
1 15-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	5:		Concurrency	
	
Introduc9on	to	concurrency	
	
Charlie	Garrod 	 	Michael	Hilton	

2 15-214

Administrivia	

•  Homework	5	team	sign-up	deadline	tonight	
•  Midterm	exam	in	class	Thursday	(02	November)	

–  Review	session	Wednesday,	01	Nov.	7-9	p.m.	in	HH	B103	

•  Do	you	want	to	be	a	so3ware	engineer?	

3 15-214

The	founda9ons	of	the	So3ware	Engineering	minor	

•  Core	computer	science	fundamentals	
•  Building	good	so3ware	
•  Organizing	a	so3ware	project	

–  Development	teams,	customers,	and	users	
–  Process,	requirements,	es9ma9on,	management,	and	methods	

•  The	larger	context	of	so3ware	
–  Business,	society,	policy	

•  Engineering	experience	
•  Communica9on	skills	

–  Wri\en	and	oral	

4 15-214

SE	minor	requirements	

•  Prerequisite:		15-214	or	17-214	
•  Two	core	courses	

–  17-313	Founda9ons	of	SE	(fall	semesters)	
–  17-413	SE	Prac9cum	(spring	semesters)	

•  Three	elec9ves	
–  Technical	
–  Engineering	
–  Business	or	policy	

•  So3ware	engineering	internship	+	reflec9on	
–  8+	weeks	in	an	industrial	seang,	then	
–  17-415	

5 15-214

To	apply	to	be	a	So3ware	Engineering	minor	

•  Email	clegoues@cs.cmu.edu	
–  Your	name,	Andrew	ID,	expected	grad	date,	QPA,	and	minor/majors	
–  Why	you	want	to	be	a	SE	minor	
–  Proposed	schedule	of	coursework	

•  Fall	applica9ons	due	by	Friday,	10	November	2017	
–  Only	15	SE	minors	accepted	per	gradua9ng	class	

•  More	informa9on	at:	
–  h\p://isri.cmu.edu/educa9on/undergrad/	

6 15-214

Key	concepts	from	last	Thursday	

7 15-214

Key	design	principle:		Informa9on	hiding	

•  "When	in	doubt,	leave	it	out."	

8 15-214

Minimize	mutability	

•  Classes	should	be	immutable	unless	there's	a	good	reason	to	do	
otherwise	
–  Advantages:		simple,	thread-safe,	reusable	

•  See	java.lang.String	
–  Disadvantage:		separate	object	for	each	value	

•  Mutable	objects	require	careful	management	of	visibility	and	
side	effects	
–  e.g.	Component.getSize()	returns	a	mutable	Dimension	

•  Document	mutability	
–  Carefully	describe	state	space	

9 15-214

Fail	fast	

•  Report	errors	as	soon	as	they	are	detectable	
–  Check	precondi9ons	at	the	beginning	of	each	method	
–  Avoid	dynamic	type	casts,	run-9me	type-checking	

		//	A	Properties	instance	maps	Strings	to	Strings	
		public	class	Properties	extends	HashTable	{	
				public	Object	put(Object	key,	Object	value);	
	
				//	Throws	ClassCastException	if	this	instance	
				//	contains	any	keys	or	values	that	are	not	Strings	
				public	void	save(OutputStream	out,	String	comments);	
		}	

10 15-214

Avoid	behavior	that	demands	special	processing	

•  Do	not	return	null	to	indicate	an	empty	value	
–  e.g.,	Use	an	empty	Collection	or	array	instead	

•  Do	not	return	null	to	indicate	an	error	
–  Use	an	excep9on	instead	

11 15-214

Throw	excep9ons	only	for	excep9onal	behavior	

•  Do	not	force	client	to	use	excep9ons	for	control	flow:	
				private	byte[]	a	=	new	byte[CHUNK_SIZE];	
	
				void	processBuffer	(ByteBuffer	buf)	{	
						try	{	
								while	(true)	{	
										buf.get(a);	
										processBytes(a,	CHUNK_SIZE);	
								}	
						}	catch	(BufferUnderflowException	e)	{	
								int	remaining	=	buf.remaining();	
								buf.get(a,	0,	remaining);	
								processBytes(a,	remaining);	
						}	
				}		

