Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Designing Classes

Design for change

Charlie Garrod

School of
Computer Science

[x] This image cannot currently be displayed

15-214

Michael Hilton

1

institute for
SOFTWARE
RESEARCH

Reminder!

Smoking
Section

Announcements

e HW1 is available

* You should have a course repo by
now (if you don’t, get it soon!)

* HW1 is due Thursday, Sept 7 at
11:59 p.m.

* Office Hours start today!

-
Institute f r
15-214 3 [FH o

Random Calling

* A way to include EVERYONE in the
class

* Goal is participation, not “correctness’

* Wrong Answers & Mistakes are
Expected and Valued

* We are all part of a learning
community

* |t helps me learn your names

4

-
Institute f r
15-214 a [H o

Outline

l. Polymorphism
ll.Information hiding
lll.Contracts

15-214 s [HFe

Objects

* An object is a bundle of state and behavior
e State — the data contained in the object

— In Java, these are the fields of the object

* Behavior — the actions supported by the
object

— In Java, these are called methods

— Method is just OO-speak for function
— invoke a method = call a function

-
institute f [
15-214 6 [

Classes

* Every object has a class

— A class defines methods and fields
— Methods and fields collectively known as members

e Class defines both type and implementation

— type = where the object can be used
— implementation = how the object does things

* Loosely speaking, the methods of a class are its
Application Programming Interface (API)

— Defines how users interact with instances

-
institute f r
15-214 7 [F o

Live Coding

* Dice Game
—Roll 2 dice
—|f total value ==7 you win!
—Else you lose

15-214 s [v

To the computer!

institute for
15-214 o S

Class example - Dice

- X- X-4
- Lo d

« public class Dice {
private int faceValue;

public void roll() {
faceValue = 1 + (int)(Math.random() * 5);

}

public int getFaceValue() {
return faceValue;

}

= institute for
15-214 10 ot

Class usage example

public class Main {
public static void main(String[] args) {
Dice d1 = new Dice();
Dice d2 = new Dice();
dl.roll();
d2.roll();
if(dl.getFaceValue()+d2.getFaceValue()==7){

System.out.println("You Win!");
telse{
System.out.println("You Lose");

}
}

When you run this program, it prints?

' institute for
15-214 1 [Hee

Interfaces and implementations

 Multiple implementations of APl can

coexist
— Multiple classes can implement the same API
— They can differ in performance and behavior

* |[n Java, an APl is specified by interface or

class
— Interface provides only an API
— Class provides an APl and an implementation

— A Class can implement multiple interfaces

. institute for
15-214 12 [Hlame

Live Coding

* Dice Game
—Add “loaded” dice
—Rules of game are unchanged

= INsti ulw[[
15-214 13 sormse

To the computer!

institute for
15-214 14 S

An interface to go with our class

public interface Dice {
void roll();

int getFaceValue();

An interface defines but does not implement API

= T T
15-214 15 sormmse

Modifying class to use interface

public class RandomDice implements Dice {
private int faceValue;
@Override

public void roll() {
faceValue = 1 + (int) (Math.random() * 5);
}

@Override

public int getFaceValue() {
return faceValue;

}

= INsti ulwf [
15-214 16 sormse

Modifying client to use interface

public class Main {
public static void main(String[] args) {

Dice d1 = new RandomDice();

Dice d2 = new RandomDice();

dl.roll();

d2.roll();

if(dl.getFaceValue()+d2.getFaceValue()==7){
System.out.println("You Win!");

telse{
System.out.println("You Lose");

}

= T T
15-214 17 sormmse

Interface permits multiple implementations

public class LoadedDice implements Dice {
public void roll() {

}

public int getFaceValue() {
if(Math.random()> .5){
return 4;

}

return 2;

= H:"\m[r[[
15-214 18 [Hee

Why multiple implementations?

