIs

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering

}

/ render component on first view and
resizing

protected void

paintComponent (Graphics g) {

// draw a red box on his
componentDimension d = getSize () ;
g.setColor (Color.red) ;

g.drawRect (0, 0, d.getWidth(),
d.getHeight()) ; ¥

}

your code

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering

}

/ render component on first view and
resizing

protected void

paintComponent (Graphics g) {

// draw a red box on his
componentDimension d = getSize() ;
g.setColor (Color.red) ;

g.drawRect (0, 0, d.getWidth(),
d.getHeight()) ;

}

17-214

your code

IS

institute for
SOFTWARE
RESEARCH

Today’s topic: APl Design

Review: what is an API?

Short for Application Programming Interface

 Component specification in terms of operations, inputs, & outputs
— Defines a set of functionalities independent of implementation

* Allows implementation to vary without compromising clients

 Defines component boundaries in a programmatic system

A public APl is one designed for use by others
— Related to Java’s public modifier, but not identical
— protected members are part of the public api

[]
institute f
17-214 4 LorAm
RESEARCH

Exponential growth in the power of APIs

This list is approximate and incomplete, but it tells a story

’50s-"60s — Arithmetic. Entire library was 10-20 calls!

'70s —malloc, bsearch, gsort, rnd, I/0O, system calls,
formatting, early databases

’80s — GUlIs, desktop publishing, relational databases
’90s — Networking, multithreading

’00s — Data structures(!), higher-level abstractions,
Web APIs: social media, cloud infrastructure

’10s — Machine learning, IOT, pretty much everything

17-214

5

institute for
SOFTWARE
RESEARCH

What the dramatic growth in APIs has done for us

 Enabled code reuse on a grand scale
* Increased the level of abstraction dramatically

* Asingle programmer can quickly do things that would have
taken months for a team

* What was previously impossible is now routine
* APIs have given us super-powers

[]
institute f
17-214 6 SOFTWARE
RESEARCH

Why is APl design important?

A good APl is a joy to use; a bad APl is a nightmare

APls can be among your greatest assets
— Users invest heavily: learning, using
— Cost to stop using an API can be prohibitive
— Successful public APIs capture users

APls can also be among your greatest liabilities
— Bad API can cause unending stream of support requests
— Can inhibit ability to move forward

Public APIs are forever — one chance to get it right

[]
institute f
17-214 7 SOFTWARE
RESEARCH

Why is APl design important to you?

* If you program, you are an API designer
— Good code is modular — each module has an API

e Useful modules tend to get reused
— Once a module has users, you can’t change its API at will

* Thinking in terms of APIs improves code quality

[]
institute f
17-214 8 Sor Tt
RESEARCH

Characteristics of a good API

 Easy to learn

* Easy to use, even without documentation

* Hard to misuse

* Easy to read and maintain code that uses it

e Sufficiently powerful to satisfy requirements
e Easy to evolve

 Appropriate to audience

[]
institute f
17-214 9 LorAm
RESEARCH

Outline

 The Process of API Design
* Naming

[]
insti For
17_214 - institute
10 [Yf sorme

Gather requirements—with a healthy degree of skepticism

* Often you’ll get proposed solutions instead

— Better solutions may exist

* Your job is to extract true requirements
— Should take the form of use-cases
* You may get requirements that don’t make sense

— Ask questions until you see eye-to-eye
* You may get requirements that are wrong
— Push back

You may get requirements that are contradictory

— Broker a compromise

Requirements will change as you proceed

[]
institute for
17-214 11 SOt

Requirements gathering (2)

e Key question: what problems should this API solve?
— Defines scope of effort

e Also important: what problems shouldn’t API solve?
— Bounds effort

 Requirements can include performance, scalability

— These factors can (but don’t usually) constrain API

* Maintain a requirements doc
— Helps focus effort, fight scope creep
— Saves rationale for posterity

[]
institute for
17-214 12 SOt

An often overlooked part of requirements gathering

* Ask yourself if the API should be designed (inception)

* Here are several good reasons not to design it
— It’s superfluous
— It’s impossible
— It’s unethical
— The requirements are too vague

e If any of these things are true, now is the time to raise red flag

* If the problem can’t be fixed, fail fast!
— The longer you wait, the more costly the failure

[]
institute for
17-214 13 SOt

Choosing an abstraction (model)

