Principles of Software Construction:
Objects, Design, and Concurrency

API| Design 2: principles

Josh Bloch Charlie Garrod Darya Melicher

- Carnegie Mellon University)
School of Computer Science
[]

institute for
I s SOFTWARE
RESEARCH
LT ARE

17'480/780 1 I S r ::.;\t;ﬁi::

Administrivia

e Homework 4c due today (but we have grace days)
* Homework 5 coming really soon

e Team sign-up deadline is early next week

e Midterm exam in class next Thursday

— Review session with Dan and Diego
Next Tuesday, 7:00 p.m. - 9:00 p.m., Porter Hall 100.
Candy is a definite possibility, as well as actual food.

institute for

17-480/780 2 sorminse

Key concepts from Tuesday...

 APIs took off in the past thirty years, and gave
programmers super-powers

 Good APIs are a blessing; bad ones, a curse
e Using a design process greatly improves APl quality
* Naming is critical to APl usability

- institute for
17-480/780 3 SO

Characteristics of a Good API

Review
e Easyto learn

e Easy to use, even if you take away the documentation
 Hard to misuse

e Easy to read and maintain code that uses it

o Sufficiently powerful to satisfy requirements

e Easy to evolve

 Appropriate to audience

17-480/780 4

Outline

* General principles (8)
e Class design (5)
 Method design (9)

* Exception design (4)
* Documentation

17-480/780

1. APl Should Do One Thing and Do it Well

e Functionality should be easy to explain
— If it's hard to name, that's generally a bad sign
— Be amenable to splitting and merging modules

Good: Font, Set, PrivateKey, Lock,
ThreadFactory, TimeUnit, Future<T>

Bad: DynAnyFactoryOperations,
_BindinglteratorimplBase,
ENCODING_CDR_ENCAPS, OMGVMCID

17-480/780 s

What not to do

public abstract class Calendar implements
Serializable, Cloneable, Comparable<Calendar>
The Calendar class is an abstract class that provides
methods for converting between a specific instant in time
and a set of calendar fields such

as YEAR, MONTH, DAY _OF _MONTH, HOUR, and so on,
and for manipulating the calendar fields, such as getting
the date of the next week. An instant in time can be
represented by a millisecond value that is an offset from
the Epoch, January 1, 1970 00:00:00.000 GMT
(Gregorian).

B institute For
17-480/780 7 SorivAgE

What not to do, continued

Like other locale-sensitive classes, Calendar provides a class

method, getinstance, for getting a generally useful object of this

type. Calendar's getlnstance method returns a Calendar object whose calendar
fields have been initialized with the current date and time:

Calendar rightNow = Calendar.getInstance();

A Calendar object can produce all the calendar field values needed to implement
the date-time formatting for a particular language and calendar style (for
example, Japanese-Gregorian, Japanese-Traditional). Calendar defines the range
of values returned by certain calendar fields, as well as their meaning. For
example, the first month of the calendar system has value MONTH ==

JANUARY for all calendars. Other values are defined by the concrete subclass,
such as ERA. See individual field documentation and subclass documentation for
details.

etc., etc., etc., etc., etc., etc., etc., etc.

17-480/780 5 At

RESEARCH

What is a Calendar instance? What does it do?

17-480/780 o

| have no cluel!!l

The confusion, bugs, and pain caused by this class are
incalculable

Thankfully it’s obsolete as of Java 8; use java.time
Inexplicably, it’s not deprecated, even as of Java 10

If you working on an APl and you see a class description
that looks like this, run screaming!