•  Conversely,	don’t	fail	silently:	
					ThreadGroup.enumerate(Thread[]	list)	

12 15-214

Context:		The	excep9on	hierarchy	in	Java	

Throwable	

Exception	

RuntimeException	 IOException	

EOFException	

FileNotFoundException	

NullPointerException	

IndexOutOfBoundsException	

ClassNotFoundException	… …

. . .

Object	

unchecked
checked

13 15-214

Avoid	checked	excep9ons,	if	possible	

•  Overuse	of	checked	excep9ons	causes	boilerplate	code:	
			try	{	

				Foo	f	=	(Foo)	g.clone();	
	}	catch	(CloneNotSupportedException	e)	{	
				//	This	exception	can't	happen	if	Foo	is	Cloneable	
				throw	new	AssertionError(e);	
	}	

14 15-214

Don't	make	the	client	do	anything	the	module	could	do	

•  Carelessly	wri\en	APIs	force	clients	to	write	boilerplate	code:	
	
		import	org.w3c.dom.*;	
		import	java.io.*;	
		import	javax.xml.transform.*;	
		import	javax.xml.transform.dom.*;	
		import	javax.xml.transform.stream.*;	
	
		/**	DOM	code	to	write	an	XML	document	to	a	specified	output	stream.	*/	
		static	final	void	writeDoc(Document	doc,	OutputStream	out)throws	IOException{	
				try	{	
						Transformer	t	=	TransformerFactory.newInstance().newTransformer();	
						t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM,	doc.getDoctype().getSystemId());	
						t.transform(new	DOMSource(doc),	new	StreamResult(out));	//	Does	actual	writing	
				}	catch(TransformerException	e)	{	
						throw	new	AssertionError(e);		//	Can’t	happen!		
				}	
		}	
	

15 15-214

Don't	let	your	output	become	your	de	facto	API	

•  Document	the	fact	that	output	formats	may	evolve	in	the	future	
•  Provide	programma9c	access	to	all	data	available	in	string	form	

16 15-214

Don't	let	your	output	become	your	de	facto	API	

•  Document	the	fact	that	output	formats	may	evolve	in	the	future	
•  Provide	programma9c	access	to	all	data	available	in	string	form	

	public	class	Throwable	{	
			public	void	printStackTrace(PrintStream	s);	
			public	StackTraceElement[]	getStackTrace();	//	since	1.4	
	}	
	
	public	final	class	StackTraceElement	{	
			public	String		getFileName();	
			public	int					getLineNumber();	
			public	String		getClassName();	
			public	String		getMethodName();	
			public	boolean	isNativeMethod();	
	}	

17 15-214

API	design	summary	

•  Accept	the	fact	that	you,	and	others,	will	make	mistakes	
–  Use	your	API	as	you	design	it	
–  Get	feedback	from	others	
–  Hide	informa9on	to	give	yourself	maximum	flexibility	later	
–  Design	for	ina\en9ve,	hurried	users	
–  Document	religiously	

18 15-214

Semester	overview	

•  Introduc9on	to	Java	and	O-O	
•  Introduc9on	to	design	

–  Design	goals,	principles,	pa\erns	
•  Designing	classes	

–  Design	for	change	
–  Design	for	reuse	

•  Designing	(sub)systems	
–  Design	for	robustness	
–  Design	for	change	(cont.)	