* Different performance

— Choose implementation that works best for your use

 Different behavior

— Choose implementation that does what you want
— Behavior must comply with interface spec (“contract”)

e Often performance and behavior both vary

— Provides a functionality — performance tradeoff
— Example: HashSet, TreeSet

' institute for
15-214 10 [Hame

Java interfaces and classes

* Organize program program objects types
— Each type offers a specific set of operations
— Objects are otherwise opaque

* |Interfaces vs. classes

— Interface: specifies expectations
— Class: delivers on expectations (the implementation)

' institute for
15-214 20 [H e

Classes as types

* Classes do define types
— Public class methods usable like interface methods
— Public fields directly accessible from other classes

e But prefer the use of interfaces

— Use interface types for variables and parameters
unless you know one implementation will suffice
* Supports change of implementation
* Prevents dependence on implementation details

Set<Criminal> senate = new HashSet<>(); // Do this..
HashSet<Criminal> senate = new HashSet<>(); // Not this

' institute for
15-214 21 [H e

Check your understanding

interface Animal {
void vocalize();
}

class Dog implements Animal {
public void vocalize() { System.out.println("Woof!"); }
}

class Cow implements Animal {
public void vocalize() { moo(); }
public void moo() {System.out.println("Moo!"); }

}
What Happens?

1. Animal a = new Animal();
vocalize();

2. Dog d = new Dog();
d.vocalize();

3. Animal b = new Cow();
b.vocalize();

4. b.moo();

' institute for
15-214 22 [Hliame

Historical note: simulation and the origins of OO
programming

* Simula 67 was the
first object-oriented
language

* Developed by Kristin
Nygaard and Ole-Johan
Dahl at the Norwegian g -
CO m p uti n g Ce nte r Dahl and Nygaard at the time of Simula’s development

* Developed to support discrete-event simulation
— Application: operations research, e.g. traffic analysis
— Extensibility was a key quality attribute for them
— Code reuse was another

- institute for
15-214 23 A

Outline

|. Polymorphism
ll.Information hiding
lll.Contracts

= Institute [wv
15-214 24 |BJJ sormveax

Information hiding

* Single most important factor that distinguishes
a well-desighed module from a bad one is the
degree to which it hides internal data and other
implementation details from other modules

* Well-designed code hides all implementation details
— Cleanly separates APl from implementation
— Modules communicate only through APIs
— The are oblivious to each others’ inner workings

* Known as information hiding or encapsulation
* Fundamental tenet of software design [Parnas, 72]

= H”'m[wf r
15-214 2s [H o

Benefits of information hiding

* Decouples the classes that comprise a system
— Allows them to be developed, tested, optimized, used,
understood, and modified in isolation
* Speeds up system development
— Classes can be developed in parallel
* Eases burden of maintenance
— Classes can be understood more quickly and debugged with
little fear of harming other modules
* Enables effective performance tuning
— “Hot” classes can be optimized in isolation
* Increases software reuse
— Loosely-coupled classes often prove useful in other contexts

. institute for
15-214 26 [i

Information hiding with interfaces

* Declare variables using interface type
* Client can use only interface methods
* Fields not accessible from client code
e But this only takes us so far

— Client can access non-interface members directly
— In essence, it’s voluntary information hiding

= H:‘wm[rr [
15-214 27 [l

Mandatory Information hiding
visibility modifiers for members

* private — Accessible only from declaring
class

* package-private — Accessible from any class
in the package where it is declared

— Technically known as default access
— You get this if no access modifier is specified

* protected — Accessible from subclasses
of declaring class (and within package)

* public — Accessible from anywhere
15-214 28 [Hl i

Discussion

* You know the benefits of private fields
 What are the benefits of private methods?

= H:‘wm[rr [
15-214 20 [l

Best practices for information hiding

e Carefully design your API

* Provide only functionality required by
clients
— All other members should be private

* You can always make a private member
public later without breaking clients

— But not vice-versa!

= H”'milrf [
15-214 s0 [H o

Outline

|. Polymorphism
ll.Information hiding
lll.Contracts

15-214 a1 [H

Why do we have contracts?

15-214

AGREEMENT TO SELL REAL ESTATE

This i 3 Jegally bindiog comac egend inotis day -RECEIPTE
HEREBY ACKNOWLEDGED OF THE SUM OF: Two Thomand Five Hundred Dollars (32,500 Non
Refundable) From (Boyer)

33 3 deposit 0n acoouat of B pushase price of Ge fdllowing desaribed popansy :pea‘beamnd
condtions as swed bamin TESCRIPTION OF PROPERTY: Tint Jor, piace, or parced of fand smomedin
Maricopa County, Sume of Arizoma. Addrass

Cay S Zp_
APN: Tor e PURCHASE PRICE of

Doliaz
Q8
TERMS AND CONTITIONS OF SALE:
Buyer wasrants Gx tey as puechasiog % poparty Hr e & awdmrazap =
residence.

