
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:					
Objects,	Design,	and	Concurrency

Designing	(sub-)	systems

Responsibility	assignment	

Charlie	Garrod Michael	Hilton



215-214

Administrivia

• Reading	for	Today:
• UML	and	Patterns	Chapter	14,	15,	and	16

• Midterm	exam	next	Thursday	(September	28th)
– Exam	review	session:	Hamerschlag Hall	B103	Wed	7-9pm
– Practice	Exam	posted	on	Piazza

• Muddiest	Point	Feedback



315-214

Homework	4

• Three	parts,	part	A	due	Oct	5th

• Design	review	meeting	next	week



415-214

REVIEW:	Sequence	and	communication	diagrams



515-214

Problem 
Space

Domain Model

Solution
Space

Object Model

Our path toward a more formal design process

• Real-world	concepts
• Requirements,	concepts
• Relationships	among	concepts
• Solving	a	problem
• Building	a	vocabulary

• System	implementation
• Classes,	objects
• References	among	objects	and	

inheritance	hierarchies
• Computing	a	result
• Finding	a	solution



615-214

Artifacts	of	our	design	process

• Model	/	diagram	the	problem,	define	objects
– Domain	model		(a.k.a.	conceptual	model)	✓

• Define	system	behaviors
– System	sequence	diagram
– System	behavioral	contracts

• Assign	object	responsibilities,	define	interactions
– Object	interaction	diagrams

• Model	/	diagram	a	potential	solution
– Object	model

Understanding	
the	problem

Defining	a	
solution



715-214

Building	a	domain	model	for	a	library	system

A	public	library typically	stores	a	collection	of	books,	movies,	or	other	library	
items available	to	be	borrowed	by	people	living	in	a	community.		Each	library	
member typically	has	a	library	account and	a	library	card with	the	account’s	ID	
number,	which	she	can	use	to	identify	herself	to	the	library.		

A	member’s	library	account	records	which	items	the	member	has	borrowed	and	
the	due	date for	each	borrowed	item.		Each	type	of	item	has	a	default	rental	
period,	which	determines	the	item’s	due	date	when	the	item	is	borrowed.		If	a	
member	returns	an	item	after	the	item’s	due	date,	the	member	owes	a	late	fee
specific	for	that	item,	an	amount	of	money	recorded	in	the	member’s	library	
account.



815-214

One	domain	model	for	the	library	system



915-214

Notes	on	the	library	domain	model

• All	concepts	are	accessible	to	a	non-programmer
• The	UML	is	somewhat	informal

– Relationships	are	often	described	with	words

• Real-world	"is-a"	relationships	are	appropriate	for	a	domain	model
• Real-word	abstractions	are	appropriate	for	a	domain	model
• Iteration	is	important

– This	example	is	a	first	draft.		Some	terms	(e.g.	Item	vs.	LibraryItem,	Account	
vs.	LibraryAccount)	would	likely	be	revised	in	a	real	design.

• Aggregate	types	are	usually	modeled	as	classes
• Primitive	types	(numbers,	strings)	are	usually	modeled	as	attributes



1015-214

Build	a	domain	model	for	Monopoly



1115-214

Build	a	domain	model	for	Monopoly

Monopoly	is	a	game	in	which	each	player	has	a	piece	that	moves	around	a	game	
board,	with	the	piece’s	change	in	location	determined	by	rolling	a	pair	of	dice.		
The	game	board	consists	of	a	set	of	properties	(initially	owned	by	a	bank)	that	
may	be	purchased	by	the	players.		

When	a	piece	lands	on	a	property	that	is	not	owned,	the	player	may	use	money	
to	buy	the	property	from	the	bank	for	that	property’s	price.		If	a	player	lands	on	a	
property	she	already	owns,	she	may	build	houses	and	hotels	on	the	property;	
each	house	and	hotel	costs	some	price	specific	for	the	property.		When	a	player’s	
piece	lands	on	a	property	owned	by	another	player,	the	owner	collects	money	
(rent)	from	the	player	whose	piece	landed	on	the	property;	the	rent	depends	on	
the	number	of	houses	and	hotels	built	on	the	property.		

