
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:					
Objects,	Design,	and	Concurrency

Part	1:	Designing	Classes	

UML	+	Design	Patterns

Charlie	Garrod Michael	Hilton

215-214

Administrivia

• HW2	due	Thursday	Sept	14,	11:59	pm

315-214

Readings

• Optional	reading	due	today:
– Item	16:	Favor	composition	over	inheritance
– Item	17:	Design	and	document	for	inheritance	or	else	prohibit	it
– Item	18:	Prefer	interfaces	to	abstract	classes

• Tuesday	required	readings	due:
– Chapter 9. Use-Case	Model:	Drawing	System	Sequence	Diagrams
– Chapter 10. Domain	Model:	Visualizing	Concepts

415-214

Plan	for	today

• UML
• Intro	to	design	patterns

515-214

Diagrams

Are	often	useful	when	you	need	to:
Communicate,
Visualize	or
Analyze

something,	especially	something	with	some	structure.

615-214

https://en.wikipedia.org/wiki/Gray%27s_Anatomy#/media/File:Gray219.png

715-214

http://www.davros.org/rail/diagrams/old_liverpool_street.gif

815-214

https://www.udel.edu/johnmack/frec682/cholera/snow_map.png

915-214

http://www.uh.edu/engines/epi1712.htm

1015-214

http://files.www.ihshotair.com/twinny-s/0508-
Machine_Base-CE_version.jpg

1115-214

http://www.instructables.com/file/F7847TEFW4JU1UC/

1215-214

“Democracy is the
worst form of

government, except for
all the others”
-Allegedly Winston Churchill

1315-214

UML:		Unified	Modeling	Language

1415-214

UML	in	this	course

• UML	class	diagrams
• UML	interaction	diagrams

– Sequence	diagrams
– Communication	diagrams

1515-214

UML	class	diagrams		(interfaces	and	inheritance)
public interface Account {

public long getBalance();
public void deposit(long amount);
public boolean withdraw(long amount);
public boolean transfer(long amount, Account target);
public void monthlyAdjustment();

}

public interface CheckingAccount extends Account {
public long getFee();

}

public interface SavingsAccount extends Account {
public double getInterestRate();

}

public interface InterestCheckingAccount
extends CheckingAccount, SavingsAccount {

}

1615-214

public abstract class AbstractAccount
implements Account {

protected long balance = 0;
public long getBalance() {

return balance;
}
abstract public void monthlyAdjustment();
// other methods…

}

public class CheckingAccountImpl
extends AbstractAccount
implements CheckingAccount {

public void monthlyAdjustment() {
balance -= getFee();

}
public long getFee() { … }

}

UML	class	diagrams		(classes)

1715-214

UML	you	should	know

• Interfaces	vs.	classes
• Fields	vs.	methods
• Relationships:		

– "extends"	(inheritance)
– "implements"	(realization)
– "has	a"	(aggregation)
– non-specific	association

• Visibility:					+	(public)					- (private)						#	(protected)
• Basic	best	practices…

1815-214

• Best	used	to	show	the	big	picture
– Omit	unimportant	details

• But	show	they	are	there:		…

• Avoid	redundancy
– e.g.,	bad:

good:

UML	advice

1915-214

Exercise:	Draw	UML	for	examplepublic class Processer {
ClaimApproval ca;
FloodClaimValidator fcv = new

FloodClaimValidator();
FireClaimValidator ficv = new

FireClaimValidator();

public void setupClaims(){…}

public boolean processClaims(){
ca = new ClaimApproval();
if(ca.processClaim(fcv) &&

ca.processClaim(ficv)){
return true;

}
else return false;

}
}

public class ClaimApproval {
public boolean processClaim(AbstractValidator

validator){
if(validator.isClaimValid()){

System.out.println("Claim is approved");
return true;

}
return false;

}
}
public abstract class AbstractValidator {

public abstract boolean isClaimValid();
}
--

public class FireClaimValidator extends
AbstractValidator {

public boolean isClaimValid(){
System.out.println("valid fire claim");
return true;

}
}
--

public class FloodClaimValidator extends
AbstractValidator {

public boolean isClaimValid(){
System.out.println("validating claim");
return true;

}
}

2015-214

One	design	scenario

• Amazon.com processes	millions	of	orders	each	year,	selling	in	75	
countries,	all	50	states,	and	thousands	of	cities	worldwide.		
These	countries,	states,	and	cities	have	hundreds	of	distinct	sales	
tax	policies	and,	for	any	order	and	destination,	Amazon.com
must	be	able	to	compute	the	correct	sales	tax	for	the	order	and	
destination.