The key: embed use cases in an underlying structure
— Note their similarities and differences
— Note similarities to physical objects (“reasoning by analogy”)
— Note similarities to other abstractions in the same platform

This step does not have to be explicit
— You can start designing the spec without a clear model
— Generally a model will emerge

For easy APIls, this step is almost nonexistent

— It can be as simple as deciding on static method vs. instantiable class

For difficult APIs, can be the hardest part of the process

[]
institute for
17-214 14 SOt

Model examples

* Collections Framework - Core collection interfaces describe
data aggregates. Many implementations are provided including
decorators. Polymorphic algorithms are provided to operate on
collections independent of their representation.

* Swing and other GUI APIs -Trees of components representing
GUI elements are arranged by layouts. Events are delivered to
listeners, which modify components.

* java.io - Input and output stream interfaces, and many
implementations, including decorators (which implement a
stream backed by another).

[]
institute for
17-214 15 SOt

Start with short spec — 1 page is ideal

* At this stage, comprehensibility and agility are more important
than completeness

* Bounce spec off as many people as possible
— Start with a small, select group and enlarge over time
— Listen to their input and take it seriously
— API Design is not a solitary activity!

* If you keep the spec short, it’s easy to read, modify, or scrap it
and start from scratch

 Don’t fall in love with your spec too soon!
* Flesh it out (only) as you gain confidence in it

[]
institute for
17-214 16 SOt

Sample early API draft

// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

// Ensures that collection contains o
boolean add(E o);

// Removes an instance of o from collection, if present
boolean remove(Object 0);

// Returns true iff collection contains o
boolean contains(Object o) ;

// Returns number of elements in collection
int size() ;

// Returns true if collection is empty
boolean isEmpty();

// Remainder omitted

institute for
17-214 17

Write to your API early and often

Start before you've implemented the API
— Saves you doing implementation you’ll throw away

Start before you’ve even specified it properly
— Saves you from writing specs you’ll throw away

Continue writing to APl as you flesh it out
— Prevents nasty surprises right before you ship
— If you haven’t written code to it, it probably doesn’t work

Code lives on as examples, unit tests
— Among the most important code you’ll ever write

— Forms the basis of Design Fragments
[Fairbanks, Garlan, & Scherlis, OOPSLA ‘06, P. 75]

[]
institute for
17-214 18 SOt

When you think you’re on the right track, then write
a prototype implementation

 Some of your client code will run; some won’t

* You will find “embarrassing” errors in your API
— They are obvious only in retrospect

— Fix them and move on

* You may also find subtle performance problems

— | found an inherently quadratic API at this state
— Which is why we have AbstractList.removeRange

[]
institute for
17-214 19 SOt

Then flesh out documentation so it’s usable by people
who didn’t help you write the API

* Now you have an artifact you can share more widely
 Distribute, but ensure people know it’s subject to change
* Ifyou’re lucky, you'll get bug reports & feature requests
 Use the API feedback while you can

[]
institute for
17-214 20 SOt

Try APl on at least 3 use cases before release

* If you write one, it probably won’t support another
* If you write two, it will support more with difficulty
* If you write three, it will probably work fine

* I|deally, get different people to write the use cases

— This will test documentation & give you different perspectives

* This is even more important for plug-in APls

* Ted Biggerstaff calls this “The Rule of Threes”
(Will, Tracz, Confessions of a Used Program Salesman, Addison-Wesley, 1995)

[]
institute for
17-214 21 SOt

Maintain realistic expectations

 Most APl designs are over-constrained
— You won't be able to please everyone —don’t try!
* If you do, you’ll end up with a messy, bloated API
— Come up with a unified, coherent design that represents a compromise
— It can be hard to decide which “requirements” are important

 Expect to make mistakes
— Real-world use will flush them out
— Expect to evolve API

[]
institute for
17-214 22 SOt

Issue tracking

Throughout process, maintain a list of design issues
— Individual decisions such as what input format to accept
* Write down all the options
* Say which were ruled out and why
 When you decide, say which was chosen and why

* Prevents wasting time on solved issues
* Provides rationale for the resulting API

— Reminds its creators
— Enlightens its users

e | used to use text files and mailing lists for this, but now there are
tools (github, Jira, Bugzilla, etc.)

