Architectural Patterns/Styles

Charlie Garrod Michael Hilton

School of
Computer Science

| J
institute for
I S SOFTWARE
RESEARCH

- institute for
15-214 1 A

Administrivia

 Homework 6 checkpoint — Monday Dec 4t"
* Final Exam Review: Dec 13, 2-4pm Wean 5409
* Final Exam: Dec 15, 5:30-8:30pm Wean 7500

)
Institute ’ r
15-214 2 [Hl o

Last Time:

* Design Patterns

-
e
15-214 s [s
RESEARCH

PATTERN-ORIENTED
. SOFTWARE
| ARCHITECTURE

A System of Patterns

-
Institute for
15-214 “ S | S [Feayts

Design Patterns

15-214 5

Architectural Styles

institute for
SOFTWARE
RESEARCH

15-214 6

Architectural Styles

= institute for
[I L @ soFTwARe
=AW RESEARCH

15-214 7

Architectural Styles vs Design Patterns

-
= institute for
(ISY§ sorrware
AN ReseArcH

15-214 8

Monolithic Application

+ Simple to start

+ Simple to deploy

+ Fast time to first feature

- Difficult for new developers to come up to speed
- Continuous deployment is difficult

- Scaling can be difficult

- Can devolve into “big ball of mud”

-
Institute [r
15-214 o [H i

Layers

Application

I

Preseniation

[

Session

Transport

[

Network

T

Data Link

el

Physical

15-214

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Provides miscellaneous protocols
for common activities

Structures information
and attaches semantics

Provides dialog control and
synchronization facilities

Breaks messages into packets
and guarantees delivery

Selects a route
from sender to receiver

Detects and corrects errors
in bit sequences

Transmits bits: velocity.
bit-code, connection, etc.

Presentation Layer [Component] [Component] [Component]
Business Layer [Component] [Component] [ComponentJ
Persistence Layer {Component] [Component] {Component)
Database Layer ‘ ‘ . ‘

institute for
1 0 I S SOFTWARE
RESEARCH

Layers

* (Context:

— A large system that requires decomposition

* Problem:
— Low separation of concerns.
— Parts of system are not interchangeable
— Lack of grouped components hurts understandability and maintainability
— Lack of boundaries makes tasking difficult

e Solution:

— Define layers of abstraction

— Specify services between boundaries
* Beware:

— Antipattern: Sinkhole
— Antipattern: Lasagna

' institute for
15-214 1 [Hee

Pipe and filter

Authenticate

’ Pipe Pipe
. T

7,
Incoming Fitter Fitter Fitter ‘Clean’
Order Qrder

Institute for
15-214 12 o

Pipe and filter

e Context:
— Processing data stream

* Problem:

— Need to process or transform a stream of data

— Non-adjacent steps don’t share information

— Need to reuse certain steps in the process
* Solution:

— Each filter transforms the data, then moves it on to the next step
* Beware:

— Error Handling
— Data transformation overhead

' institute for
15-214 13 [H e

Blackboard

(ksS)\ ks3)
Blackboard
(shared
data)
ksd)

Ks6

ite for

- Institu
15-214 14 ol

Blackboard

* Context:
— An immature domain where no closed approach is known to be feasible
* Problem:
— A complete search of solution space is not feasable
— Multiple algorithms possible for different subtasks
— Some algorithms work on the output of others
— Uncertain data and aprox solutions are involved
e Solution:
— Independent programs working cooperatively on common data
— Inspect and update data
* Beware:
— Difficult to test
— Difficult establishing a good control strategy

= H:"\m[r[[
15-214 15 [Hee

Model-View-Controller

"""" Controller

- institute for
15-214 16 sof T

Model-View-Controller

* Context:
— Interactive applications with a flexible Human-Computer interface
* Problem:
— How to develop an application not dependent on interface
— Need ability for application to support different interfaces
— Allow simultaneous development
* Solution:
— Model — View — Controller division
* Beware:

— Code navigability
— Increased complexity

= H:"\m[r[[
15-214 17 [Hlee

Broker

15‘2 14 - institute for
LI | S [B

Broker

* Context:
— Decoupled components interact through remote service invocations
* Problem:

— Scaling for large scale systems
— Components should be decoupled and distributed

* Solution:
— Brokers mediate between clients and servers

* Beware:
— Less efficient
— Lower fault tolerance

' institute for
15-214 10 [Hame

Microkernel

Monolithic Kernel
based Operating System

SEELSRESE System Call

/

kernel
mode

Microkernel
based Operating System

Application Device
IPC Driver

15-214

-
o= institute for
” Q ,’f SOFTWARE
=Ll RESEARCH

20

Microkernel

Context:

— The development of several applications that use similar interfaces on
same core

Problem:

— Should cope with continuous hardware and software evolution
— Platform should be portable, extensible and adaptable

Solution:

— Encapsulate fundamental services of your application platform in a
microkernel

— Other functionality provided by internal servers

Beware:

— Complexity of design and implementation

' institute for
15-214 21 [H e

Event-driven architecture

Event Channels

Event
Processing
Event
Processing
Event
Processing
Event
Processing

ite fe

= Instity O
15-214 22 SOttt

Events —— [Event Queue H Mediator

Event-driven architecture

* Context:

— Building a loosely coupled, more responsive system

* Problem:
— Build a system that reacts to events in the world around it
— Only have to decide what to do, not when to do it

* Solution:
— Event creators, Managers, and consumers

* Beware:
— Security risks
— Increased complexity

15-214 23

institute for
SOFTWARE
RESEARCH

Peer-to-peer

15-214

Peer-to-peer

* Context:

— A system where each node has the same capabilities and responsibilities

* Problem:

— A situation where it is not feasible to know ahead of time which nodes
will be servers

— Large amounts of data need to be sent transmitted
e Solution:

— Decentralized computing

— Highly robust in the face of node failure

— Highly scalable
* Beware:

— No server to manage data

— No always used for legal purposes

' institute for
15-214 25 [H e

Service-oriented architecture

SOA

|

I

Application
frontend

Service

|

15-214

Service repository

|

Service bus

I

Contract

Implementation

|

Interface

|

Business logic

Data

26

institute for
SOFTWARE
RESEARCH

Service-oriented architecture

* Context:
— Services are provided to other components over a network

Problem:
— Building a distributed system
— Expose a service no objects

Solution:
— Each service should:
* Represent a business activity with a specific outcome
* Be self-contained
* A black-box for its consumers
* May consist of underlying services

Beware:
— High investment cost

' institute for
15-214 27 [Hl e

Exercise:

e Styles:

15-214

Monolith

Layers

Pipe and Filter
Blackboard

MVC

Broker
Peer-to-peer
Microkernel
Event-driven
Service-oriented

* Application

Online banking application

API for third party tools to get
banking information

Compiler

Optical Character recognition
VR content delivery system
VR game

Insurance claim processing
system

-
institute for
28 m SOFTWARE
RESEARCH

