
1 17-480/780

Principles of Software Construction:
Objects, Design, and Concurrency

API Design 2: principles

Josh Bloch Charlie Garrod Darya Melicher

2 17-480/780

Administrivia

• Homework 4c due today (but we have grace days)
• Homework 5 coming really soon
• Team sign-up deadline is early next week
• Midterm exam in class next Thursday

– Review session with Dan and Diego
Next Tuesday, 7:00 p.m. - 9:00 p.m., Porter Hall 100.
Candy is a definite possibility, as well as actual food.

3 17-480/780

Key concepts from Tuesday…

• APIs took off in the past thirty years, and gave
programmers super-powers

• Good APIs are a blessing; bad ones, a curse
• Using a design process greatly improves API quality
• Naming is critical to API usability

4 17-480/780

Characteristics of a Good API

• Easy to learn
• Easy to use, even if you take away the documentation
• Hard to misuse
• Easy to read and maintain code that uses it
• Sufficiently powerful to satisfy requirements
• Easy to evolve
• Appropriate to audience

Review

5 17-480/780

Outline

• General principles (8)
• Class design (5)
• Method design (9)
• Exception design (4)
• Documentation

6 17-480/780

1. API Should Do One Thing and Do it Well

• Functionality should be easy to explain
– If it's hard to name, that's generally a bad sign
– Be amenable to splitting and merging modules

Good: Font, Set, PrivateKey, Lock,

 ThreadFactory, TimeUnit, Future<T>
Bad: DynAnyFactoryOperations,

 _BindingIteratorImplBase,
 ENCODING_CDR_ENCAPS, OMGVMCID

7 17-480/780

What not to do

public abstract class Calendar implements
Serializable, Cloneable, Comparable<Calendar>

The Calendar class is an abstract class that provides
methods for converting between a specific instant in time
and a set of calendar fields such
as YEAR, MONTH, DAY_OF_MONTH, HOUR, and so on,
and for manipulating the calendar fields, such as getting
the date of the next week. An instant in time can be
represented by a millisecond value that is an offset from
the Epoch, January 1, 1970 00:00:00.000 GMT
(Gregorian).

8 17-480/780

What not to do, continued

Like other locale-sensitive classes, Calendar provides a class
method, getInstance, for getting a generally useful object of this
type. Calendar's getInstance method returns a Calendar object whose calendar
fields have been initialized with the current date and time:
 Calendar rightNow = Calendar.getInstance();
A Calendar object can produce all the calendar field values needed to implement
the date-time formatting for a particular language and calendar style (for
example, Japanese-Gregorian, Japanese-Traditional). Calendar defines the range
of values returned by certain calendar fields, as well as their meaning. For
example, the first month of the calendar system has value MONTH ==
JANUARY for all calendars. Other values are defined by the concrete subclass,
such as ERA. See individual field documentation and subclass documentation for
details.

etc., etc., etc., etc., etc., etc., etc., etc.

9 17-480/780

What is a Calendar instance? What does it do?

• I have no clue!!!
• The confusion, bugs, and pain caused by this class are

incalculable
• Thankfully it’s obsolete as of Java 8; use java.time
• Inexplicably, it’s not deprecated, even as of Java 10
• If you working on an API and you see a class description

that looks like this, run screaming!

10 17-480/780

2. API should be as small as possible but no smaller

• API must satisfy its requirements
– Beyond that, more is not necessarily better
– But smaller APIs sometimes solve more problems!
– Generalizing an API can make it smaller

• When in doubt, leave it out
– Functionality, classes, methods, parameters, etc.
– You can always add, but you can never remove

 “Everything should be made as simple as possible, but not simpler.” – Einstein

11 17-480/780

Conceptual weight (a.k.a. conceptual surface area)

• Conceptual weight more important than “physical size”
• The number and difficulty of new concepts in API
• Examples where growth add little conceptual weight:

– Adding overload that behaves consistently with existing methods
– Adding new static methods to a utility class
– Adding arccos when you already have sin, cos, and arcsin

• Look for a high power-to-weight ratio
– In other words, look for API that lets you do a lot with a little

12 17-480/780

Example: generalizing an API can make it smaller

public class Vector {
 public int indexOf(Object elem, int index);
 public int lastIndexOf(Object elem, int index);
 ...
}

• Not very powerful
– Supports only search operation, and only over certain ranges

• Hard to use without documentation
– What are the semantics of index?
– I don’t remember, and it isn’t obvious.