•  Design	case	studies	
•  Design	for	large-scale	reuse	
•  Explicit	concurrency	

•  Crosscuang	topics:	
–  Modern	development	tools:	

IDEs,	version	control,	build	
automa9on,	con9nuous	
integra9on,	sta9c	analysis	

–  Modeling	and	specifica9on,	
formal	and	informal	

–  Func9onal	correctness:	Tes9ng,	
sta9c	analysis,	verifica9on	

19 15-214

Today:		Concurrency,	mo9va9on	and	primi9ves	

•  The	backstory	
–  Mo9va9on,	goals,	problems,	…	

•  Basic	concurrency	in	Java	
•  Coming	soon	(not	today):	

–  Higher-level	abstrac9ons	for	concurrency	
–  Program	structure	for	concurrency	
–  Frameworks	for	concurrent	computa9on	

20 15-214

Power	requirements	of	a	CPU	

•  Approx.:		Capacitance	*	Voltage2	*	Frequency	
•  To	increase	performance:	

–  More	transistors,	thinner	wires	
•  More	power	leakage:		increase	V	

–  Increase	clock	frequency	F	
•  Change	electrical	state	faster:		increase	V	

•  Dennard	scaling:		As	transistors	get	smaller,	power	density	is	
approximately	constant…	
–  …un9l	early	2000s	

•  Heat	output	is	propor9onal	to	power	input	

21 15-214

One	op9on:		fix	the	symptom	

•  Dissipate	the	heat	

22 15-214

One	op9on:		fix	the	symptom	

•  Be\er:		Dissipate	the	heat	with	liquid	nitrogen	
–  Overclocking	by	Tom's	Hardware's	5	GHz	project	

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html

23 15-214

Processor	characteris9cs	over	9me	

24 15-214

Concurrency	then	and	now	

•  In	past	mul9-threading	just	a	convenient	abstrac9on	
–  GUI	design:	event	dispatch	thread	
–  Server	design:	isolate	each	client’s	work	
–  Workflow	design:	isolate	producers	and	consumers	

•  Now:	required	for	scalability	and	performance	

25 15-214

We	are	all	concurrent	programmers	

•  Java	is	inherently	mul9threaded	
•  To	u9lize	modern	processors,	we	must	write	mul9threaded	code	
•  Good	news:	a	lot	of	it	is	wri\en	for	you	

–  Excellent	libraries	exist	(java.util.concurrent)	
•  Bad	news:	you	s9ll	must	understand	fundamentals	

–  …to	use	libraries	effec9vely	
–  …to	debug	programs	that	make	use	of	them	

26 15-214

Aside:		Concurrency	vs.	parallelism,	visualized	

•  Concurrency	without	parallelism:	

•  Concurrency	with	parallelism:	

27 15-214

Basic	concurrency	in	Java	

•  An	interface	represen9ng	a	task	
public	interface	Runnable	{	
				void	run();	
}	

•  A	class	to	execute	a	task	in	a	thread	
public	class	Thread	{	
				public	Thread(Runnable	task);	
				public	void	start();	
				public	void	join();			
				…	
}	

28 15-214

Example:	Money-grab	(1)	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	long	balance()	{	
								return	balance;	
				}	
}	

29 15-214

Example:	Money-grab	(2)	

public	static	void	main(String[]	args)	throws	InterruptedException	
{	

				BankAccount	bugs	=	new	BankAccount(100);	
				BankAccount	daffy	=	new	BankAccount(100);	
					
				Thread	bugsThread	=	new	Thread(()->	{	
								for	(int	i	=	0;	i	<	1_000_000;	i++)	
												transferFrom(daffy,	bugs,	100);	
				});	
					
				Thread	daffyThread	=	new	Thread(()->	{	
								for	(int	i	=	0;	i	<	1_000_000;	i++)	
												transferFrom(bugs,	daffy,	100);	
				});	
					
				bugsThread.start();	daffyThread.start();	
				bugsThread.join();	daffyThread.join();	
				System.out.println(bugs.balance()	+	daffy.balance());	
}	

30 15-214

What	went	wrong?	

