Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Design case studies

Introduction to concurrency and GUIs

Charlie Garrod Michael Hilton

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
te‘f

- institute for
- SOFTWARE
15-214 I | S [Rsayass

Administrivia

* Homework 4a due tonight at 11:59 p.m.

* Homework 4b due Thursday, October 19th

 Reading due Tuesday: UML and Patterns Chapters 26.1 and 26.4
e Still need Midterm 17?

* All quiet on the Piazza front?

-
institute for
15-214 2 ol

Key concepts from Tuesday

ite f

siute for
- ‘A
15 214 3 S RESEARCH

Key concepts from Tuesday

* Revise, revise, revise: Refactoring and anti-patterns
* More testing

— Test coverage metrics

e Static analysis

ite f

-
InstitL or
15-214 a ol

Key concepts from yesterday's recitation

* Discovering design patterns
* Observer design pattern

ite f

-
InstitL or
15-214 5 ol

Observer pattern (a.k.a. publish/subscribe)

* Problem: Must notify other objects (observers) without
becoming dependent on the objects receiving the notification

 Solution: Define a small interface to define how observers
receive a notification, and only depend on the interface

* Consequences:
— Loose coupling between observers and the source of the notifications

— Notifications can cause a cascade effect

See edu.cmu.cs.cs214.recO6.alarmclock.AlarmListener...

ite f

15-214 6 ol

Learning goals for today

* Understand basic Java techniques and challenges for concurrent
programming

* Understand thread model in Swing

* Understand the design challenges and common solutions for
Graphical User Interfaces (GUIs)

 Understand event-based programming

 Understand and recognize the design patterns used and how
those design patterns achieve design goals.

— Observer pattern

e institute for
15-214 7 ol

Today

* Observer pattern
e Introduction to concurrency

 |ntroduction to GUIs

ite f

-
InstitL or
15-214 8 SOt

A thread is a thread of execution

 Multiple threads in the same program concurrently
* Threads share the same memory address space

ite f

-
InstitL or
15-214 o ol

Threads vs. processes

* Threads are lightweight; processes are heavyweight
* Threads share address space; processes don't

* Threads require synchronization; processes don't

* It's unsafe to kill threads; safe to kill processes

ite f

15-214 10 ol

Reasons to use threads

* Performance needed for blocking activities

* Performance on multi-core processors

* Natural concurrency in the real-world

* Existing multi-threaded, managed run-time environments

ite f

15-214 11 ol

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

Runnable greeter = new Runnable() {
public void run() {
System.out.println("Hi mom!");

}

¥

for (int 1 = 0; 1 < n; i++) {
new Thread(greeter).start();

}

e Institute for
15-214 12 SOt

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

Runnable greeter = () -> System.out.println("Hi mom!");
for (int i = @; 1 < n; i++) {

new Thread(greeter).start();
}

= Institute for
15-214 13 SOt

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

for (int 1 = 0; i < n; i++) {

new Thread(() -> System.out.println("Hi mom!")).start();
}

= Institute for
15-214 14 SOt

Aside: Anonymous inner class scope in Java

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

for (int 1 = 0; i < n; i++) {
new Thread(() -> System.out.println("T" + 1i)).start();

}
} A\
won't compile
because i mutates

ite f

15-214 15 ol

Aside: Anonymous inner class scope in Java

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

for (int 1 = 0; i < n; i++) {
int j = 1i; // j unchanging within each loop
new Thread(() -> System.out.println("T" + j)).start();

. .

j is effectively final

ite f

15-214 16 ol

Threads for performance

* Generating cryptarithms from a 344-word corpus
— Test all consecutive 3-word sequences: A+B=C (342 possibilities)

Number of threads

1 22.0
2 13.5
3 11.7
4 10.8

1€ (P
15-214 17

Shared mutable state requires synchronization

* Three basic choices:
1. Don't mutate: share only immutable state
2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: synchronize properly

ite f

15-214 o [0

The challenge of synchronization

* Not enough synchronization: safety failure
— Incorrect computation

 Too much synchronization: liveness failure

— No computation at all

ite f

15-214 19 ol

Today

* Observer pattern
e Introduction to concurrency

 |ntroduction to GUIs

ite f

15-214 20 ol

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (42)