The	game	is	played	until	only	one	remaining	player	has	money	and	property,	with	
all	the	other	players	being	bankrupt.



1215-214

Understanding	system	behavior	with	sequence	diagrams

• A	system	sequence	diagram is	a	model	that	shows,	for	one	
scenario	of	use,	the	sequence	of	events	that	occur	on	the	
system’s	boundary

• Design	goal:	Identify	and	define	the	interface	of	the	system
– Two	components:		A	user	and	the	overall	system



1315-214

Understanding	system	behavior	with	sequence	diagrams

• A	system	sequence	diagram is	a	model	that	shows,	for	one	
scenario	of	use,	the	sequence	of	events	that	occur	on	the	
system’s	boundary

• Design	goal:	Identify	and	define	the	interface	of	the	system
– Two	components:		A	user	and	the	overall	system

• Input:		Domain	description	and	one	use	case
• Output:		A	sequence	diagram	of	system-level	operations

– Include	only	domain-level	concepts	and	operations



1415-214

One	sequence	diagram	for	the	library	system

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	borrow	a	book.		After	confirming	that	the	
member	has	no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	
due	date	by	adding	its	rental	period	to	the	current	day,	and	record	the	book	and	
its	due	date	as	a	borrowed	item	in	the	member’s	library	account.



1515-214

One	sequence	diagram	for	the	library	system

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	borrow	a	book.		After	confirming	that	the	
member	has	no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	
due	date	by	adding	its	rental	period	to	the	current	day,	and	record	the	book	and	
its	due	date	as	a	borrowed	item	in	the	member’s	library	account.



1615-214

Build	one	system	sequence	diagram	for	Monopoly

Use	case	scenario:		When	a	player	lands	on	an	unowned	property	and	has	
enough	money	to	buy	the	property,	she	should	be	able	to	buy	the	property	for	
the	property’s	price.		The	property	should	no	longer	be	purchasable	from	the	
bank	by	other	players,	and	money	should	be	moved	from	the	player	to	the	bank.



1715-214

Formalize	system	behavior	with	behavioral	contracts

• A	system	behavioral	contract describes	the	pre-conditions	and	
post-conditions	for	some	operation	identified	in	the	system	
sequence	diagrams
– System-level	textual	specifications,	like	software	specifications



1815-214

A	system	behavioral	contract	for	the	library	system

Operation:		 borrow(item)

Pre-conditions: Library	member	has	already	logged	in	to	the	system.
Item	is	not	currently	borrowed	by	another	member.

Post-conditions: Logged-in	member's	account	records	the	newly-borrowed	
item,	or	the	member	is	warned	she	has	an	outstanding	late	fee.
The	newly-borrowed	item	contains	a	future	due	date,	
computed	as	the	item's	rental	period	plus	the	current	date.



1915-214

A	system	behavioral	contract	for	Monopoly

Operation:		 buy(property)

Pre-conditions: ?

Post-conditions: ?



2015-214

Distinguishing	domain	vs.	implementation	concepts

• Domain-level	concepts:
– Almost	anything	with	a	real-world	analogue

• Implementation-level	concepts:
– Implementation-like	method	names
– Programming	types
– Visibility	modifiers
– Helper	methods	or	classes
– Artifacts	of	design	patterns



2115-214

Summary:		Understanding	the	problem	domain

• Know	your	tools	to	build	domain-level	representations
– Domain	models
– System	sequence	diagrams
– System	behavioral	contracts

• Be	fast	and	(sometimes)	loose
– Elide	obvious(?)	details
– Iterate,	iterate,	iterate,	…

• Get	feedback	from	domain	experts
– Use	only	domain-level	concepts



2215-214

Artifacts	of	our	design	process

• Model	/	diagram	the	problem,	define	objects
– Domain	model		(a.k.a.	conceptual	model)	✓

