
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:					
Objects,	Design,	and	Concurrency

Designing	(sub-)	systems

A	formal	design	process	

Charlie	Garrod Michael	Hilton



215-214

Administrivia

• Optional	reading	for	Today:
• UML	and	Patterns	Chapter	17
• Effective	Java	items	39,	43,	and	57

• Homework	3	due	Thursday	at	11:59	p.m.
• Midterm	exam	next	Thursday	(September	28th)

– Exam	review	session:	Hamerschlag Hall	B103	Wed	7-9pm
– Practice	Exam		coming	soon



315-214

Participation	opportunity

• Write	down	your	“muddiest	point”
– What	concept	or	idea	do	you	feel	you	understand	the	least,	or	need	more	

practice	with?



415-214

Today

• Design	goals	and	design	principles



515-214

Metrics	of	software	quality

• Sufficiency	/	functional	correctness
§ Fails	to	implement	the	specifications	…	Satisfies	all	of	the	specifications

• Robustness
§ Will	crash	on	any	anomalous	event	…	Recovers	from	all	anomalous	events

• Flexibility
§ Must	be	replaced	entirely	if	spec	changes	…	Easily	adaptable	to	changes

• Reusability
§ Cannot	be	used	in	another	application	…	Usable	without	modification

• Efficiency
§ Fails	to	satisfy	speed	or	storage	requirement	…	satisfies	requirements

• Scalability
§ Cannot	be	used	as	the	basis	of	a	larger	version	…	is	an	outstanding	basis…

• Security
§ Security	not	accounted	for	at	all	…	No	manner	of	breaching	security	is	known

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

Design	
challenges/goals



615-214

Design	principles

• Low	coupling
• Low	representational	gap
• High	cohesion



715-214

A	design	principle	for	reuse:		low	coupling

• Each	component	should	depend	on	as	few	other	components	as	
possible

• Benefits	of	low	coupling:
– Enhances	understandability
– Reduces	cost	of	change
– Eases	reuse



815-214

Law	of	Demeter

• "Only	talk	to	your	immediate	friends"

foo.bar().baz().quz(42)



915-214

Representational	gap

• Real-world	concepts:

• Software	concepts:

?
…

…

?
…

…
…



1015-214

Representational	gap

• Real-world	concepts:

• Software	concepts:

Obj1
a
h

k()

Obj2
objs

…

Actor42
…

op12



1115-214

Representational	gap

• Real-world	concepts:

• Software	concepts:

PineTree
age
height

harvest()

Forest
-trees	

…

Ranger
…

surveyForest(…)



1215-214

Benefits	of	low	representational	gap

• Facilitates	understanding	of	design	and	implementation
• Facilitates	traceability	from	problem	to	solution
• Facilitates	evolution



1315-214

A	related	design	principle:		high	cohesion

• Each	component	should	have	a	small	set	of	closely-related	
responsibilities	(SRP)

• Benefits:
– Facilitates	understandability
– Facilitates	reuse
– Eases	maintenance

PineTree
age
height

harvest()

Forest
-trees	

…

Ranger
…

surveyForest(…)



1415-214

Coupling	vs.	cohesion

• All	code	in	one	component?
– Low	cohesion,	low	coupling

• Every	statement	/	method	in	a	separate	component?
– High	cohesion,	high	coupling



1515-214

Today:		Tools,	goals,	and	understanding	the	problem	space

• Visualizing	dynamic	behavior	with	interaction	diagrams
• Design	goals	and	design	principles
• Understanding	a	design	problem:		Object	oriented	analysis



1615-214

Visualizing	dynamic	behavior:		Interaction	diagrams

• An	interaction	diagram is	a	picture	that	shows,	for	a	single	
scenario	of	use,	the	events	that	occur	across	the	system’s	
boundary	or	between	subsystems

• Clarifies	interactions:
– Between	the	program	and	its	environment
– Between	major	parts	of	the	program

• For	this	course,	you	should	know:
– Communication	diagrams
– Sequence	diagrams



1715-214

Creating	a	communication	diagram



1815-214

An	example	communication	diagram



1915-214

(Communication	diagram	with	notation	annotations)



2015-214

Constructing	a	sequence	diagram



2115-214

An	example	sequence	diagram



2215-214

(Sequence	diagram	with	notation	annotations)



2315-214

Draw	a	sequence	diagram	for	a	call	to	LoggingList.add:

public class LoggingList<E> implements List<E> {
private final List<E> list;
public LoggingList<E>(List<E> list) { this.list = list; }
public boolean add(E e) {

System.out.println("Adding " + e);
return list.add(e);

}
public E remove(int index) {

System.out.println("Removing at " + index);
return list.remove(index);

}
…



2415-214

Sequence	vs.	communication	diagrams

• Relative	advantages	and	disadvantages?



2515-214

Today:		Tools,	goals,	and	understanding	the	problem	space

• Visualizing	dynamic	behavior	with	interaction	diagrams
• Design	goals	and	design	principles
• Understanding	a	design	problem:		Object	oriented	analysis



2615-214

Tactical	Data	Radios



2715-214

Coast	Guard	SAFE	Boats



2815-214

Loan	Management	Systems



2915-214

Problem 
Space

Domain Model

Solution
Space

Object Model

Our path toward a more formal design process

• Real-world	concepts
• Requirements,	concepts
• Relationships	among	concepts
• Solving	a	problem
• Building	a	vocabulary