2. APl should be as small as possible but no smaller

“Everything should be made as simple as possible, but not simpler.” — Einstein

e API| must satisfy its requirements

— Beyond that, more is not necessarily better
— But smaller APIs sometimes solve more problems!
— Generalizing an APl can make it smaller

e When in doubt, leave it out
— Functionality, classes, methods, parameters, etc.
— You can always add, but you can never remove

17-480/780 . At

RESEARCH

Conceptual weight (a.k.a. conceptual surface area)

e Conceptual weight more important than “physical size”
 The number and difficulty of new concepts in API
 Examples where growth add little conceptual weight:

— Adding overload that behaves consistently with existing methods

— Adding new static methods to a utility class

— Adding arccos when you already have sin, cos, and arcsin
 Look for a high power-to-weight ratio

— In other words, look for API that lets you do a lot with a little

B institute For
17-480/780 11 SorivAgE

Example: generalizing an APl can make it smaller

Subrange operations on VVector - legacy List implementation

public class Vector {
public int indexOf(Object elem, int index);
public int lastIndexOf(Object elem, int index);

 Not very powerful
— Supports only search operation, and only over certain ranges

e Hard to use without documentation

— What are the semantics of index?
— ldon’t remember, and it isn’t obvious.

17-480/780 > At

RESEARCH

Example: generalizing an APl can make it smaller

Subrange operations on List

public interface List<T> {
List<T> sublList(int fromIndex, int toIndex);

}
e Extremely powerful!

— Supports all List operations on all subranges
— Returned list is a view of receiver, not a copy
e Easy to use even without documentation

17-480/780 oz At

RESEARCH

3. Don’t make users do anything library could do for them

APIs should exist to serve their users and not vice-versa
 Reduce need for boilerplate code

— Generally done via cut-and-paste

— Ugly, annoying, and error-prone

import org.w3c.dom.*;

import java.io.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

// DOM code to write an XML document to a specified output stream.
static final void writeDoc(Document doc, OutputStream out) throws IOException {
try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputKeys.DOCTYPE_ SYSTEM,
doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out));
} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}
}

17-480/780 o[BI B

4. Make it easy to do what’s common and
preferable, possible to do what’s less-common

 People tend to take the easy way out
— Make sure it’s what they want and should do

e Ifit’s hard to do what they want, they’ll get upset
— They’ll have to go to the documentation

e |fit’s easier to do something wrong, dangerous, or
expensive, that’s exactly what users will do

 Don’t worry too much about truly rare stuff aciumo i e
— It’s OK if your API doesn’t handle it, at least

(4]
in the first release mm

Nidge

institute for

17-480/780 15 sorminse

5. Monitor complexity constantly

e Train yourself to run “complexity meter” in the background
e When it starts climbing, look for ways to simplify

Complexity

17-480/780 o[BI &

6. Implementation should not impact API

* Natural human tendency to design what you know how
to implement —fight it!
— Design for the user; then figure out how to implement
* Implementation constraints may change; APl won’t

— When this happens, APl becomes unexplainable

* When platform and domain are at odds, choose domain

— e.g., chess algebraic notation vs. zero-based indexing

B institute For
17-480/780 17 SorivAgE

7. APIs should coexist peacefully with platform

e Do what is customary
— Obey standard naming conventions
— Avoid obsolete parameter and return types
— Mimic patterns in core APIs and language
 Take advantage of API-friendly features

— varargs, enums, iterables, try-with-resources,
default methods, etc.

e Don’t Transliterate APIs
— Common in the early days (Corba, JGL, etc.)
— Still happens

- institute for
17-480/780 18 SO

8. Consider the performance consequences of API
design decisions

 Bad API decisions can limit performance forever
— Making type inappropriately mutable (or immutable!)
— Providing public constructor instead of static factory

— Using implementation type instead of interface

 But do not warp API to gain performance

— Underlying performance issue will get fixed,
but headaches will be with you forever

— Good design usually coincides with good performance

B institute For
17-480/780 19 SorivAgE

Outline

 General principles (8)
e Class design (5)

e Method design (9)

e Exception design (4)
* Documentation

17-480/780

1. Don’t expose a new type that lacks meaningful
contractual refinements on an existing supertype

e Just use the existing type
 Reduces conceptual surface area

* |ncreases flexibility
e Resist the urge to expose type just because it’s there

17-480/780 21

2. Minimize Mutability

e Parameters should be immutable

— Eliminates need for defensive copying

e Classes should be immutable unless there’s a good
reason to do otherwise
— Advantages: simple, thread-safe, reusable
— Disadvantage: separate object for each value

e |f mutable, keep state-space small, well-defined

— Make clear when it’s legal to call which method

Bad: Date, Calendar, Thread.interrupt
Good: BigInteger, Pattern, Matcher

- institute for
17-480/780 22 SO

3. Minimize accessibility of everything

e Make classes, members as private as possible

— If it’s at least package-private, it’s not a part of the API

Public classes should have no public fields
(with the exception of constants)