& PowerPoint File Edit View Insert Format Amange Tools SideShow Window $ Help I\e @ & D = 5 4 @) 100%@& Wed1:03PM CharlesGarod Q i=

11-introduction-to-concurrency-and-guls.pix

erebuss o mmHE . oy ox B @ Q-

A Home | Themes Tables | Chats | SmanArt Transitions Ammations SideShow | Review

s e B WL e

Tor petro Steoe Mods Avange ek

Event-based programming

+ Style of programming where control-flow is driven by (usually

external) events
public void performAction (ActionEvent e) {

bigBloatedPowerPointFunction (e);

withANameSoLongIMadeItTwoMethods (e) ; <’—mm

yesIKnowJavaDoesntWorkLikeThat (e) ;

Gk o acd notes

Side 01 20 9% —® =

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (40)

gl b
- A
15 214 21 S RESEARCH

Examples of events in GUIs

* User clicks a button, presses a key

* User selects an item from a list, an item from a menu
 Mouse hovers over a widget, focus changes

* Scrolling, mouse wheel turned

* Resizing a window, hiding a window
 Draganddrop

* A packet arrives from a web service, connection drops, ...
e System shutdown, ...

ite f

15-214 22 ol

Blocking interaction with command-line interfaces

Terminal — 0

File Edit View Search Terminal Help
scripts/kconfig/conf arch/x86/Kconfig

*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]
Local version - append to kernel release (LOCALVERSION) []

Automatically append version information to the version string (LOCALVERSION_AUT
0) [N/y/?1y

Kernel compression mode

> 1. Gzip (KERNEL_GZIP)

2. Bzip2 (KERNEL_BZIP2) . .
N AR Scanner input = new Scanner(System.in);

h4;L%2§f?W§kJ10) while (questions.hasNext()) {
choice[1-4?]: . .
Support for paging of ano Question q = question.next();

System V IPC (SYSVIPC) [V System.out.println(q.toString());

POSIX Message Queues (POS . s .]
BSD Process Accounting (B Str\lng dnsSwer = 1nPUt°neXtL1ne():

Export task/process stati qg. r'espond(answer‘) 5

1y }
Enable per-task delay a
- institute for
15_2 14 23 I S r SOFTWARE

RESEARCH

Blocking interactions with users

[action==iI1it] addCard

4
Player
I Ll
newGame | |
> |
!
| |
: |
I I
: : >
: / getAction \ | :
, | > blocking
| action | execution
| !
________________________ 1
| |
|
|
|
|
|

institute for
SOFTWARE
RESEARCH

- __¥

15-214

Interactions with users through events

* Do not block waiting for user response
e Instead, react to user events

Game Dealer Player
newGame : : :
> | |
: addCards : :
| > |
: addCards :
| | |
| | >
| | |
| | |
| | |
| | |
| | |
| | |
hit | | |
| | |
pi | |
: addCard :
i i

institute for
25 SOFTWARE
RESEARCH

15-2%4

An event-based GUI with a GUI framework

* Setup phase
— Describe how the GUI window should look
— Register observers to handle events

* Execution
— Framework gets events from OS, processes events
* Your code is mostly just event handlers

Application

event—
mouse, key,
redraw, ...

drawing
commands

GUI
Framework

get
event

oS

See edu.cmu.cs.cs214.recO6.alarmclock.AlarmWindow...

15-214

™ institute for

4
3 SOFTWARE
26 i S ' RESEARCH

GUI frameworks in Java

* AWT — obsolete except as a part of Swing
* Swing —the most widely used, by far
 SWT — Little used outside of Eclipse

e JavaFX —Billed as a replacement for Swing
— Released 2008 — has yet to gain traction

A bunch of modern (web & mobile) frameworks
— e.g., Android

= Institute for
15-214 27 SOt

GUI programming is inherently multi-threaded

* Swing Event dispatch thread (EDT) handles all GUI events
— Mouse events, keyboard events, timer events, etc.