• System	implementation
• Classes,	objects
• References	among	objects	and	

inheritance	hierarchies
• Computing	a	result
• Finding	a	solution



3015-214

A	high-level	software	design	process

• Project	inception
• Gather	requirements
• Define	actors,	and	use	cases
• Model	/	diagram	the	problem,	define	objects
• Define	system	behaviors
• Assign	object	responsibilities
• Define	object	interactions
• Model	/	diagram	a	potential	solution
• Implement	and	test	the	solution
• Maintenance,	evolution,	…

15-313

15-214

…



3115-214

Artifacts	of	this	design	process

• Model	/	diagram	the	problem,	define	objects
– Domain	model (a.k.a.	conceptual	model)

• Define	system	behaviors
– System	sequence	diagram
– System	behavioral	contracts

• Assign	object	responsibilities,	define	interactions
– Object	interaction	diagrams

• Model	/	diagram	a	potential	solution
– Object	model



3215-214

Artifacts	of	this	design	process

• Model	/	diagram	the	problem,	define	objects
– Domain	model (a.k.a.	conceptual	model)

• Define	system	behaviors
– System	sequence	diagram
– System	behavioral	contracts

• Assign	object	responsibilities,	define	interactions
– Object	interaction	diagrams

• Model	/	diagram	a	potential	solution
– Object	model

Understanding	
the	problem

Defining	a	
solution



3315-214

Input	to	the	design	process:		Requirements	and	use	cases

• Typically	prose:



3415-214

Modeling	a	problem	domain

• Identify	key	concepts	of	the	domain	description
– Identify	nouns,	verbs,	and	relationships	between	concepts
– Avoid	non-specific	vocabulary,	e.g.	"system"
– Distinguish	operations	and	concepts
– Brainstorm	with	a	domain	expert



3515-214

Modeling	a	problem	domain

• Identify	key	concepts	of	the	domain	description
– Identify	nouns,	verbs,	and	relationships	between	concepts
– Avoid	non-specific	vocabulary,	e.g.	"system"
– Distinguish	operations	and	concepts
– Brainstorm	with	a	domain	expert

• Visualize	as	a	UML	class	diagram,	a	domain	model
– Show	class	and	attribute	concepts

• Real-world	concepts	only
• No	operations/methods
• Distinguish	class	concepts	from	attribute	concepts

– Show	relationships	and	cardinalities



3615-214

Building	a	domain	model	for	a	library	system

A	public	library	typically	stores	a	collection	of	books,	movies,	or	other	library	
items	available	to	be	borrowed	by	people	living	in	a	community.		Each	library	
member	typically	has	a	library	account	and	a	library	card	with	the	account’s	ID	
number,	which	she	can	use	to	identify	herself	to	the	library.		

A	member’s	library	account	records	which	items	the	member	has	borrowed	and	
the	due	date	for	each	borrowed	item.		Each	type	of	item	has	a	default	rental	
period,	which	determines	the	item’s	due	date	when	the	item	is	borrowed.		If	a	
member	returns	an	item	after	the	item’s	due	date,	the	member	owes	a	late	fee	
specific	for	that	item,	an	amount	of	money	recorded	in	the	member’s	library	
account.



3715-214

Building	a	domain	model	for	a	library	system

A	public	library typically	stores	a	collection	of	books,	movies,	or	other	library	
items available	to	be	borrowed	by	people	living	in	a	community.		Each	library	
member typically	has	a	library	account and	a	library	card with	the	account’s	ID	
number,	which	she	can	use	to	identify	herself	to	the	library.		

A	member’s	library	account	records	which	items	the	member	has	borrowed	and	
the	due	date for	each	borrowed	item.		Each	type	of	item	has	a	default	rental	
period,	which	determines	the	item’s	due	date	when	the	item	is	borrowed.		If	a	
member	returns	an	item	after	the	item’s	due	date,	the	member	owes	a	late	fee
specific	for	that	item,	an	amount	of	money	recorded	in	the	member’s	library	
account.



3815-214

One	domain	model	for	the	library	system



3915-214

Notes	on	the	library	domain	model

• All	concepts	are	accessible	to	a	non-programmer
• The	UML	is	somewhat	informal

– Relationships	are	often	described	with	words

• Real-world	"is-a"	relationships	are	appropriate	for	a	domain	model
• Real-word	abstractions	are	appropriate	for	a	domain	model
• Iteration	is	important

– This	example	is	a	first	draft.		Some	terms	(e.g.	Item	vs.	LibraryItem,	Account	
vs.	LibraryAccount)	would	likely	be	revised	in	a	real	design.

• Aggregate	types	are	usually	modeled	as	classes
• Primitive	types	(numbers,	strings)	are	usually	modeled	as	attributes



4015-214

Build	a	domain	model	for	Monopoly



4115-214

Build	a	domain	model	for	Monopoly

Monopoly	is	a	game	in	which	each	player	has	a	piece	that	moves	around	a	game	
board,	with	the	piece’s	change	in	location	determined	by	rolling	a	pair	of	dice.		
The	game	board	consists	of	a	set	of	properties	(initially	owned	by	a	bank)	that	
may	be	purchased	by	the	players.		

When	a	piece	lands	on	a	property	that	is	not	owned,	the	player	may	use	money	
to	buy	the	property	from	the	bank	for	that	property’s	price.		If	a	player	lands	on	a	
property	she	already	owns,	she	may	build	houses	and	hotels	on	the	property;	
each	house	and	hotel	costs	some	price	specific	for	the	property.		When	a	player’s	
piece	lands	on	a	property	owned	by	another	player,	the	owner	collects	money	
(rent)	from	the	player	whose	piece	landed	on	the	property;	the	rent	depends	on	
the	number	of	houses	and	hotels	built	on	the	property.		

The	game	is	played	until	only	one	remaining	player	has	money	and	property,	with	
all	the	other	players	being	bankrupt.