• Define	system	behaviors
– System	sequence	diagram	✓
– System	behavioral	contracts	✓

• Assign	object	responsibilities,	define	interactions
– Object	interaction	diagrams

• Model	/	diagram	a	potential	solution
– Object	model

Understanding	
the	problem

Defining	a	
solution



2315-214

Object-oriented	programming

• Programming	based	on	structures	
that	contain	both	data	and	methods
public class Bicycle {
private int speed;
private final Wheel frontWheel, rearWheel;
private final Seat seat;
…

public Bicycle(…) { … }

public void accelerate() { 
speed++; 

}

public int speed() { return speed; }
}



2415-214

Object-Oriented	Design

• Object-Oriented	Design:	“After	identifying	your	requirements	
and	creating	a	domain	model,	then	add	methods	to	the	software	
classes,	and	define	the	messaging	between	the	objects	to	fulfill	
the	requirements.”

• But	how?
– How	should	concepts	be	implemented	by	classes?
– What	method	belongs	where?
– How	should	the	objects	interact?
– This	is	a	critical,	important,	and	non-trivial	task



2515-214

Responsibility	in	object-oriented	programming

• Data:
– Private	or	otherwise	encapsulated	data
– Data	in	closely	related	objects

• Methods:
– Private	or	otherwise	encapsulated	operations
– Object	creation,	of	itself	or	other	objects
– Initiating	actions	in	other	objects
– Coordinating	activities	among	objects



2615-214

Responsibilities

• Responsibilities	are	related	to	the	obligations	of	an	object	in	
terms	of	its	behavior.

• Two	types	of	responsibilities:	
– knowing	
– doing	

• Doing	responsibilities	of	an	object	include:	
– doing	something	itself,	such	as	creating	an	object	or	doing	a	calculation	
– initiating	action	in	other	objects	
– controlling	and	coordinating	activities	in	other	objects	

• Knowing	responsibilities	of	an	object	include:	
– knowing	about	private	encapsulated	data				
– knowing	about	related	objects	
– knowing	about	things	it	can	derive	or	calculate	



2715-214

Using	interaction	diagrams	to	assign	object	responsibility

• For	a	given	system-level	operation,	create	an	object	interaction	
diagram	at	the	implementation-level of	abstraction
– Implementation-level	concepts:

• Implementation-like	method	names
• Programming	types
• Helper	methods	or	classes
• Artifacts	of	design	patterns



2815-214

Example	interaction	diagram	#1

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	…



2915-214

Example	interaction	diagram	#2

Use	case	scenario:	…and	borrow	a	book.		After	confirming	that	the	member	has	
no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	due	date	by	
adding	its	loan	period	to	the	current	day,	and	record	the	book	and	its	due	date	as	
a	borrowed	item	in	the	member’s	library	account.



3015-214

Interaction	diagrams	help	evaluate	design	alternatives

Create	two	possible	interaction	diagrams:
1. Solving	a	cryptarithm,	assuming	that	the	cryptarithm class	has	

responsibility	for	solving	itself
2. Solving	a	cryptarithm,	assuming	that	the	main	method	(or	a	delegated	

method	or	class)	has	responsibility	for	solving	the	cryptarithm



3115-214

Goals,	Principles,	Guidelines

• Design	Goals
– Desired	quality	attributes	of	software
– Driven	by	cost/benefit	economics
– Examples:	design	for	change,	understanding,	reuse,	…

• Design	Principles
– Guidelines	for	designing	software
– Support	one	or	more	design	goals
– Examples:	Information	hiding,	low	repr.	gap,	low	coupling,	high	cohesion,	…

• Design	Heuristics
– Rules	of	thumb	for	low-level design	decisions
– Promote	design	principles,	and	ultimately	design	goals
– Example:	Creator,	Expert,	Controller

• Design	Patterns
– General	solutions	to	recurring	design	problems
– Promote	design	goals,	but	may	add	complexity	or	involve	tradeoffs
– Examples:	Decorator,	Strategy,	Template	Method

