
115-214

This image cannot currently be displayed.

School	of	
Computer	Science

Principles	of	Software	Construction:					
Objects,	Design,	and	Concurrency

Part	1:	Designing	Classes	

Design	for	change

Charlie	Garrod Michael	Hilton

215-214

Smoking
Section

Reminder!

315-214

Announcements

• HW1	is	available
• You	should	have	a	course	repo	by	
now	(if	you	don’t,	get	it	soon!)
• HW1	is	due	Thursday,	Sept	7	at	
11:59	p.m.
• Office	Hours	start	today!

415-214

Random	Calling

• A	way	to	include	EVERYONE	in	the	
class
• Goal	is	participation,	not	“correctness”
• Wrong	Answers	&	Mistakes	are	
Expected and	Valued
• We	are	all	part	of	a	learning	
community
• It	helps	me	learn	your	names	

515-214

Outline

I. Polymorphism	
II.Information	hiding
III.Contracts

615-214

Objects

• An	object is	a	bundle	of	state	and	behavior
• State	– the	data	contained	in	the	object
– In	Java,	these	are	the	fields of	the	object

• Behavior	– the	actions	supported	by	the	
object
– In	Java,	these	are	called	methods
–Method	is	just	OO-speak	for	function
– invoke	a	method		=	call	a	function

715-214

Classes

• Every	object	has	a	class
– A	class	defines	methods	and	fields
– Methods	and	fields	collectively	known	as	members

• Class	defines	both	type	and	implementation
– type	≈	where	the	object	can	be	used
– implementation	≈	how	the	object	does	things

• Loosely	speaking,	the	methods	of	a	class	are	its	
Application	Programming	Interface	(API)
– Defines	how	users	interact	with	instances

815-214

Live	Coding

• Dice	Game
–Roll	2	dice
–If	total	value	==7	you	win!
–Else	you	lose

915-214

To	the	computer!

1015-214

Class	example	- Dice

• public class Dice {

private int faceValue;

public void roll() {
faceValue = 1 + (int)(Math.random() * 5);

}

public int getFaceValue() {
return faceValue;

}

}

1115-214

Class	usage	example

public class Main {
public static void main(String[] args) {

Dice d1 = new Dice();
Dice d2 = new Dice();
d1.roll();
d2.roll();
if(d1.getFaceValue()+d2.getFaceValue()==7){

System.out.println("You Win!");
}else{

System.out.println("You Lose");
}

}
}

When	you	run	this	program,	it	prints?

1215-214

Interfaces	and	implementations

• Multiple	implementations	of	API	can	
coexist
–Multiple	classes	can	implement	the	same	API
– They	can	differ	in	performance	and	behavior

• In	Java,	an	API	is	specified	by	interface	or	
class
– Interface	provides	only	an	API
– Class	provides	an	API	and	an	implementation
– A	Class	can	implement	multiple	interfaces

1315-214

Live	Coding

• Dice	Game
–Add	“loaded”	dice
–Rules	of	game	are	unchanged

1415-214

To	the	computer!

1515-214

An	interface	to	go	with	our	class

public interface Dice {
void roll();

int getFaceValue();
}

An	interface	defines	but	does	not	implement	API

1615-214

Modifying	class	to	use	interface

public class RandomDice implements Dice {

private int faceValue;

@Override
public void roll() {

faceValue = 1 + (int)(Math.random() * 5);
}

@Override
public int getFaceValue() {

return faceValue;
}

}

1715-214

Modifying	client	to	use	interface

public class Main {
public static void main(String[] args) {

Dice d1 = new RandomDice();
Dice d2 = new RandomDice();
d1.roll();
d2.roll();
if(d1.getFaceValue()+d2.getFaceValue()==7){

System.out.println("You Win!");
}else{

System.out.println("You Lose");
}

}
}

1815-214

Interface	permits	multiple	implementations

public class LoadedDice implements Dice {
public void roll() {

}

public int getFaceValue() {
if(Math.random()> .5){

return 4;
}
return 2;

}
}

1915-214

Why	multiple	implementations?