2115-214

Another	design	scenario

• A	vision	processing	system	must	detect	lines	in	an	image.		For	
different	applications	the	line	detection	requirements	vary.		E.g.,	
for	a	vision	system	in	a	driverless	car	the	system	must	process	30	
images	per	second,	but	it's	OK	to	miss	some	lines	in	some	
images.		A	face	recognition	system	can	spend	3-5	seconds	
analyzing	an	image,	but	requires	accurate	detection	of	subtle	
lines	on	a	face.

2215-214

A	third	design	scenario

• Suppose	we	need	to	sort	a	list	in	different	orders…

interface Comparator {
boolean compare(int i, int j);

}

final Comparator ASCENDING = (i, j) -> i < j;
final Comparator DESCENDING = (i, j) -> i > j;

static void sort(int[] list, Comparator cmp) {
…
boolean mustSwap =
cmp.compare(list[i], list[j]);

…
}

2315-214

Design	patterns

“Each	pattern	describes	a	
problem	which	occurs	over	and	
over	again	in	our	environment,	
and	then	describes	the	core	of	
the	solution	to	that	problem,	in	
such	a	way	that	you	can	use	
this	solution	a	million	times	
over,	without	ever	doing	it	the	
same	way	twice”
– Christopher	Alexander,
Architect	(1977)

2415-214

DESIGN	PATTERNS

2515-214

Christopher	Alexander

• By	Michaelmehaffy - Own	work,	CC	BY-SA	4.0,	
https://commons.wikimedia.org/w/index.php?curid=47871494

2615-214

Christopher	Alexander

• Worked	as	in	computer	
science	but	trained	as	
an	architect

• Wrote	a	book	called	A	
Pattern	Language:	
Towns,	Buildings,	
Construction.	

2715-214

The	timeless	Way	of	Building

• Asks	the	question,	“is	quality	objective?”	
• Specifically,	“What	makes	us	know	when	an	architectural	design	

is	good?	Is	there	an	objective	basis	for	such	a	judgement?”
• He	studied	the	problem	of	identifying	what	makes	a	good	

architectural	design	by	observing:	
– Buildings
– Towns
– Streets
– homes
– community	centers
– etc.	

• When	he	found	a	good	example,	he	would	compare	with	others.

2815-214

Four	Elements	of	a	Pattern

• Alexander	identified	four	elements	to	
describe	a	pattern:	
–The	name	of	the	pattern
–The	purpose	of	the	pattern:	what	
problem	it	solves

–How	to	solve	the	problem	
–The	constraints	we	have	to	consider	in	
our	solution

2915-214

Inspired	by	Alexanders	Work

3015-214

Inspired	by	Alexanders	Work

3115-214

Inspired	by	Alexanders	Work

3215-214

Software	design	patterns

• Are	there	problems	in	software	that	occur	
all	the	time	that	can	be	solved	in	
somewhat	the	same	manner?

• Is	it	possible	to	design	software	in	terms	of	
patterns?

3315-214

How	not	to	discuss	design	(from	Shalloway and	Trott)

• Carpentry:
– How	do	you	think	we	should	build	these	drawers?
– Well,	I	think	we	should	make	the	joint	by	cutting	straight	down	into	the	

wood,	and	then	cut	back	up	45	degrees,	and	then	going	straight	back	
down,	and	then	back	up	the	other	way	45	degrees,	and	then	going	
straight	down,	and	repeating…

• Software	Engineering:
– How	do	you	think	we	should	write	this	method?
– I	think	we	should	write	this	if	statement	to	handle	…	followed	by	a	while	

loop	…	with	a	break	statement	so	that…

3415-214

Discussion	with	design	patterns

• Carpentry:
– "Is	a	dovetail	joint	or	a	miter	joint better	here?"

• Software	Engineering:
– "Is	a	strategy	pattern	or	a	template	method	better	here?"