Buyer canoot advenize or gromone e propesty psior 0 dose.

Possession of 5338 pramizes wall be svea o pushaer ¢ te time of closaz.

Tois convact & o0t asizasble Buyer myy 20t el e propesy withast exgrass wanea consant fom
seller.

Taxes, reqt 304 ot sacursies shall be pronted x e Sme of dosingand paid by de saller.

IfSenefhzmeP'ogﬁ 0 escoow ot Basoot vt clozed oo, e mstes axree Bt ey willdo 2
of Se i o corma moas 31 Sellas’s mauess, 30 %hat the Bupar's 1on guechae
price umﬁemh{ﬁemﬂfe 5 considered

Selles agrees 1 defiver pramises 31 time of closing in anasis condition. kb qse e propeny &
:‘hoﬁxotpuugtx h’ﬁawo@smfgmnch@gﬁw«ci&:hﬂh&mﬁm@@
531 0 samady

Ea —

S;Amsbmssoﬂndmdrbﬁc moing ards 20d =alations; ollds
feswractions, and of Poblic Record

Tiis agreed tax sime & of e ex3an0e with 23pect 00 all dmes specified in Be Ageemant 304 v 2dacdh,
cidars, or amandemecss Tarms. This means ox all daadlines am icsandad 10 be sz 3od dbsoluee [ide
closing does 00t occur by e Closing Date, e Agmemant s amomatically sanminmed aod e Selles shall
fe%3in 3oy earest modey degosit 33 Bguideed damas

In e eves: Buyer mguesis 3 exansion of e Closiag Date or of Be dnadiioe for ©e Eifilimen of 2oy
costingency, 300 the Sellasazressio the evmazion, the Suyaragmes 0 oy 10te Selleca pardism peaaly
of fe greaser of $200.00 o 1/100f Bo of the puschase price perclendyr Sy omasds Sellar's camying
cmwmmm Closing Dme specifiad i0 e wanes exiession agreement The perdiam
amonue axast be deposiiad with e Selierat e me aavreguest forexeation s made.

Seller agrees 0 delivera 3008 208 madenble or mnyrable cwoar's dle 1 B poparty dbove dasaribad
free 30d dexrof 3l eccumbrances except 35 harein o= forf. Buver stall pwy £r ol closing coris and e
fees, inchuding Son of deed. Puschases agrees 10 oonfy Sellerin waiting of agydefacs in wfeas
2000 33 £23 v possible andif sife proves 30 be 0ot 00d and markesble or insuatie, Mesdllerz o
make ¥fe 2004 308 madomabie or insurable 30d shall have 3 raasavatie Sme fom ooificmioa o v da

32

institute for
SOFTWARE
RESEARCH

Setup

In Graph g,

“Tom” and “Anne” are not connected.

15-214 33 [v

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

= H:"\m[r[[
15-214 3¢ [Hors

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

z H\‘»'HH[A'[/f
15-214 35 sormmse

Who’s to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

z H\‘»'HH[A'[/f
15-214 36 sormmse

Who’s to blame?

class Algorithms {

/**
* This method finds the
* shortest distance between to
* verticies. It returns -1 if
* the two nodes are not
* connected. */

int shortestDistance(..) {..}

= H”'milrf [
15-214 37 [H o

Who’s to blame?

Math.sqgrt(-5);

> 0

= Institute tor
15-214 38 [NJf o

Who’s to blame?

Java Documentation

ite fe

. INstitL I
15-214 39 ot

Contracts

 Agreement between provider and users of an
object

* Includes
— Interface specification (types)

— Functionality and correctness expectations
— Performance expectations

e What the method does, not how it does it

— Interface (API), not implementation

hd i
Institute™
15-214 a0 [H o

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

= Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

= If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end ob file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

= The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

= In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

e Throws:

= JOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

= NullPointerException - If b is null.

= IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

Insti H\'[r
15-214 41 sormmse

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

e Throws:
= IOException - If the first byte

= NullPointerException - If b is n
= IndexOutOfBoundsException -

15-214

Reads up to len bytes of data {31 Specification of return

attempt is made to read as maCE | 1ol 1= BV o) g (o) (616 /)
The number of bytes actuaIIy

until input data is available, erfid L8 =8)AL =R o [=T6

If len is zero, then no bytes a e len=0 = return 0

attempt to read at least one b

end g file, the value -1 is ret e len>0 && eof = return -1
into b.

|
The first byte read is stored in * len>0 && leof Preturn >0
on. The number of bytes read

Exactly where the data is stored
b tes actuaII?/ read; these byte
e

, leaving elements b[off+k] What parts of the array are not affected

In every case, elements b[0] tT
elements b[off+|en] through b[b. Iength 1] are unaffected

e Multiple error cases, each with a

or if the input stream has beef e f=Iee 3¢ [[4(e]y

¢ Includes “runtime exceptions” not in
than b.length - off throws clause

mg.tute foEr
SOFTWAR
42 RESEARCH

Specifications

e (Contains

Functional behavior
Erroneous behavior
Quality attributes (performance, scalability, security, ...)

e Desirable attributes

15-214

Complete

* Does not leave out any desired behavior
Minimal

* Does not require anything that the user does not care about
Unambiguous

* Fully specifies what the system should do in every case the user cares about
Consistent

* Does not have internal contradictions
Testable

* Feasible to objectively evaluate
Correct

* Represents what the end-user(s) need

institute for
43 SOFTWARE
RESEARCH

Functional Specification

* States method’s and caller’s responsibilities
* Analogy: legal contract
— If you pay me this amount on this schedule...
— | will build a with the following detailed specification
— Some contracts have remedies for nonperformance
 Method contract structure
— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

44 = H”'milrf [
15-214 aa [H s

Functional Specification

arred specification
nperformance
 Method contract structure

— Preconditions: what method requires for correct operation

— Postconditions: what method establishes on completion

— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

45 15-214 45

Formal Specifications

/*@ requires len >= 0 && array != null && array.length == len;

@ ensures \result ==
(\sum int j; © <= j && j < len; array[j]);

@
@*/
int total(int array[], int len);

erification

mal v s tools

tomatic analys!

* gssisting au

15-214

Runtime Checking of Specifications with Assertions

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum intj; 0 <=j&&j < len; array[j])
@*/

float sum(int array[], int len) {
assert len >= 0;

assert array.length == len;
float sum = 0.0;
inti =0;
while (i < len) {
sum = sum + array[i]; i=i+ 1;
by

assert sum ...;

java -ea Main

return sum;

te |

-
Institute for
15-214 47 sorsess

Runtime Checking with Exceptions

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sumintj; 0 <=j&&j < len; array[j])
@*/

float sum(int array[], int len) {
if (len < 0 || array.length != len)
throw IllegalArgumentException(...);
float sum = 0.0;
inti =0;
while (i < len) {
sum = sum + array[i]; i=i+ 1;
by
return sum;
assert ...;

= institute for
15-214 as [N} sormvas

Specifications in the real world
Javadoc

/**

* Returns the element at the specified position of this 1list.

postcondition
* <p>This method is <i>not</i> guaranteed to run in constant time:

* In some implementations, it may run in time proportional to the
* element position.

* @param index position of element to return; must be non-negative and
* less than the size of this list.
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of rangeqRJE« L iile])
* ({@code index < @ || index »>= this.size()})
*/

E get(int index);

java docs

Institute for
15-214 49 sorrinst

EXERCISE: Write a Specification

* Write
— atype signature,
— a textual specification, and
— a formal specification

for a function slice(list, from, until) that returns all values of a list
between positions <from> and <until> as a new list

15-214 50 ., B

RESEARCH

Contacts and Interfaces

* All objects implementing an interface must adhere to the
interface’s contracts
— Objects may provide different implementations for the same specification

— Subtype polymorphism: Client only cares about interface, not about the
implementation

p.getX() s.read()

=> Design for Change

15-214 51 ., [Hisi

Summary

e Use interfaces to define APIs

 Information hiding is fundamental
for good software design

e Software contracts communicate
how software should be used

15-214 s2 [sorvini

RRRRRRRR