• Different	performance
– Choose	implementation	that	works	best	for	your	use

• Different	behavior
– Choose	implementation	that	does	what	you	want
– Behavior	must comply	with	interface	spec	(“contract”)

• Often	performance	and	behavior	both vary
– Provides	a	functionality	– performance	tradeoff
– Example:	HashSet,	TreeSet

2015-214

Java	interfaces	and	classes

• Organize	program	program	objects	types
– Each	type	offers	a	specific	set	of	operations
– Objects	are	otherwise	opaque

• Interfaces	vs.	classes
– Interface:	specifies	expectations
– Class:	delivers	on	expectations	(the	implementation)

2115-214

Classes	as	types

• Classes	do define	types
– Public	class	methods	usable	like	interface	methods
– Public	fields	directly	accessible	from	other	classes

• But	prefer	the	use	of	interfaces
– Use	interface	types	for	variables	and	parameters	
unless	you	know	one	implementation	will	suffice
• Supports	change	of	implementation
• Prevents	dependence	on	implementation	details

Set<Criminal> senate = new HashSet<>(); // Do this…
HashSet<Criminal> senate = new HashSet<>(); // Not this

2215-214

Check	your	understanding

interface Animal {
void vocalize();

}
class Dog implements Animal {

public void vocalize() { System.out.println("Woof!"); }
}
class Cow implements Animal {

public void vocalize() { moo(); }
public void moo() {System.out.println("Moo!"); }

}

What	Happens?
1. Animal a = new Animal();

vocalize();
2. Dog d = new Dog();

d.vocalize();
3. Animal b = new Cow();

b.vocalize();
4. b.moo();

2315-214

Historical	note:	simulation	and	the	origins	of	OO	
programming

• Simula 67	was	the
first object-oriented
language

• Developed	by	Kristin
Nygaard and	Ole-Johan
Dahl	at	the	Norwegian
Computing	Center

• Developed	to	support	discrete-event	simulation
– Application:	operations	research,	e.g.	traffic	analysis
– Extensibility	was	a	key	quality	attribute	for	them
– Code	reuse	was	another

2415-214

Outline

I. Polymorphism	
II.Information	hiding
III.Contracts

2515-214

Information	hiding

• Single	most	important	factor	that	distinguishes	
a	well-designed	module	from	a	bad	one	is	the	
degree	to	which	it	hides	internal	data	and	other	
implementation	details	from	other	modules

• Well-designed	code	hides	all implementation	details
– Cleanly	separates	API	from	implementation
– Modules	communicate	only through	APIs
– The	are	oblivious	to	each	others’	inner	workings

• Known	as	information	hiding	or	encapsulation
• Fundamental	tenet	of	software	design	[Parnas,	‘72]

2615-214

Benefits	of	information	hiding

• Decouples the	classes	that	comprise	a	system
– Allows	them	to	be	developed,	tested,	optimized,	used,	
understood,	and	modified	in	isolation

• Speeds	up	system	development
– Classes	can	be	developed	in	parallel

• Eases	burden	of	maintenance
– Classes	can	be	understood	more	quickly	and	debugged	with	
little	fear	of	harming	other	modules	

• Enables	effective	performance	tuning
– “Hot”	classes	can	be	optimized	in	isolation

• Increases	software	reuse	
– Loosely-coupled	classes	often	prove	useful	in	other	contexts

2715-214

Information	hiding	with	interfaces

• Declare	variables	using	interface	type
• Client	can	use	only	interface	methods
• Fields	not	accessible	from	client	code
• But	this	only	takes	us	so	far
– Client	can	access	non-interface	members	directly
– In	essence,	it’s	voluntary information	hiding

2815-214

Mandatory	Information	hiding
visibility	modifiers for	members

• private – Accessible	only from	declaring	
class
• package-private – Accessible	from	any	class	
in	the	package	where	it	is	declared
– Technically	known	as	default	access
– You	get	this	if	no	access	modifier	is	specified

• protected – Accessible	from	subclasses	
of	declaring	class	(and	within	package)
• public – Accessible	from	anywhere

2915-214

Discussion

• You	know	the	benefits	of	private	fields
• What	are	the	benefits	of	private	methods?

3015-214

Best	practices	for	information	hiding

• Carefully	design	your	API
• Provide	only functionality	required	by	
clients
–All other	members	should	be	private

• You	can	always	make	a	private	member	
public	later	without	breaking	clients
–But	not	vice-versa!

3115-214

Outline

I. Polymorphism	
II.Information	hiding
III.Contracts

3215-214

Why	do	we	have	contracts?

3315-214

Setup

In Graph g,

“Tom” and “Anne” are not connected.

3415-214

Who’s	to	blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

3515-214

Who’s	to	blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

3615-214

Who’s	to	blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

3715-214

Who’s	to	blame?

class Algorithms {

/**

* This method finds the

* shortest distance between to

* verticies. It returns -1 if

* the two nodes are not

* connected. */

int shortestDistance(…) {…}

}

3815-214

Who’s	to	blame?

Math.sqrt(-5);

> 0

3915-214

Who’s	to	blame?