 Maximizes information hiding [Parnas72]

 Minimizes coupling
— Allows components to be, understood, used, built, tested,
debugged, and optimized independently

- institute for
17-480/780 23 SO

4. Subclass only when an is-a relationship exists

e Subclassing implies substitutability (Liskov)

— Makes it possible to pass an instance of subclass wherever
superclass is called for

— And signals user that it’s OK to do this
* |f notis-a but you subclass anyway, all hell breaks loose

— Bad: java.util.Properties, java.util.Stack
 Never subclass just to reuse implementation
e Ask yourself “Is every Foo really a Bar?”

— If you can’t answer yes with a straight face, don’t subclass!

institute for

17-480/780 24 SOFTWARE

5. Design & document for inheritance or else prohibit it

* Inheritance violates encapsulation (Snyder, '86)
— Subclasses are sensitive to implementation details of superclass

e |If you allow subclassing, document self-use

— How do methods use one another?

e Conservative policy: all concrete classes uninheritable
e See Effective Java ltem 19 for details

Bad: Many concrete classes in J2SE libraries
Good: AbstractSet, AbstractMap

- institute for
17-480/780 25 SO

Outline

 The Process of APl Design
* General Principles (8)

e (Class Design (5)

e Method Design (9)

e Exception Design (4)

17-480/780

1. “Fail Fast” — prevent failure, or fail quickly,
predictably, and informatively

e API should make it impossible to do what’s wrong

— Fail at compile time or sooner

 Misuse that’s statically detectable is second best
— Fail at build time, with proper tooling

* Misuse leading to prompt runtime failure is third best
— Fail when first erroneous call is made
— Method should be failure-atomic

 Misuse that can lie undetected is what nightmares
are made of

— Fail at an undetermined place and time in the future

17-480/780 e WF

Misuse that’s statically detectable (and fails
promptly at runtime if it eludes static analysis)

// The WRONG way to require one or more arguments!
static int min(int... args) {
if (args.length == 0)
throw new IllegalArgumentException("Need at least 1 arg");
int min = args[0@];
for (int 1 = 1; 1 < args.length; i++)
if (args[i] < min)
min = args[i];
return min;

- institute for
17-480/780 28 SO

APl that makes it impossible to do what’s wrong

// The right way to require one or more arguments
static int min(int firstArg, int... remainingArgs) {
int min = firstArg;
for (int arg : remainingArgs)
if (arg < min)
min = arg;
return min;

Won’t compile if you try to invoke with no arguments
No validity check necessary

Works great with for-each loop

- institute for
17-480/780 29 SO

APl that fails at an unknown time and place

Sweet dreams...

// A Properties instance maps strings to strings
public class Properties extends Hashtable {
public Object put(Object key, Object value);

// Throws ClassCastException if this properties
// contains any keys or values that are not strings
public void save(OutputStream out, String comments);

17-480/780 o6 At

RESEARCH

2. Handle boundary conditions (edge cases,
corner cases) gracefully

e Client should not have to write extra code

— These cases should just work
e e.g., Return zero-length arrays, collections; not null

package java.awt.image;

public interface BufferedlmageOp {
// Returns the rendering hints for this operation,
// or null 1T no hints have been set.
public RenderingHints getRenderingHints();

}
e |f client must treat boundary cases differently, use
Optional<T>, checked exception, or some such

- institute for
17-480/780 31 SO

3. Use appropriate parameter and return types

e Favor interface types over classes for input
— Provides flexibility, performance

e Use most specific reasonable input parameter type
— Moves error from runtime to compile time

 Don't use String if a better type exists
— Strings are cumbersome, error-prone, and slow

