Principles of Software Construction:
Objects, Design, and Concurrency

Designing (sub-) systems

A formal design process

Charlie Garrod Michael Hilton

School of
Computer Science

| J
institute for
I S SOFTWARE
RESEARCH

15-214 | S FE

Administrivia

* Optional reading for Today:
 UML and Patterns Chapter 17
* Effective Java items 39, 43, and 57
* Homework 3 due Thursday at 11:59 p.m.
* Midterm exam next Thursday (September 28th)
— Exam review session: Hamerschlag Hall B103 Wed 7-9pm
— Practice Exam coming soon

-
Institute [r
15-214 2 [Hl o

Participation opportunity

* Write down your “muddiest point”

— What concept or idea do you feel you understand the least, or need more
practice with?

=z et e
15-214 3 SOt

Today

* Design goals and design principles

-
institute for
15-214 4 sormst

Source: Braude, Bernstein,

M EtrICS Of SOftwa re q Ua I |ty Software Engineering. Wiley 2011

e Sufficiency / functional correctness
= Fails to implement the specifications ... Satisfies all of the specifications

e Robustness
= Will crash on any anomalous event ... Recovers from all anomalous events

usgisa(

e Flexibility

= Must be replaced entirely if spec changes ... Easily adaptable to changes

(@)
-0
Q
M
>
(0] o]
M
wn
~
(0] 0]
o
Q
wn

e Reusability

= Cannot be used in another application ... Usable without modification

e Efficiency
= Fails to satisfy speed or storage requirement ... satisfies requirements

e Scalability

= Cannot be used as the basis of a larger version ... is an outstanding basis...

e Security
= Security not accounted for at all ... No manner of breaching security is known

institute for
15-214 5 sortt

Design principles

* Low coupling
* Low representational gap
* High cohesion

15-214 ¢ M

A design principle for reuse: low coupling

* Each component should depend on as few other components as
possible

e Benefits of low coupling:
— Enhances understandability
— Reduces cost of change
— Eases reuse

ite for

= Institu
15-214 7 sorrinst

Law of Demeter

* "Only talk to your immediate friends"

-
institute for
15-214 8 o

Representational gap

e Real-world concepts:

e Software concepts:

15-214

.-_—/—?'""_\
S a—

L)

9

institute for
SOFTWARE
RESEARCH

Representational gap

e Real-world concepts:

e Software concepts:

—) —) —)
Obj1 Obj2 Actor4?2
e DB
ﬂ objs
k() . op12
| J | J [

institute for
15-214 10 sortvatt

Representational gap

e Real-world concepts:

* Software concepts:

PineTree

age
height

harvest() J

|

15-214

Forest

-trees

anger

—Ranger
" Ranger

'su rveyForest(..j

institute for
SOFTWARE
11 RESEARCH

Benefits of low representational gap

* Facilitates understanding of design and implementation
* Facilitates traceability from problem to solution
* Facilitates evolution

= Hv'mm" [
15-214 12 [Hiere

A related design principle: high cohesion

* Each component should have a small set of closely-related

responsibilities (SRP)

* Benefits:

— Facilitates understandability
— Facilitates reuse
— Eases maintenance

15-214

—PineTree |
~ PineTree

age
height

|

Forest

-trees

harvest()

J

anger

—Ranger
Ranger)

| —

surveyForest(...)

J

-
institute for
13 SOFTWARE
RESEARCH

Coupling vs. cohesion

* All code in one component?

— Low cohesion, low coupling

e Every statement / method in a separate component?
— High cohesion, high coupling

' institute for
15-214 14 [Hame

Today: Tools, goals, and understanding the problem space

* Visualizing dynamic behavior with interaction diagrams
* Design goals and design principles
* Understanding a design problem: Object oriented analysis

' institute for
15-214 15 [H e

Visualizing dynamic behavior: Interaction diagrams

* Aninteraction diagram is a picture that shows, for a single
scenario of use, the events that occur across the system’s
boundary or between subsystems

* C(larifies interactions:

— Between the program and its environment
— Between major parts of the program
* For this course, you should know:

— Communication diagrams
— Sequence diagrams

= H:‘wm[rr [
15-214 16 [Heme

Creating a communication diagram

r En indow
: Order
Macallan line : Order Line Macallan stock : Stock Item
livery Item : Reorder Item

ite for

= Instit
15-214 17 o

An example communication diagram

Order Window

1: prepare()

l : Order
|

Macallan line : Order Line

2*[for all order lines]: prepare()

5: needsReorder := needToReorder()

3: hasStock := check ()
4: [hasStock]: remove() m

l 7 [hasStock]: new

livery Item

15-214

s

Macallan stock : Stock Item

lﬁ [needsReorder]: new

: Reorder Item

-
institute for
SOFTWARE
18 RESEARCH

(Communication diagram with notation annotations)

- Order Window

~&— Object

1: prepare() <#———— Message

l : Order
|

Macallan line : Order Line

2*[for all order lines]: prepare()

Sequence Number

5: needsReorder := needToReorder()

3: hasStock := check () Self-Delegation
4: [hasStock]: remove() T ﬂ

l 7 [hasStock]: new

livery Item

15-214

s

Macallan stock : Stock Item

lﬁ [needsReorder]: new

: Reorder Item

-
institute for
SOFTWARE
19 RESEARCH

Constructing a sequence diagram

an Order Entry .
ndow an Order an Order Line a Stock [tem

- institute for
15-214 20 S

An example sequence diagram

15-214

> hasStock :=
check ()

SR

[hasStock] !

|
|
" prepare () | |
|
I

remove() = | needsReorder=
- needsToReorder()

[needsReorder]
new
—® a Reorder
Item
— — - =
|
[hasStock] new! a Delivery
I B Jtem

institute for
2 1 i S SOFTWARE
RESEARCH

(Sequence diagram with notation annotations)

an Order Entry .
. dow an Order an Order Line a Stock [tem
[I | [
— prepare () |
H— * prepare () |
Object | |
hasStock := !
Message check () |
‘ | l Condition
lteration
[hasStock]
remove() | needsReorder:=
> needsToReorder()
-a— Self-Call
Return
[needsReorder]
new
aReorder
Item
- — — — L :
| |
[hasStock] new! I a Delivery
T | | '
- | | | ./ l
Creation
| | | 1 | I
I I [I [
A
Deletion '

institute for
15-214 22 S

Draw a sequence diagram for a call to LogginglList.add:

public class LogginglList<E> implements List<E> {
private final List<E> list;
public LogginglList<E>(List<E> list) { this.list = list; }
public boolean add(E e) {
System.out.println("Adding
return list.add(e);

+ e);

¥

public E remove(int index) {

System.out.println("Removing at " + index);

return list.remove(index);

= H:"\m[r[[
15-214 23 [H e

Sequence vs. communication diagrams

* Relative advantages and disadvantages?
lﬁﬂuﬂ E”?’“"’| w“’“?"ﬂ M

prepare {) ' | ;
i > *prepare () | | LQ ler E Wind
‘ s hasStock -« l A
check () |
I > l 1: prepare()
! [hasStock]| I
remove() | meedsReorder=
- o needsToReorder() { . Order
2*[for all order lines]: prepare() 5. needsReorder := needToReorder()
3: hasStock := check () /'\
4: [hasStock): remove()
[needsReorder] | Macallan line : Order Line F—.;—{ Macallan stock ; Stock Item
" a Brondec ‘
te
‘ - l_,_m_ ‘ 6 [needsReorder]: new
| : : * 7 [hasStock]: new
| | Dl g fepaems ;
| ' - ’ :Delivery Item | [:Reorder Item
| |
i L
I | |
' | |

L]
i
|
|
|

institute for
15-214 24 ol

Today: Tools, goals, and understanding the problem space

* Visualizing dynamic behavior with interaction diagrams
* Design goals and design principles
* Understanding a design problem: Object oriented analysis

' institute for
15-214 25 [H e

Tactical Data Radios

- institute for
15-214 26

Coast Guard SAFE Boats

- institute for
15-214 27 sorms:

