
115-214

School	of	
Computer	Science

Architectural	Patterns/Styles

Charlie	Garrod Michael	Hilton



215-214

Administrivia

• Homework	6	checkpoint	– Monday	Dec	4th

• Final	Exam	Review:	Dec	13th,	2-4pm	Wean	5409
• Final	Exam:	Dec	15th,	5:30-8:30pm	Wean	7500



315-214

Last	Time:

• Design	Patterns



415-214

ARCHITECTURAL	PATTERNS/STYLES



515-214

Design	Patterns



615-214

Architectural	Styles



715-214

Architectural	Styles



815-214

Architectural	Styles	vs	Design	Patterns



915-214

Monolithic	Application

+	Simple	to	start
+	Simple	to	deploy
+	Fast	time	to	first	feature
- Difficult	for	new	developers	to	come	up	to	speed
- Continuous	deployment	is	difficult
- Scaling	can	be	difficult
- Can	devolve	into	“big	ball	of	mud”



1015-214

Layers



1115-214

Layers

• Context:
– A	large	system	that	requires	decomposition

• Problem:	
– Low	separation	of	concerns.		
– Parts	of	system	are	not	interchangeable
– Lack	of	grouped	components	hurts	understandability	and	maintainability	
– Lack	of	boundaries	makes	tasking	difficult

• Solution:
– Define	layers	of	abstraction
– Specify	services	between	boundaries

• Beware:	
– Antipattern:	Sinkhole
– Antipattern:	Lasagna	



1215-214

Pipe	and	filter



1315-214

Pipe	and	filter	

• Context:
– Processing	data	stream

• Problem:
– Need	to	process	or	transform	a	stream	of	data
– Non-adjacent	steps	don’t	share	information
– Need	to	reuse	certain	steps	in	the	process

• Solution:
– Each	filter	transforms	the	data,	then	moves	it	on	to	the	next	step

• Beware:
– Error	Handling	
– Data	transformation	overhead



1415-214

Blackboard



1515-214

Blackboard

• Context:
– An	immature	domain	where	no	closed	approach	is	known	to	be	feasible

• Problem:
– A	complete	search	of	solution	space	is	not	feasable
– Multiple	algorithms	possible	for	different	subtasks
– Some	algorithms	work	on	the	output	of	others
– Uncertain	data	and	aprox solutions	are	involved

• Solution:
– Independent	programs	working	cooperatively	on	common	data
– Inspect	and	update	data

• Beware:
– Difficult	to	test
– Difficult	establishing	a	good	control	strategy



1615-214

Model-View-Controller



1715-214

Model-View-Controller

• Context:	
– Interactive	applications	with	a	flexible	Human-Computer	interface

• Problem:
– How	to	develop	an	application	not	dependent	on	interface
– Need	ability	for	application	to	support	different	interfaces
– Allow	simultaneous	development

• Solution:
– Model	– View	– Controller	division	

• Beware:
– Code	navigability
– Increased	complexity



1815-214

Broker



1915-214

Broker

• Context:
– Decoupled	components	interact	through	remote	service	invocations

• Problem:
– Scaling	for	large	scale	systems
– Components	should	be	decoupled	and	distributed

• Solution:
– Brokers	mediate	between	clients	and	servers

• Beware:
– Less	efficient
– Lower	fault	tolerance



2015-214

Microkernel



2115-214

Microkernel

• Context:
– The	development	of	several	applications	that	use	similar	interfaces	on	

same	core

• Problem:
– Should	cope	with	continuous	hardware	and	software	evolution
– Platform	should	be	portable,	extensible	and	adaptable

• Solution:
– Encapsulate	fundamental	services	of	your	application	platform	in	a	

microkernel
– Other	functionality	provided	by	internal	servers

• Beware:
– Complexity	of	design	and	implementation



2215-214

Event-driven	architecture



2315-214

Event-driven	architecture

• Context:
– Building	a	loosely	coupled,	more	responsive	system

• Problem:
– Build	a	system	that	reacts	to	events	in	the	world	around	it
– Only	have	to	decide	what	to	do,	not	when	to	do	it

• Solution:
– Event	creators,	managers,	and	consumers

• Beware:
– Security	risks
– Increased	complexity



2415-214

Peer-to-peer



2515-214

Peer-to-peer

• Context:
– A	system	where	each	node	has	the	same	capabilities	and	responsibilities

• Problem:
– A	situation	where	it	is	not	feasible	to	know	ahead	of	time	which	nodes	

will	be	servers
– Large	amounts	of	data	need	to	be	sent	transmitted	

• Solution:
– Decentralized	computing	
– Highly	robust	in	the	face	of	node	failure
– Highly	scalable

• Beware:
– No	server	to	manage	data
– No	always	used	for	legal	purposes



2615-214

Service-oriented	architecture



2715-214

Service-oriented	architecture	

• Context:
– Services	are	provided	to	other	components	over	a	network

• Problem:
– Building	a	distributed	system	
– Expose	a	service	no	objects

• Solution:
– Each	service	should:

• Represent	a	business	activity	with	a	specific	outcome
• Be	self-contained
• A	black-box	for	its	consumers
• May	consist	of	underlying	services

• Beware:
– High	investment	cost



2815-214

Exercise:

• Styles:
– Monolith
– Layers
– Pipe	and	Filter
– Blackboard
– MVC
– Broker
– Peer-to-peer
– Microkernel
– Event-driven	
– Service-oriented

• Application
– Online	banking	application
– API	for	third	party	tools	to	get	

banking	information
– Compiler
– Optical	Character	recognition
– VR	content	delivery	system
– VR	game
– Insurance	claim	processing	

system