 Don't use floating point for monetary values
— Binary floating point causes inexact results!

e Use double (64 bits) rather than f1loat (32 bits)

— Unless you know (via benchmarking) that you need the
performance, and you can tolerate the low precision

B institute For
17-480/780 32 SorivAgE

4. Use consistent parameter ordering across methods

e Especially important if parameter types identical

#include <string.h>
char *strncpy(char *dst, char *src, size t n);

void bcopy (void *src, void *dst, size t n);
e Also important if parameter types “overlap,” e.g., (1nt,
long) can hurt you if you pass two int values

java.util.collections —first parameter always
collection to be modified or queried

java.util.concurrent —time always specified as
long delay, TimeUnit unit

- institute for
17-480/780 33 SO

5. Avoid long parameter lists

 Three or fewer parameters is ideal
— More and users will have to refer to docs

* Long lists of identically typed params are very harmful
— Programmers transpose parameters by mistake
— Programs still compile, run, but misbehave!

 Techniques for shortening parameter lists

— Break up method
— Create helper class to hold several parameters
e Often they’re otherwise useful, e.g., Duration

— Use builder pattern

// Eleven (!) parameters including four consecutive ints

HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
DWORD dwStyle, int x, int y, int nWidth, int nHeight,
HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,
LPVOID lpParam);

17-480/780 s [

6. Avoid return values that demand exceptional processing

e Return zero-length array or empty collection, not null |

package java.awt.image;

public interface BufferedImageOp {
// Returns the rendering hints for this operation,
// or null if no hints have been set.
public RenderingHints getRenderingHints();

}

17-480/780 o= At

RESEARCH

7. Do not overspecify the behavior of methods

 Don’t specify internal details

— It’s not always obvious what’s an internal detail

e All tuning parameters are suspect
— Let client specify intended use, not internal detail
— Good: intended size; Bad: number of buckets in table
— Good: intended concurrency level; Bad: number of shards

Do not let internal details “leak” into spec
— e.g., by propagating inappropriate exceptions
Do not specify hash functions!
— You lose the flexibility to improve them

- institute for
17-480/780 36 SO

8. Provide programmatic access to all data
available in string form

e Otherwise, clients will be forced to parse strings

— Painful
— Error prone
— Worst of all, it turns string format into de facto API

e Java got this wrong for exception stack traces...
— But StackTraceElement[] getStackTrace() added in Java 4
— At the same time as we enhanced stack trace string format

— A few users complained at the time, but quickly got over it

- institute for
17-480/780 37 SO

9. Overload with care

* Avoid ambiguous overloadings
— Multiple overloadings applicable to same actuals

e Just because you can doesn’t mean you should

— Often better to use a different name

— But overloadings that really do the same thing for different types
are a good thing; they reduce conceptual weight

e Especially true for primitive types and arrays in Java

e |f you must provide ambiguous overloadings, ensure same

behavior for same arguments

// Bad - ambiguous overloading with different behaviors
public TreeSet(Collection<E> c); // Ignores order
public TreeSet(SortedSet<E> s); // Respects order

- institute for
17-480/780 38 SO

Outline

 General principles

e Class design (8)
 Method design (5)

e Exception design (9)
e Documentation (4)

17-480/780

1. Throw exceptions to indicate exceptional conditions

 Don’t force client to use exceptions for control flow

private byte[] a = new byte[CHUNK SIZE];

void processBuffer (ByteBuffer buf) {
try {
while (true) {
buf.get(a);
processBytes(a, CHUNK SIZE);
}

} catch (BufferUnderflowException e) {
int remaining = buf.remaining();
buf.get(a, 0, remaining);
processBytes(a, remaining);

}

}

e Conversely, don’t fail silently

void threadGroup.enumerate(Thread[] list);

17-480/780 40

institute for
SOFTWARE
RESEARCH

2. Favor unchecked exceptions

 Checked — client must take recovery action

e Unchecked — generally a programming error
e Overuse of checked exceptions causes boilerplate

try {
Foo f = (Foo) super.clone();