Loan Management Systems

Nortridge Loan System v4.10.8 - Nortridge Software - kelli_webinar_4108 (admin:kelll_webinar_4108:nsidev3) o @[=
File Edit View Adions CashDrawer Help
B+ -HoX|BRIF| K r | e-q Type a loan to find -2 8
| kelli_webinar_4108 - — — o
Portfolio - Branch -
Loan Ref# Class 1 - Loan Status -
Loan Number Class 2 - Status Codes -
Contact Number Risk Rati - Officer -
ﬁﬁ - ol Officer -
System Setup Date
Branch [conmcuramon DEFAULTVALUE | CURRENTVALUE |~ Sty Toa fhaber .
Comment Category Binary Version Updater | Disabled |Disabled ke
Communication Disabled Enabled
Customer Binaries LeiTipe 2
Daceneck,Template Contact and Loan Mixed ... | Disabled = Int Type -
E’;f""f‘ Keys Database Report Server None Curr Rate -
H fl] Email/SMS History 30 5 _— B e oy -
Ng:’:gm Email/SMS Interval Process |60 1) L) 3
LS Service Email/SMS Servicer Disabled NLS Client Application SAC ExpfIneligible
Plyment Cakeviny Encrypt SQL Connection | Disabled Disabled - - T
Report Manager Global Report Company ... None
Reports Autolnstal Last five passwords unique |Disabled Disabled ed Fees]
fauk: Launch Excel Outside NLS Outside NLS Fee
Contact Setup Lockout Period 24 24 v
Loan Setup NLS Inactivity Timeout |0 0 [palance 0.00, Due Date
Task Setup Oracle Case Insensitive Se.. Disabled Disabled yment
Collector Setup Print PDF NLS native NLS native pel Blig
- Disbursement{Trust Setup Spell Checker Enabled Enabled — =
Cash Drawer Setup SQL Application Role Name| o |y
P
Description: [Repemen
Gt crarer st sS IS Uiy Fl e s i ade-—ta Bl s e Ve e o I s
cash ? specific, physical cash dr i v bils, | Biling
coins, and checks on hand.
pent
Due Days Past Due
Due
Advanced Query)
Processing
Disbursement
Reports 18 -
- Securty | Lists [3] Main |} Detail1 | £ Detail2 | 2] coFt | 4§ Colateral
For Help, press F1 Cash Drawer : {closed) (0:0) CAP NUM SCRL|
R S finn g E—

15-214 28

Our path toward a more formal design process

Problem Solution
Space Space
Domain Model , _ Object Model
e Real-world concepts e System implementation
* Requirements, concepts * Classes, objects
* Relationships among concepts * References among objects and
« Solving a problem inheritance hierarchies
* Building a vocabulary * Computing a result

* Finding a solution

- C institute for
15-214 29 st

A high-level software design process

* Project inception
e Gather requirements ~ 15-313
* Define actors, and use cases

* Model / diagram the problem, define objects
* Define system behaviors

* Assign object responsibilities

- 15-214
* Define object interactions
* Model / diagram a potential solution
* Implement and test the solution B
* Maintenance, evolution, ... }

15-214 30 SO

Artifacts of this design process

* Model / diagram the problem, define objects
— Domain model (a.k.a. conceptual model)

* Define system behaviors
— System sequence diagram
— System behavioral contracts

* Assign object responsibilities, define interactions

— Object interaction diagrams

 Model / diagram a potential solution
— Object model

= institute for
15-214 31 ot

Artifacts of this design process

* Model / diagram the problem, define objects
— Domain model (a.k.a. conceptual model)

* Define system behaviors
— System sequence diagram
— System behavioral contracts

—

* Assign object responsibilities, define interactions |

— Object interaction diagrams

 Model / diagram a potential solution

Understanding
— the problem

_ Defining a
solution

— Object model

15-214

-
institute for
32 I S r SOFTWARE
RESEARCH

Input to the design process: Requirements and use cases

* Typically prose:

A public library typically stores a collection of books, movies, or other
library items available to be borrowed by people living in a community.
Each library member typically has a library account and a library card with
the account’s ID number, which she can use to identify herself to the
library. A member’s library account records which items the member has
borrowed and the due date for each borrowed item. Each type of item has

a defaU|t re Ll aasata al saslatale Sl oo e Slear Thaan¥er Sliair abaidion srdlavara lavas Sfavias

is borrowed| Use case scenario: A library member should be able to use her library card
member mu to log in at a library system kiosk and borrow a book. After confirming that
member’s li the member has no unpaid late fees, the library system should determine
the book’s due date by adding its rental period to the current day, and
record the book and its due date as a borrowed item in the member’s
library account.