Subrange operations on Vector – legacy List implementation

13 17-480/780

Example: generalizing an API can make it smaller

public interface List<T> {
 List<T> subList(int fromIndex, int toIndex);
 ...
}

• Extremely powerful!
– Supports all List operations on all subranges
– Returned list is a view of receiver, not a copy

• Easy to use even without documentation

Subrange operations on List

14 17-480/780

3. Don’t make users do anything library could do for them

• Reduce need for boilerplate code
– Generally done via cut-and-paste
– Ugly, annoying, and error-prone

 import org.w3c.dom.*;
 import java.io.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.*;
 import javax.xml.transform.stream.*;

 // DOM code to write an XML document to a specified output stream.
 static final void writeDoc(Document doc, OutputStream out) throws IOException {
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM,
 doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out));
 } catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
 }

APIs should exist to serve their users and not vice-versa

15 17-480/780

4. Make it easy to do what’s common and
preferable, possible to do what’s less-common
• People tend to take the easy way out

– Make sure it’s what they want and should do

• If it’s hard to do what they want, they’ll get upset
– They’ll have to go to the documentation

• If it’s easier to do something wrong, dangerous, or
expensive, that’s exactly what users will do

• Don’t worry too much about truly rare stuff
– It’s OK if your API doesn’t handle it, at least

in the first release

16 17-480/780

5. Monitor complexity constantly

• Train yourself to run “complexity meter” in the background
• When it starts climbing, look for ways to simplify

Complexity

17 17-480/780

6. Implementation should not impact API

• Natural human tendency to design what you know how
to implement – fight it!
– Design for the user; then figure out how to implement

• Implementation constraints may change; API won’t
– When this happens, API becomes unexplainable

• When platform and domain are at odds, choose domain
– e.g., chess algebraic notation vs. zero-based indexing

18 17-480/780

7. APIs should coexist peacefully with platform

• Do what is customary
– Obey standard naming conventions
– Avoid obsolete parameter and return types
– Mimic patterns in core APIs and language

• Take advantage of API-friendly features
– varargs, enums, iterables, try-with-resources,

default methods, etc.

• Don’t Transliterate APIs
– Common in the early days (Corba, JGL, etc.)
– Still happens

19 17-480/780

8. Consider the performance consequences of API
design decisions
• Bad API decisions can limit performance forever

– Making type inappropriately mutable (or immutable!)
– Providing public constructor instead of static factory
– Using implementation type instead of interface

• But do not warp API to gain performance
– Underlying performance issue will get fixed,

but headaches will be with you forever
– Good design usually coincides with good performance

20 17-480/780

Outline

• General principles (8)
• Class design (5)
• Method design (9)
• Exception design (4)
• Documentation

21 17-480/780

1. Don’t expose a new type that lacks meaningful
contractual refinements on an existing supertype
• Just use the existing type
• Reduces conceptual surface area
• Increases flexibility
• Resist the urge to expose type just because it’s there

22 17-480/780

2. Minimize Mutability

• Parameters should be immutable
– Eliminates need for defensive copying

• Classes should be immutable unless there’s a good
reason to do otherwise
– Advantages: simple, thread-safe, reusable
– Disadvantage: separate object for each value

• If mutable, keep state-space small, well-defined
– Make clear when it’s legal to call which method

Bad: Date, Calendar, Thread.interrupt
Good: BigInteger, Pattern, Matcher

23 17-480/780

3. Minimize accessibility of everything

• Make classes, members as private as possible
– If it’s at least package-private, it’s not a part of the API

• Public classes should have no public fields
(with the exception of constants)

• Maximizes information hiding [Parnas72]

• Minimizes coupling
– Allows components to be, understood, used, built, tested,

debugged, and optimized independently

24 17-480/780

4. Subclass only when an is-a relationship exists

• Subclassing implies substitutability (Liskov)
– Makes it possible to pass an instance of subclass wherever

superclass is called for
– And signals user that it’s OK to do this

• If not is-a but you subclass anyway, all hell breaks loose
– Bad: java.util.Properties, java.util.Stack

• Never subclass just to reuse implementation
• Ask yourself “Is every Foo really a Bar?”

– If you can’t answer yes with a straight face, don’t subclass!

25 17-480/780

5. Design & document for inheritance or else prohibit it

• Inheritance violates encapsulation (Snyder, ’86)
– Subclasses are sensitive to implementation details of superclass

• If you allow subclassing, document self-use
– How do methods use one another?

• Conservative policy: all concrete classes uninheritable
• See Effective Java Item 19 for details

Bad: Many concrete classes in J2SE libraries
Good: AbstractSet, AbstractMap

26 17-480/780

Outline

• The Process of API Design
• General Principles (8)
• Class Design (5)
• Method Design (9)
• Exception Design (4)

27 17-480/780

1. “Fail Fast” – prevent failure, or fail quickly,
predictably, and informatively
• API should make it impossible to do what’s wrong

– Fail at compile time or sooner

• Misuse that’s statically detectable is second best
– Fail at build time, with proper tooling

• Misuse leading to prompt runtime failure is third best
– Fail when first erroneous call is made
– Method should be failure-atomic