•  Daffy	&	Bugs	threads	had	a	race	condi.on	for	shared	data	
–  Transfers	did	not	happen	in	sequence	

•  Reads	and	writes	interleaved	randomly	
–  Random	results	ensued	

31 15-214

Shared	mutable	state	requires	concurrency	control	

•  Three	basic	choices:	
1.  Don't	mutate:		share	only	immutable	state	
2.  Don't	share:		isolate	mutable	state	in	individual	threads	
3.  If	you	must	share	mutable	state:		limit	concurrency	to	achieve	safety	

32 15-214

The	challenge	of	concurrency	control	

•  Not	enough	concurrency	control:		safety	failure	
–  Incorrect	computa9on	

•  Too	much	concurrency	control:		liveness	failure	
–  Possibly	no	computa9on	at	all	(deadlock	or	livelock)	

33 15-214

An	easy	fix:	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	synchronized	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	synchronized	long	balance()	{	
								return	balance;	
				}	
}	

34 15-214

Concurrency	control	with	Java's	intrinsic	locks	

•  synchronized	(lock)	{	…	}		
–  Synchronizes	en9re	block	on	object	lock;	cannot	forget	to	unlock	
–  Intrinsic	locks	are	exclusive:	One	thread	at	a	9me	holds	the	lock	
–  Intrinsic	locks	are	reentrant:		A	thread	can	repeatedly	get	same	lock	

35 15-214

Concurrency	control	with	Java's	intrinsic	locks	

•  synchronized	(lock)	{	…	}		
–  Synchronizes	en9re	block	on	object	lock;	cannot	forget	to	unlock	
–  Intrinsic	locks	are	exclusive:	One	thread	at	a	9me	holds	the	lock	
–  Intrinsic	locks	are	reentrant:		A	thread	can	repeatedly	get	same	lock	

•  synchronized	on	an	instance	method		
–  Equivalent	to		synchronized	(this)	{	…	}	for	en9re	method	

•  synchronized	on	a		sta9c	method	in	class	Foo	
–  Equivalent	to		synchronized	(Foo.class)	{	…	}	for	en9re	method	

36 15-214

Another	example:	serial	number	genera9on	

public	class	SerialNumber	{	
				private	static	long	nextSerialNumber	=	0;	
				public	static	long	generateSerialNumber()	{	
								return	nextSerialNumber++;	
				}		
				public	static	void	main(String[]	args)	throws	InterruptedException	{	
								Thread	threads[]	=	new	Thread[5];	
								for	(int	i	=	0;	i	<	threads.length;	i++)	{	
												threads[i]	=	new	Thread(()	->	{	
																for	(int	j	=	0;	j	<	1_000_000;	j++)	
																				generateSerialNumber();	
												});	
												threads[i].start();	
								}	
								for(Thread	thread	:	threads)	thread.join();	
								System.out.println(generateSerialNumber());	
				}	
}	

37 15-214

Aside:		Hardware	abstrac9ons	

•  Supposedly:	
–  Thread	state	shared	in	memory	

	
•  A	(slightly)	more	accurate	view:	

–  Separate	state	stored	in	registers	and	caches,	even	if	shared	

Process

Thread

Memory

Thread

Process

Thread

Copy

Thread

Copy

Memory

38 15-214

Atomicity	

•  An	ac9on	is	atomic	if	it	is	indivisible	
–  Effec9vely,	it	happens	all	at	once	

•  No	effects	of	the	ac9on	are	visible	un9l	it	is	complete	
•  No	other	ac9ons	have	an	effect	during	the	ac9on	

•  In	Java,	integer	increment	is	not	atomic	

i++;

1. Load data from variable i

2. Increment data by 1

3. Store data to variable i

is actually

39 15-214

Again,	the	fix	is	easy	

public	class	SerialNumber	{	
				private	static	int	nextSerialNumber	=	0;	
				public	static	synchronized	int	generateSerialNumber()	{	
								return	nextSerialNumber++;	
				}		
				public	static	void	main(String[]	args)	throws	InterruptedException{	
								Thread	threads[]	=	new	Thread[5];	
								for	(int	i	=	0;	i	<	threads.length;	i++)	{	
												threads[i]	=	new	Thread(()	->	{	
																for	(int	j	=	0;	j	<	1_000_000;	j++)	
																				generateSerialNumber();	
												});	
												threads[i].start();	
								}	
								for(Thread	thread	:	threads)	thread.join();	
								System.out.println(generateSerialNumber());	
				}	
}	

40 15-214

Some	ac9ons	are	atomic	

	

•  What	are	the	possible	values	for	ans?	