* No other time-consuming activity allowed on the EDT

— Violating this rule can cause liveness failures

ite f

15-214 28 ol

Ensuring all GUI activity is on the EDT

* Never make a Swing call from any other thread
— "Swing calls" include Swing constructors

* If not on EDT, make Swing calls with invokeLater:

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new Test().setVisible(true));

}

ite f

15-214 29 ol

Callbacks execute on the EDT

* You are a guest on the Event Dispatch Thread!
— Don’t abuse the privilege

* If >afew ms of work to do, do it off the EDT
— javax.swing.Swinghorker designed for this purpose

ite f

15-214 30 sormiati

Components of a Swing application

JFrame

JPanel

JButton
JTextField

15-214

MenuWidgetl MenuWidget2

ToolbarButton [v] ToolbarCheckBox

PanelCaption

5] l/SeIectedTab |/ OtherTab
Item 1 ® RadioButtonl [] UncheckedCheckBox
frem 2 * RadioButton2 CheckedCheckBox
Item 3 -~ .
) RadioButton3 -
Item 4 . -] InactiveCheckBox
Item 5 .} InactiveRadio
Button o
N
TextField | FextArea
|............. |
Item 1 —

31

institute for
SOFTWARE
RESEARCH

Swing has many widgets

« JlLabel e JTextField
* JButton * JTextArea
 JCheckBox e JList

« JChoice e JScrollBar
« JRadioButton e ...and more

e JFrame is the Swing Window

e JPanel (a.k.a. a pane) is the container to which you add your components
(or other containers)

-.gwﬁ
15-214 32 |[B)) sova

To create a simple Swing application

 Make a window (a JFrame)
 Make a container (a JPanel)

— Putitin the window

 Add components (buttons, boxes, etc.) to the container
— Use layouts to control positioning
— Set up observers (a.k.a. listeners) to respond to events
— Optionally, write custom widgets with application-specific display logic

* Set up the window to display the container

e Then wait for events to arrive...

ite f

15-214 33 ol

E.g., creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.out.println(“Button clicked”);

¥
1)
panel.add(button);

window.setVisible(true);

1< rEEE
15-214 34

E.g., creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener((e) -> {
System.out.println(“Button clicked");

1)
panel.add(button);

window.setVisible(true);

=g institute for
i S [sorTware
RESEARCH

15-214

The javax.swing.ActionListener

e Listeners are objects with callback functions
— Can be registered to handle events on widgets
— All registered widgets are called if event occurs

interface ActionListener {
void actionPerformed(ActionEvent e);

}

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

[oo
15_214 36 I S RESEA!{\CH

Button design discussion

* Button implementation should be reusable but customizable
— Different button label, different event-handling

 Must decouple button's action from the button itself

* Listeners are separate independent objects
— Assingle button can have multiple listeners
— Multiple buttons can share the same listener

ite f

15-214 37 sorTa

Swing has many event listener interfaces

e ActionListener e Mouselistener

* AdjustmentListener * TreeExpansionListener
* FocuslListener e TextListener

e ItemListener e WindowListener

« KeyListener .

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

interface ActionListener {

void actionPerformed(ActionEvent e);

}

[oo
15_214 38 I S RESEA’{\CH

Design discussion: Decoupling your game from your GUI

ite f

15-214 39 ol

Next week

* Design case studies

stite for
- ‘A
15-214 a0 [BYN o

Paper slides from lecture are scanned below..

te f

15-214 a1 ol

Objedt 1

%)

o~

N

217

——

: [Al
;'a '\eﬁlr Codle \

T —]

o ’l"\glfjﬁ (n\ﬁ CS&}@J

C?C\ MNe ()ul

CQN\(’

N/

X
|

J aMNe
L

+(A1J16’ Listener (?@qﬂv LI\S‘LU\U‘)

|

\ o
- \fs']'(:\as’ <

o Game LRJRM(’

I NS b
\ -T?L ~7| J * -

e

	11-introduction-to-concurrency-and-guis
	SSCS-WEH-5117100514230