Java Documentation

4015-214

Contracts

• Agreement	between	provider	and	users	of	an	
object

• Includes
– Interface	specification	(types)
– Functionality	and	correctness	expectations
– Performance	expectations

• What	the	method	does,	not	how	it	does	it
– Interface	(API),	not	implementation

40

4115-214

Textual	Specification

public int read(byte[] b, int off, int len) throws IOException

§ Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

§ If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

§ The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

§ In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:
§ IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.
§ NullPointerException - If b is null.
§ IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

4215-214

Textual	Specification

public int read(byte[] b, int off, int len) throws IOException

§ Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

§ If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

§ The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

§ In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:
§ IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.
§ NullPointerException - If b is null.
§ IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

• Multiple	error	cases,	each	with	a	
precondition

• Includes	“runtime	exceptions”	not	in	
throws	clause

• Specification	of	return
• Timing	behavior	(blocks)
• Case-by-case	spec

• len=0	è return	0
• len>0	&&	eofè return	-1
• len>0	&&	!eofèreturn	>0

• Exactly	where	the	data	is	stored
• What	parts	of	the	array	are	not	affected

4315-214

Specifications

• Contains
– Functional	behavior
– Erroneous	behavior
– Quality	attributes	(performance,	scalability,	security,	…)

• Desirable	attributes
– Complete

• Does	not	leave	out	any	desired	behavior
– Minimal

• Does	not	require	anything	that	the	user	does	not	care	about
– Unambiguous

• Fully	specifies	what	the	system	should	do	in	every	case	the	user	cares	about
– Consistent

• Does	not	have	internal	contradictions
– Testable

• Feasible	to	objectively	evaluate
– Correct

• Represents	what	the	end-user(s)	need

4415-214

Functional	Specification

• States	method’s	and	caller’s	responsibilities
• Analogy:	legal	contract
– If	you	pay	me	this	amount	on	this	schedule…
– I	will	build	a	with	the	following	detailed	specification
– Some	contracts	have	remedies	for	nonperformance

• Method	contract	structure
– Preconditions:	what	method	requires	for	correct	operation
– Postconditions:	what	method	establishes	on	completion
– Exceptional	behavior:	what	it	does	if	precondition	violated

• Defines	what	it	means	for	impl to	be	correct

44

4515-214

Functional	Specification

• States	method’s	and	caller’s	responsibilities
• Analogy:	legal	contract
– If	you	pay	me	this	amount	on	this	schedule…
– I	will	build	a	with	the	following	detailed	specification
– Some	contracts	have	remedies	for	nonperformance

• Method	contract	structure
– Preconditions:	what	method	requires	for	correct	operation
– Postconditions:	what	method	establishes	on	completion
– Exceptional	behavior:	what	it	does	if	precondition	violated

• Defines	what	it	means	for	impl to	be	correct

45

4615-214

Formal	Specifications

/*@ requires len >= 0 && array != null && array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j]);
@*/

int total(int array[], int len);

4715-214

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j])
@*/

float sum(int array[], int len) {
assert len >= 0;
assert array.length == len;
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i]; i = i + 1;
}
assert sum …;
return sum;

}

Runtime	Checking	of	Specifications	with	Assertions

java -ea Main

4815-214

/*@ requires len >= 0 && array.length == len
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j])
@*/

float sum(int array[], int len) {
if (len < 0 || array.length != len)

throw IllegalArgumentException(…);
float sum = 0.0;
int i = 0;
while (i < len) {

sum = sum + array[i]; i = i + 1;
}
return sum;
assert …;

}

Runtime	Checking	with	Exceptions

Check arguments
even when
assertions are
disabled.
Good for robust
libraries!

4915-214

Specifications	in	the	real	world
Javadoc

/**
* Returns the element at the specified position of this list.
*
* <p>This method is <i>not</i> guaranteed to run in constant time.
* In some implementations, it may run in time proportional to the
* element position.
*
* @param index position of element to return; must be non-negative and
* less than the size of this list.
* @return the element at the specified position of this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size()})
*/
E get(int index);

postcondition

precondition

java docs

5015-214

EXERCISE:		Write	a	Specification

• Write	
– a	type	signature,
– a	textual	specification,	and
– a	formal	specification	

for	a	function	slice(list,	from,	until) that	returns	all	values	of	a	list	
between	positions	<from>	and	<until>	as	a	new	list

50

5115-214

Contacts	and	Interfaces

• All	objects	implementing	an	interface	must	adhere	to	the	
interface’s	contracts
– Objects	may	provide	different	implementations	for	the	same	specification
– Subtype	polymorphism:		Client	only	cares	about	interface,	not	about	the	

implementation
p.getX() s.read()

=>	Design	for	Change

51

5215-214

Summary

• Use	interfaces	to	define APIs
• Information	hiding	is	fundamental
for	good	software	design
• Software	contracts	communicate
how	software	should	be	used