3515-214

History:	Design	Patterns	(1994)

3615-214

Elements	of	a	design	pattern

• Name
• Abstract	description	of	problem
• Abstract	description	of	solution
• Analysis	of	consequences

3715-214

Recognizing	a	pattern

• Amazon	tax
• Computer	Vision
• List	Sorting

3815-214

Strategy	pattern

• Problem:		Clients	need	different	variants	of	an	algorithm
• Solution:		Create	an	interface	for	the	algorithm,	with	an	

implementing	class	for	each	variant	of	the	algorithm
• Consequences:

– Easily	extensible	for	new	algorithm	implementations
– Separates	algorithm	from	client	context
– Introduces	an	extra	interface	and	many	classes:

• Code	can	be	harder	to	understand
• Lots	of	overhead	if	the	strategies	are	simple

3915-214

Strategy	Pattern	- UML

https://sourcemaking.com/design_patterns/strategy

4015-214

Patterns	are	more	than	just	structure

• Consider:		A	modern	car	engine	is	constantly	monitored	by	a	
software	system.		The	monitoring	system	must	obtain	data	from	
many	distinct	engine	sensors,	such	as	an	oil	temperature	sensor,	
an	oxygen	sensor,	etc.		More	sensors	may	be	added	in	the	future.

4115-214

Recall	instanceof

• Operator	that	tests	whether	an	object	is	of	a	given	class
public void doSomething(Account acct) {

long adj = 0;
if (acct instanceof CheckingAccount) {

checkingAcct = (CheckingAccount) acct;
adj = checkingAcct.getFee();

} else if (acct instanceof SavingsAccount) {
savingsAcct = (SavingsAccount) acct;
adj = savingsAcct.getInterest();

}
…

}
• Advice:		avoid	instanceof if	possible

– Never(?)	use	instanceof in	a	superclass	to	check	type	against	subclass

Warning:
This code
is bad.

4215-214

Recall	instanceof

• Operator	that	tests	whether	an	object	is	of	a	given	class
public void doSomething(Account acct) {

long adj = 0;
if (acct instanceof CheckingAccount) {

checkingAcct = (CheckingAccount) acct;
adj = checkingAcct.getFee();

} else if (acct instanceof SavingsAccount) {
savingsAcct = (SavingsAccount) acct;
adj = savingsAcct.getInterest();

} else if (acct instanceof InterestCheckingAccount) {
icAccount = (InterestCheckingAccount) acct;
adj = icAccount.getInterest();
adj -= icAccount.getFee();

}
…

}

Warning:
This code
is bad.

4315-214

Avoiding	instanceof with the template method pattern

public interface Account {
…
public long getMonthlyAdjustment();

}

public class CheckingAccount implements Account {
…
public long getMonthlyAdjustment() {

return getFee();
}

}

public class SavingsAccount implements Account {
…
public long getMonthlyAdjustment() {

return getInterest();
}

}

4415-214

Avoiding	instanceof with the template method pattern

public void doSomething(Account acct) {
float adj = 0.0;
if (acct instanceof CheckingAccount) {

checkingAcct = (CheckingAccount) acct;
adj = checkingAcct.getFee();

} else if (acct instanceof SavingsAccount) {
savingsAcct = (SavingsAccount) acct;
adj = savingsAcct.getInterest();

}
…

}

Instead:
public void doSomething(Account acct) {

long adj = acct.getMonthlyAdjustment();
…

}

4515-214

Template	method	pattern

• Problem:		An	algorithm	consists	of	customizable	parts	and	
invariant	parts

• Solution:		Implement	the	invariant	parts	of	the	algorithm	in	an	
abstract	class,	with	abstract	(unimplemented)	primitive	
operations	representing	the	customizable	parts	of	the	algorithm.		
Subclasses	customize	the	primitive	operations

• Consequences
– Code	reuse	for	the	invariant	parts	of	algorithm
– Customization	is	restricted	to	the	primitive	operations
– Inverted	(Hollywood-style)	control	for	customization

4615-214

Template	method	UML

4715-214

Strategy	vs	Template	Method	Patterns

4815-214

Discuss:	Strategy	vs	Template	Method	Pattern	Usage

• What	is	an	example	where	strategy	would	be	a	good	fit?
• What	is	an	example	where	Template	Method	would	be	a	good	

fit?
• How	are	they	different?

