
115-214

School	of	
Computer	Science

Software	Development	Process

Charlie	Garrod Michael	Hilton



215-214

Administrivia

• Homework	6	Due	Today	– Thursday	Dec	7th

• Final	Exam	Review:	Dec	13th,	2-4pm	Wean	5409
• Final	Exam:	Dec	15th,	5:30-8:30pm	Wean	7500
• Faculty	Course	Evaluations
• https://www.ugrad.cs.cmu.edu/ta/F17/feedback/
• https://cmu.smartevals.com/



315-214

Last	Time:

• Test	Driven	Development



415-214

How do	we	know	
what to	build?



515-214

USER	STORIES



615-214

User	Stories	Cards

https://www.flickr.com/photos/jakuza/2728096478



715-214

User	Story	Format

• Three	C’s
– The	Card
– The	Conversation
– The	Confirmation



815-214

The	Card

• A	natural	language	description	of	one	or	more	features	of	a	
system.

• Should	fit	on	a	single	index	card
• Format:

– As	a	<ROLE>,	
– I	want	<FUNCTION>	
– so	that	<VALUE>.



915-214

The	Conversation

• A	dialog	between	everyone	working	on	the	project	and	the	client	
(stakeholder)

• Split	up	Epic	Stories	if	needed
• Adds	more	details	to	user	stories
• Can	be	a	list,	or	bullet	points



1015-214

The	Confirmation

• A	description	of	how	we	will	know	when	this	user	story	is	done
• A	test	that	will	show	when	the	task	is	completed
• Could	be	automated,	or	a	script



1115-214

Exercise

• https://vimeo.com/41800652
• Each person should develop one user story



1215-214

How	do	we	know	if	we	have	good	user	stories?

I-N-V-E-S-T



1315-214

INVEST

• Independent
– Schedule	in	any	order
– Not	overlapping	in	concept
– Not	always	possible

• Negotiable
– Details	to	be	negotiated	during	development
– Good	story	captures	the	essence,	not	the	details

• Valuable
– This	story	needs	to	have	value	to	someone
– Especially	relevant	when	splitting	up	issues

• Estimable
– Helps	keep	the	size	small
– Ensure	we	negotiated	correctly



1415-214

INVEST	cont…

• Small
– Fit	on	a	3x5	card
– At	most	two	person-weeks	of	work
– Too	big	==	unable	to	estimate

• Testable
– Ensures	understanding	of	task
– We	know	when	we	can	mark	task	“Done”
– Unable	to	test	==	do	not	understand



1515-214

PROCESS



1615-214

How	to	develop	software?

1. Discuss	the	software	that	needs	to	be	written
2. Write	some	code
3. Test	the	code	to	identify	the	defects
4. Debug	to	find	causes	of	defects
5. Fix	the	defects
6. If	not	done,	return	to	step	1



1715-214

Software	Process

“The	set	of	activities	and	associated	results	that	produce	a	software	
product”

What	makes	a	good	process?



1815-214

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%



1915-214

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing	/	Rework

Productive Coding



2015-214

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing	/	Rework

Productive Coding

Process:	Cost	and	Time	estimates,	Writing	
Requirements,	Design,	

Change	Management,	Quality	Assurance	Plan,	
Development	and	Integration	Plan



2115-214

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Trashing	/	Rework

Process



2215-214

Percent
of 
Effort

TimeProject
beginning

Project
end

100%

0%

Productive Coding

Process

Trashing	/	Rework



2315-214

Example	process	issues

• Change	Control:	Mid-project	informal	agreement	to	changes	
suggested	by	customer	or	manager.	Project	scope	expands	25-
50%

• Quality	Assurance:	Late	detection	of	requirements	and	design	
issues.	Test-debug-reimplement cycle	limits	development	of	new	
features.	Release	with	known	defects.

• Defect	Tracking:	Bug	reports	collected	informally,	forgotten
• System	Integration:	Integration	of	independently	developed	

components	at	the	very	end	of	the	project.	Interfaces	out	of	
sync.

• Source	Code	Control:	Accidentally	overwritten	changes,	lost	
work.



2415-214

RETROSPECTIVES



2515-214

Retrospective

• A	look	back	with	the	intention	to	Inspect	and	Adapt
• Without	introspection	there	can	be	no	improvement	
• We	continually	improve	our	processes	by	inspecting	and	

adapting.		



2615-214

Retrospective	Questions

• What	went	well?
• What	went	poorly?
• What	could	we	do	differently	to	improve?



2715-214

Summary:	take	17-313!

• Software	Engineering	in	practice	requires	consideration	of	
numerous	issues---technical	and	social---above	the	level	of	
individual	class	design/implementation.	

• Do	you	think	this	is	interesting?		17-313,	Foundations	of	
Software	Engineering	is	offered	in	the	Fall.

• And	consider	the	undergraduate	SE	minor!