= titute for
15-214 33 sorTagt

Modeling a problem domain

* Identify key concepts of the domain description
— ldentify nouns, verbs, and relationships between concepts
— Avoid non-specific vocabulary, e.g. "system"
— Distinguish operations and concepts
— Brainstorm with a domain expert

= Hv'mm" r
15-214 30 [H o

Modeling a problem domain

* Identify key concepts of the domain description
— ldentify nouns, verbs, and relationships between concepts
— Avoid non-specific vocabulary, e.g. "system"
— Distinguish operations and concepts
— Brainstorm with a domain expert

* Visualize as a UML class diagram, a domain model
— Show class and attribute concepts
e Real-world concepts only
* No operations/methods
 Distinguish class concepts from attribute concepts
— Show relationships and cardinalities

15-214 35

-
m sorr

te for
SOFTWARE
RESEARCH

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

' institute for
15-214 3¢ [N

Building a domain model for a library system

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

' institute for
15-214 37 [H e

One domain model for the library system

T Hem i{
re(\‘\‘ﬁl peﬁba{J
la',‘{ Fee

T s a
I e)
U;;’W/ .
¥

C.. ¥

has
L/J_J?’i WL beary Aeeoand
e \/——T‘W
}\c\ Lm‘"
\E] k late Fes Owed

e

i

1 , \
'x Yooy Card !
’\“;L—’f—/j—/—\—‘ stx{«M V/A/\\

\ 1\0% N_n‘\\le(- E

. institute for
15_2 14 38 SOFITv[VARE

RESEARCH

Notes on the library domain model

* All concepts are accessible to a non-programmer
* The UML is somewhat informal

— Relationships are often described with words
* Real-world "is-a" relationships are appropriate for a domain model
* Real-word abstractions are appropriate for a domain model
* |[teration is important

— This example is a first draft. Some terms (e.g. Item vs. Libraryltem, Account
vs. LibraryAccount) would likely be revised in a real design.

* Aggregate types are usually modeled as classes
* Primitive types (numbers, strings) are usually modeled as attributes

' institute for
15-214 s [Hi:ame

Build a domain model for Monopoly

05w 055w ovaw 005w 093W 093W 0sLW 085w
QD .)/L—
8 7
S S -
D
Qo) 1331S JYNOS UYNOS 1331S
o aNvaLs 13314 AYOIVAVIL ¥3USIDIT AYINIAOD ATIQYId
NOLLYIS SHOM
‘IS HOUNHONE4 FER7Y

003
1331S
3ANIA

081
13IS
HONOYOIRIVW

8 B
22 el
ag 23
3 S
PO
| & B
|
| i 5
ow
o]
| =2

3NNIAY
ATRIWNHLION

ANVIWOD
ORI

S —

e et e e

CHANCE KINGS CROSS
STATION IN%AXOME
PENTONVILLE EUSTON THE ANGEL, OLD KENT
ROAD ROAD ISLINGTON ROAD
@

VISITING M120 M100 . 100 200 PAY #4200

institute for
15-214 a0 S

Build a domain model for Monopoly

Monopoly is a game in which each player has a piece that moves around a game
board, with the piece’s change in location determined by rolling a pair of dice.
The game board consists of a set of properties (initially owned by a bank) that
may be purchased by the players.

When a piece lands on a property that is not owned, the player may use money
to buy the property from the bank for that property’s price. If a player lands on a
property she already owns, she may build houses and hotels on the property;
each house and hotel costs some price specific for the property. When a player’s
piece lands on a property owned by another player, the owner collects money
(rent) from the player whose piece landed on the property; the rent depends on
the number of houses and hotels built on the property.

The game is played until only one remaining player has money and property, with
all the other players being bankrupt.

= H:‘wm[rr r
15-214 a1 [H e