• Goals,	principles,	heuristics,	patterns	may	conflict
– Use	high-level	goals	of	project	to	resolve

Goals

Heuristics Patterns

Principles

X



3215-214

Heuristics	for	responsibility	assignment

• Controller	heuristic
• Information	expert	heuristic
• Creator	heuristic

Goals

Heuristics Patterns

Principles



3315-214

The	controller	heuristic

• Assign	responsibility	for	all	system-level	behaviors	to	a	single	
system-level	object	that	coordinates	and	delegates	work	to	other	
objects
– Also	consider	specific	sub-controllers	for	complex	use-case	scenarios

• Design	process:		Extract	interface	from	system	sequence	diagrams
– Key	principles:		Low	representational	gap	and	high	cohesion



3415-214

Information	expert	heuristic

• Assign	responsibility	to	the	class	that	has	the	information	
needed	to	fulfill	the	responsibility
– Initialization,	transformation,	and	views	of	private	data
– Creation	of	closely	related	or	derived	objects



3515-214

Responsibility	in	object-oriented	programming

• Data:
– Private	or	otherwise	encapsulated	data
– Data	in	closely	related	objects

• Methods:
– Private	or	otherwise	encapsulated	operations
– Object	creation,	of	itself	or	other	objects
– Initiating	actions	in	other	objects
– Coordinating	activities	among	objects



3615-214

Information	expert	heuristic

• Assign	responsibility	to	the	class	that	has	the	information	
needed	to	fulfill	the	responsibility
– Initialization,	transformation,	and	views	of	private	data
– Creation	of	closely	related	or	derived	objects

• Design	process:		Assignment	from	domain	model
– Key	principles:		Low	representational	gap	and	low	coupling



3715-214

Use	the	information	expert	heuristic

• In	Homework	3,	what	object	should	have	the	responsibility	to	
solve	a	cryptarithm?

• What	is	the	relevant	information?



3815-214

Use	the	information	expert	heuristic

• In	Homework	3,	what	object	should	have	the	responsibility	to	
solve	a	cryptarithm?

• What	is	the	relevant	information?
– Who	knows	the	#	of	digits	(e.g.	base	10)	in	the	cryptarithm?
– Who	knows	the	letters	of	the	cryptarithm?
– Who	can	evaluate	the	cryptarithm expressions	to	check	for	equality?



3915-214

Another	design	principle:		Minimize	conceptual	weight

• Label	the	concepts	for	a	proposed	object
– Related	to	representational	gap	and	cohesion



4015-214

Creator	heuristic:		Who	creates	an	object	Foo?

• Assign	responsibility	of	creating	an	object	Foo	to	a	class	that:
– Has	the	data	necessary	for	initializing	instances	of	Foo
– Contains,	aggregates,	or	records	instances	of	Foo
– Closely	uses	or	manipulates	instances	of	Foo

• Design	process:		Extract	from	domain	model,	interaction	diagrams
– Key	principles:		Low	coupling	and	low	representational	gap



4115-214

Use	the	creator	heuristic

• In	Homework	3,	what	object	should	have	the	responsibility	for	
creating	the	permutation	generator?



4215-214

Object-level	artifacts	of	this	design	process

• Object	interaction	diagrams add	methods	to	objects
– Can	infer	additional	data	responsibilities
– Can	infer	additional	data	types	and	architectural	patterns

• Object	model aggregates	important	design	decisions
– Is	an	implementation	guide



4315-214

Creating	an	object	model

• Extract	data,	method	names,	and	types	from	interaction	diagrams
– Include	implementation	details	such	as	visibilities



4415-214



4515-214

Create	an	object	model	for	your	cryptarithm solver



4615-214

Summary:

• Object-level	interaction	diagrams	and	object	model	
systematically	guide	the	design	process
– Convert	domain	model,	system	sequence	diagram,	and	contracts	to	

object-level	responsibilities

• Use	heuristics	to	guide,	but	not	define,	design	decisions
• Iterate,	iterate,	iterate…