• Misuse that can lie undetected is what nightmares
are made of
– Fail at an undetermined place and time in the future

28 17-480/780

Misuse that’s statically detectable (and fails
promptly at runtime if it eludes static analysis)
// The WRONG way to require one or more arguments!
static int min(int... args) {
 if (args.length == 0)
 throw new IllegalArgumentException("Need at least 1 arg");
 int min = args[0];
 for (int i = 1; i < args.length; i++)
 if (args[i] < min)
 min = args[i];
 return min;
}

29 17-480/780

API that makes it impossible to do what’s wrong

// The right way to require one or more arguments
static int min(int firstArg, int... remainingArgs) {
 int min = firstArg;
 for (int arg : remainingArgs)
 if (arg < min)
 min = arg;
 return min;
}

Won’t compile if you try to invoke with no arguments

 No validity check necessary

 Works great with for-each loop

30 17-480/780

API that fails at an unknown time and place

 // A Properties instance maps strings to strings
 public class Properties extends Hashtable {
 public Object put(Object key, Object value);

 // Throws ClassCastException if this properties
 // contains any keys or values that are not strings
 public void save(OutputStream out, String comments);
 }

Sweet dreams…

31 17-480/780

2. Handle boundary conditions (edge cases,
corner cases) gracefully
• Client should not have to write extra code

– These cases should just work

• e.g., Return zero-length arrays, collections; not null

 package java.awt.image;

 public interface BufferedImageOp {
 // Returns the rendering hints for this operation,
 // or null if no hints have been set.
 public RenderingHints getRenderingHints();
 }

• If client must treat boundary cases differently, use
Optional<T>, checked exception, or some such

32 17-480/780

3. Use appropriate parameter and return types

• Favor interface types over classes for input
– Provides flexibility, performance

• Use most specific reasonable input parameter type
– Moves error from runtime to compile time

• Don't use String if a better type exists
– Strings are cumbersome, error-prone, and slow

• Don't use floating point for monetary values
– Binary floating point causes inexact results!

• Use double (64 bits) rather than float (32 bits)
– Unless you know (via benchmarking) that you need the

performance, and you can tolerate the low precision

33 17-480/780

4. Use consistent parameter ordering across methods

• Especially important if parameter types identical
 #include <string.h>
 char *strncpy(char *dst, char *src, size_t n);
 void bcopy (void *src, void *dst, size_t n);

• Also important if parameter types “overlap,” e.g., (int,
long) can hurt you if you pass two int values

 java.util.collections – first parameter always
 collection to be modified or queried

 java.util.concurrent – time always specified as
 long delay, TimeUnit unit

34 17-480/780

5. Avoid long parameter lists

• Three or fewer parameters is ideal
– More and users will have to refer to docs

• Long lists of identically typed params are very harmful
– Programmers transpose parameters by mistake
– Programs still compile, run, but misbehave!

• Techniques for shortening parameter lists
– Break up method
– Create helper class to hold several parameters

• Often they’re otherwise useful, e.g., Duration
– Use builder pattern

// Eleven (!) parameters including four consecutive ints
HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
 DWORD dwStyle, int x, int y, int nWidth, int nHeight,
 HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,
 LPVOID lpParam);

35 17-480/780

6. Avoid return values that demand exceptional processing

• Return zero-length array or empty collection, not null

 package java.awt.image;

 public interface BufferedImageOp {
 // Returns the rendering hints for this operation,
 // or null if no hints have been set.
 public RenderingHints getRenderingHints();
 }

36 17-480/780

7. Do not overspecify the behavior of methods

• Don’t specify internal details
– It’s not always obvious what’s an internal detail

• All tuning parameters are suspect
– Let client specify intended use, not internal detail
– Good: intended size; Bad: number of buckets in table
– Good: intended concurrency level; Bad: number of shards

• Do not let internal details “leak” into spec
– e.g., by propagating inappropriate exceptions

• Do not specify hash functions!
– You lose the flexibility to improve them

37 17-480/780

8. Provide programmatic access to all data
available in string form
• Otherwise, clients will be forced to parse strings

– Painful
– Error prone
– Worst of all, it turns string format into de facto API

• Java got this wrong for exception stack traces…
– But StackTraceElement[] getStackTrace() added in Java 4
– At the same time as we enhanced stack trace string format
– A few users complained at the time, but quickly got over it

38 17-480/780

9. Overload with care

• Avoid ambiguous overloadings
– Multiple overloadings applicable to same actuals

• Just because you can doesn’t mean you should
– Often better to use a different name
– But overloadings that really do the same thing for different types

are a good thing; they reduce conceptual weight
• Especially true for primitive types and arrays in Java

• If you must provide ambiguous overloadings, ensure same
behavior for same arguments

 // Bad – ambiguous overloading with different behaviors
 public TreeSet(Collection<E> c); // Ignores order
 public TreeSet(SortedSet<E> s); // Respects order