[]
institute for
17-214 23 SOt

Sample tracker-based issues list example

Github’s issue tracker

Search or jump to. Pull requests Issues Marketplace Explore

& mijkern /67364 Private

Code (@ Issues 4 Pull requests Actions Projects Wiki Security Insights Settings
Filters ~ siissue is:open © Labels 8
(@ 40pen v 0Closed Author Label ~ Projects

© Lack of context manager requires boilerplate

3 seconds ago by mjkern

© should support filter enhancement

g0 by mikern

3go by mjkern

[0)

Close and Join method names confuse users

Q ProTip! Ears burning? Get @mjkern mentions with mentions:mjkern.

17-214

P Milestones 0

Miles

tones

© Watch ~

24

0

T Star

IS

0

% Fork

institute for
SOFTWARE
RESEARCH

0

Key design artifacts

1. Requirements document
2. Issues list
3. Use-case code

Maintain throughout design and retain when done

 They guide the design process
 When APl is done, they’re the basis of the design rationale

— Public explanation for design

— e.8., https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html

[]
institute for
17-214 25 SOt

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html

The process of APl design — Summary
Not sequential; if you discover shortcomings, iterate!

Gather requirements skeptically, including use cases
Choose an abstraction (model) that appears to address use cases
Compose a short API sketch for abstraction

W NR

Apply API sketch to use cases to see if it works
— If not, fix API sketch, or go back to step 3, 2, or even 1.

Show API to anyone who will look at it
Write prototype implementation of API
Flesh out the documentation & harden implementation

® N o v

Keep refining it as long as you can

[]
institute for
17-214 26 SOt

Disclaimer — one size does not fit all

* This process has worked for me

 Others developed similar processes independently
 But I’'m sure there are other ways to do it
 The smaller the API, the less process you need

[]
institute for
17-214 27 SOt

Puzzler: “Big Trouble”

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;
total.add(fiveThousand);
total.add(fiftyThousand);
total.add(fiveHundredThousand);

System.out.println(total);

[]
institute for
17-214 28 SOt

What Does It Print?

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;
total.add(fiveThousand);
total.add(fiftyThousand);
total.add(fiveHundredThousand);

System.out.println(total);

[]
institute for
17-214 30 SOt

What Does It Print?

(a) ©

(b) 500000
(c) 555000
(d) It varies

BigInteger is immutable!

[]
institute for
17-214 31 SOt

Another Look

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;

total.add(fiveThousand); // Ignores result
total.add(fiftyThousand); // Ignores result
total.add(fiveHundredThousand); // Ignores result

System.out.println(total);

[]
institute for
17-214 32 SOt

How do you fix it?

public static void main(String [] args) {
BigInteger fiveThousand = new BigInteger("5000");
BigInteger fiftyThousand = new BigInteger("50000");
BigInteger fiveHundredThousand = new BigInteger("500000");

BigInteger total = BigInteger.ZERO;
total = total.add(fiveThousand);

total = total.add(fiftyThousand);

total = total.add(fiveHundredThousand);

System.out.println(total);

} Prints 555000

[]
institute for
17-214 33 SOt

The moral

Blame the API designer
— (In fairness, this was my first OO API, 1996)

* Names like add, subtract, negate suggest mutation
e Better names: plus, minus, negation
* Generally (and loosely) speaking:

— Action verbs for mutation
— Prepositions, linking verbs, nouns, or adjectives for pure functions

* Names are important!

[]
institute for
17-214 34 SOt

Outline

* The Process of API Design
* Naming

[]
institute for
17-214 35 SOt

Names Matter — APl is a little language
Naming is perhaps the single most important factor in APl usability

* Primary goals
— Client code should read like prose (“easy to read”)

— Client code should mean what it says (“hard to misread”)
— Client code should flow naturally (“easy to write”)

* To that end, names should:
— be largely self-explanatory

— leverage existing knowledge
— interact harmoniously with language and each other

[]
institute for
17-214 36 SOt

The easy part: typographical naming conventions

The language specification demands that you follow these
* Package or module—org.junit.jupiter.api,
com.google.common.collect

* Class or Interface — Stream, FutureTask, LinkedHashMap,
HttpClient

* Method or Field — remove, groupingBy, getCrc

e Parameter — numerator, modulus

* Constant Field —MIN VALUE, NEGATIVE INFINITY
* Type Parameter—T,E,K,V,X,R,U,V, T1, T2