} catch (CloneNotSupportedException e) {

// This can't happen, since we’re Cloneable
throw new AssertionError();

- institute for
17-480/780 a1 SO

3. Favor the reuse of existing exception types

e Especially I1legalArgumentException and
IllegalStateException

e Makes APIs easier to learn and use
e Subclass existing types if you need extra methods

17-480/780 42 SorivAgE

4. Include failure-capture information in exceptions

e e.g.,, IndexOutOfBoundsException should include
index and, ideally bound(s) of access

— In early releases, it didn’t; now it includes index
— Added to detail message for arrays ca. JDK 1.1

— public IndexOutOfBoundsException(int index)
added in Java 9(!)

e Eases diagnosis and repair or recovery
* For unchecked exceptions, message suffices
* For checked exceptions, provide accessors too

17-480/780 e At

RESEARCH

Outline

 General principles
e (Class design

e Method design

e Exception design
* Documentation

17-480/780

44

institute for
SOFTWARE
RESEARCH

APl documentation is critical

Reuse is something that is far easier to say than to do.
Doing it requires both good design and very good
documentation. Even when we see good design, which is
still infrequently, we won't see the components reused

without good documentation.
— D. L. Parnas, 1994
In Brooks’s The Mythical Man Month,
Anniversary Edition

institute for

17-480/780 a5 sorminse

Document religiously

e Document every class, interface, method, constructor,
parameter, and exception

— Class: what an instance represents

— Method: contract between method and its client
 Preconditions, postconditions, side-effects

— Parameter: indicate units, form, ownership
e Document thread safety
e |f class is mutable, document state space
* |f APl spans packages, JavaDoc is not sufficient

— Remember the collections framework?

17-480/780 5 At

RESEARCH

API Desigh Summary

 Agood APl is a blessing; a bad one a curse
e API Design is hard

— Accept the fact that we all make mistakes
— But do your best to avoid them

e This talk and the last covered some heuristics of the craft

— Don't adhere to them slavishly, but...
— Don't violate them without good reason

- institute for
17-480/780 a7 SO

	Principles of Software Construction:�Objects, Design, and Concurrency��API Design 2: principles���Josh Bloch Charlie Garrod Darya Melicher
	Administrivia
	Key concepts from Tuesday…
	Characteristics of a Good API
	Outline
	1. API Should Do One Thing and Do it Well
	What not to do
	What not to do, continued
	What is a Calendar instance? What does it do?
	2. API should be as small as possible but no smaller
	Conceptual weight (a.k.a. conceptual surface area)
	Example: generalizing an API can make it smaller
	Example: generalizing an API can make it smaller
	3. Don’t make users do anything library could do for them
	4. Make it easy to do what’s common and preferable, possible to do what’s less-common
	5. Monitor complexity constantly
	6. Implementation should not impact API
	7. APIs should coexist peacefully with platform
	8. Consider the performance consequences of API design decisions
	Outline
	1. Don’t expose a new type that lacks meaningful contractual refinements on an existing supertype
	2. Minimize Mutability
	3. Minimize accessibility of everything
	4. Subclass only when an is-a relationship exists
	5. Design & document for inheritance or else prohibit it
	Outline
	1. “Fail Fast” – prevent failure, or fail quickly, predictably, and informatively
	Misuse that’s statically detectable (and fails promptly at runtime if it eludes static analysis)
	API that makes it impossible to do what’s wrong
	API that fails at an unknown time and place
	2. Handle boundary conditions (edge cases, corner cases) gracefully
	3. Use appropriate parameter and return types
	4. Use consistent parameter ordering across methods
	5. Avoid long parameter lists
	6. Avoid return values that demand exceptional processing
	7. Do not overspecify the behavior of methods
	8. Provide programmatic access to all data available in string form
	9. Overload with care
	Outline
	1. Throw exceptions to indicate exceptional conditions
	2. Favor unchecked exceptions
	3. Favor the reuse of existing exception types
	4. Include failure-capture information in exceptions
	Outline
	API documentation is critical
	Document religiously
	API Design Summary