39 17-480/780

Outline

• General principles
• Class design (8)
• Method design (5)
• Exception design (9)
• Documentation (4)

40 17-480/780

1. Throw exceptions to indicate exceptional conditions

• Don’t force client to use exceptions for control flow

 private byte[] a = new byte[CHUNK_SIZE];
 void processBuffer (ByteBuffer buf) {
 try {
 while (true) {
 buf.get(a);
 processBytes(a, CHUNK_SIZE);
 }
 } catch (BufferUnderflowException e) {
 int remaining = buf.remaining();
 buf.get(a, 0, remaining);
 processBytes(a, remaining);
 }
 }

• Conversely, don’t fail silently

 void threadGroup.enumerate(Thread[] list);

41 17-480/780

2. Favor unchecked exceptions

• Checked – client must take recovery action
• Unchecked – generally a programming error
• Overuse of checked exceptions causes boilerplate

 try {
 Foo f = (Foo) super.clone();

 } catch (CloneNotSupportedException e) {
 // This can't happen, since we’re Cloneable
 throw new AssertionError();
 }

42 17-480/780

3. Favor the reuse of existing exception types

• Especially IllegalArgumentException and
IllegalStateException

• Makes APIs easier to learn and use
• Subclass existing types if you need extra methods

43 17-480/780

4. Include failure-capture information in exceptions

• e.g., IndexOutOfBoundsException should include
index and, ideally bound(s) of access
– In early releases, it didn’t; now it includes index
– Added to detail message for arrays ca. JDK 1.1
– public IndexOutOfBoundsException​(int index)

added in Java 9(!)

• Eases diagnosis and repair or recovery
• For unchecked exceptions, message suffices
• For checked exceptions, provide accessors too

44 17-480/780

Outline

• General principles
• Class design
• Method design
• Exception design
• Documentation

45 17-480/780

API documentation is critical

Reuse is something that is far easier to say than to do.
Doing it requires both good design and very good
documentation. Even when we see good design, which is
still infrequently, we won't see the components reused
without good documentation.

– D. L. Parnas, 1994
 In Brooks’s The Mythical Man Month,
 Anniversary Edition

46 17-480/780

Document religiously

• Document every class, interface, method, constructor,
parameter, and exception
– Class: what an instance represents
– Method: contract between method and its client

• Preconditions, postconditions, side-effects
– Parameter: indicate units, form, ownership

• Document thread safety
• If class is mutable, document state space
• If API spans packages, JavaDoc is not sufficient

– Remember the collections framework?

47 17-480/780

API Design Summary

• A good API is a blessing; a bad one a curse
• API Design is hard

– Accept the fact that we all make mistakes
– But do your best to avoid them

• This talk and the last covered some heuristics of the craft
– Don't adhere to them slavishly, but...
– Don't violate them without good reason

	Principles of Software Construction:�Objects, Design, and Concurrency��API Design 2: principles���Josh Bloch Charlie Garrod Darya Melicher
	Administrivia
	Key concepts from Tuesday…
	Characteristics of a Good API
	Outline
	1. API Should Do One Thing and Do it Well
	What not to do
	What not to do, continued
	What is a Calendar instance? What does it do?
	2. API should be as small as possible but no smaller
	Conceptual weight (a.k.a. conceptual surface area)
	Example: generalizing an API can make it smaller
	Example: generalizing an API can make it smaller
	3. Don’t make users do anything library could do for them
	4. Make it easy to do what’s common and preferable, possible to do what’s less-common
	5. Monitor complexity constantly
	6. Implementation should not impact API
	7. APIs should coexist peacefully with platform
	8. Consider the performance consequences of API design decisions
	Outline
	1. Don’t expose a new type that lacks meaningful contractual refinements on an existing supertype
	2. Minimize Mutability
	3. Minimize accessibility of everything
	4. Subclass only when an is-a relationship exists
	5. Design & document for inheritance or else prohibit it
	Outline
	1. “Fail Fast” – prevent failure, or fail quickly, predictably, and informatively
	Misuse that’s statically detectable (and fails promptly at runtime if it eludes static analysis)
	API that makes it impossible to do what’s wrong
	API that fails at an unknown time and place
	2. Handle boundary conditions (edge cases, corner cases) gracefully
	3. Use appropriate parameter and return types
	4. Use consistent parameter ordering across methods
	5. Avoid long parameter lists
	6. Avoid return values that demand exceptional processing
	7. Do not overspecify the behavior of methods
	8. Provide programmatic access to all data available in string form
	9. Overload with care
	Outline
	1. Throw exceptions to indicate exceptional conditions
	2. Favor unchecked exceptions
	3. Favor the reuse of existing exception types
	4. Include failure-capture information in exceptions
	Outline
	API documentation is critical
	Document religiously
	API Design Summary