[]
institute for
17-214 37 SOt

How to choose names that are easy to read & write

 Choose key nouns carefully!
— Related to finding good abstractions, which can be hard
— If you can’t find a good name, it’s generally a bad sign

* If you get the key nouns right, other nouns, verbs, and
prepositions tend to choose themselves

 Names can be literal or metaphorical
— Literal names have literal associations
* e.g., matrix suggests inverse, determinant, eigenvalue, etc.
— Metaphorical names enable reasoning by analogy
* Helps you and your users
* e.g., mail suggests send, cc, bcc, inbox, outbox, folder, etc.

[]
institute for
17-214 38 SOt

Names drive development, for better or worse

* Good names drive good development

* Bad names inhibit good development

 Bad names result in bad APIs unless you take action
* The API talks back to you. Listen!

[]
institute for
17-214 39 SOt

Vocabulary consistency

e Use words consistently throughout your API
— Never use the same word for multiple meanings
— Never use multiple words for the same meaning
— i.e., words should be isomorphic to meanings

[]
institute for
17-214 a1 SOt

Vocabulary consistency as it relates to scope

APIs are actually little language extensions
* The tighter the scope, the more important is consistency
— Within APIs, consistency is critical
— In related APIs on a platform, it’s highly desirable
— Across the platform, it’s desirable
— Between platforms, it’s nice-to-have

 If forced to choose between local & platform consistency, choose local
* But look to platform libraries for vocabulary

— lgnoring obsolete and unpopular libraries

* Finally, look to similar APls on other platforms for naming ideas

[]
institute for
17-214 42 SOt

Avoid abbreviations except where customary

Back in the day, storage was scarce & people abbreviated everything
— Some continue to do this by force of habit or tradition

|deally, use complete words

But sometimes, names just get too long
— If you must abbreviate, do it tastefully
— No excuse for cryptic abbreviations

Of course you should use gcd, Url, cos, mba, etc.

[]
institute for
17-214 43 SOt

Grammar is a part of naming too

* Nouns for classes
— BigInteger, PriorityQueue
* Nouns or adjectives for interfaces
— Collection, Comparable
* Nouns, linking verbs or prepositions for non-mutative methods
— size, isEmpty, plus
* Action verbs for mutative methods
— put, add, clear

* If you follow these, they quickly become second nature

[]
institute for
17-214 a4 SOt

Names should be regular — strive for symmetry

e If APl has 2 verbs and 2 nouns, support all 4 combinations

— Unless you have a very good reason not to

* Programmers will try to use all 4 combinations
— They will get upset if the one they want is missing

* In other words, good APIs are generally orthogonal

addRow removeRow
addColumn removeColumn

[]
institute for
17-214 a5 SOt

Don’t mislead your user

 Names have implications
— Learn them and uphold them in your APlIs

* Don’t violate the principle of least astonishment

* lIgnore this advice at your own peril
— Can cause unending stream of subtle bugs

public static boolean interrupted()

Tests whether the current thread has been interrupted.
The interrupted status of the thread is cleared by this method....

[]
institute for
17-214 a6 SOt

Don’t lie to your user

* Name method for what it does, not what you wish it did
e If you can’t bring yourself to do this, fix the method!

* Again, ignore this at your own peril

public long skip(long n) throws IOException

Skips over and discards n bytes of data from this input stream. The
skip method may, for a variety of reasons, end up skipping over some
smaller number of bytes, possibly 0. This may result from any of a
number of conditions; reaching end of file before n bytes have been
skipped is only one possibility. The actual number of bytes skipped is
returned...

[]
institute for
17-214 47 SOt

Good naming takes time, but it’s worth it

 Don’t be afraid to spend hours on it; | do.
— And | still get the names wrong sometimes

 Don’tjust list names and choose
— Think about goals and anti-goals for names
— Think of names consistent with these goals
— Write out realistic client code and compare

e Discuss names with colleagues; it really helps.

[]
institute for
17-214 a8 SOt

Lecture summary

* APIs took off in the past thirty years, and gave us super-powers
 Good APIs are a blessing; bad ones, a curse

* Following an APl design process greatly improves APl quality
 Naming is critical to APl usability

[]
institute for
17-214 a9 SOt

To be continued...

- institute for
17-214 so (B B