Thread A:
ans = i;

Thread B:
int i = 7;

Precondition:
i = 42;

41 15-214

Some	ac9ons	are	atomic	

	

•  What	are	the	possible	values	for	ans?	

Thread A:
ans = i;

Thread B:

00000…00000111 i:

00000…00101010 i:

…

int i = 7;
Precondition:

i = 42;

42 15-214

Some	ac9ons	are	atomic	

	

•  What	are	the	possible	values	for	ans?	

•  In	Java:	
–  Reading	an	int	variable	is	atomic	
–  Wri9ng	an	int	variable	is	atomic	

–  Thankfully,																																																																													is	not	possible	

Thread A:
ans = i;

Thread B:

00000…00000111 i:

00000…00101010 i:

…

int i = 7;
Precondition:

i = 42;

00000…00101111 ans:

43 15-214

Bad	news:	some	simple	ac9ons	are	not	atomic	

•  Consider	a	single	64-bit	long	value	

	
–  Concurrently:	

•  Thread	A	wri9ng	high	bits	and	low	bits	
•  Thread	B	reading	high	bits	and	low	bits	

high bits low bits

Thread A:
ans = i;

Thread B:
long i = 10000000000;

Precondition:
i = 42;

01001…00000000 ans:

00000…00101010 ans:

01001…00101010 ans:

(10000000000)

(42)

(10000000042 or …)

44 15-214

Yet	another	example:	coopera9ve	thread	termina9on	

public	class	StopThread	{	
				private	static	boolean	stopRequested;	
	
				public	static	void	main(String[]	args)	throws	Exception	{	
								Thread	backgroundThread	=	new	Thread(()	->	{	
												while	(!stopRequested)	
																/*	Do	something	*/	;	
								});	
								backgroundThread.start();	
	
								TimeUnit.SECONDS.sleep(42);	
								stopRequested	=	true;	
				}	
}	

45 15-214

What	went	wrong?	

•  In	the	absence	of	synchroniza9on,	there	is	no	guarantee	as	to	
when,	if	ever,	one	thread	will	see	changes	made	by	another	

•  JVMs	can	and	do	perform	this	op9miza9on:	
					while	(!done)	
									/*	do	something	*/	;	

				becomes:	
					if	(!done)	
									while	(true)	
													/*	do	something	*/	;	

Process

Thread

Copy

Thread

Copy

Memory

46 15-214

How	do	you	fix	it?	

public	class	StopThread	{	
				private	static	boolean	stopRequested;	
				private	static	synchronized	void	requestStop()	{	
								stopRequested	=	true;	
				}	
				private	static	synchronized	boolean	stopRequested()	{	
								return	stopRequested;	
				}	
	
				public	static	void	main(String[]	args)	throws	Exception	{	
								Thread	backgroundThread	=	new	Thread(()	->	{	
												while	(!stopRequested())	
																/*	Do	something	*/	;	
								});	
								backgroundThread.start();	
	
								TimeUnit.SECONDS.sleep(42);	
								requestStop();	
				}	
}	

47 15-214

Summary	

•  Like	it	or	not,	you’re	a	concurrent	programmer	
•  Ideally,	avoid	shared	mutable	state	

–  If	you	can’t	avoid	it,	synchronize	properly	
•  Even	atomic	opera9ons	require	synchroniza9on	

–  e.g.,	stopRequested	=	true	
•  Some	things	that	look	atomic	aren’t	(e.g.,	val++)	

