
1 15-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Michael	Hilton	

2 15-214

So3ware	is	everywhere	

3 15-214

Growth	of	code	and	complexity	over	9me	

(informal reports)

4 15-214 15-313 Software Engineering 4

5 15-214

Blackout of 2003 Normal night-time image

6 15-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Michael	Hilton	

7 15-214

binary tree

graph search

sorting

primes

GCD

8 15-214

Our goal: understanding both the building blocks and the
design principles for construction of software systems

From	programs	to	systems	

Wri9ng	algorithms,	data	
structures	from	scratch	

	
Func9ons	with	inputs		

and	outputs	
	
Sequen9al	and	local	

computa9on	
	

Full	func9onal	
specifica9ons	

Reuse	of	libraries,	
frameworks	
	

Asynchronous	and		
reac9ve	designs	

	
Parallel	and	distributed	

computa9on	
	
Par9al,	composable,		

targeted	models	

9 15-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Michael	Hilton	

10 15-214

Objects	in	the	real	world	

11 15-214

Object-oriented	programming	

•  Programming	based	on	structures	
that	contain	both	data	and	methods	

public	class	Bicycle	{	
		private	final	Wheel	frontWheel,	rearWheel;	
		private	final	Seat	seat;	
		private	int	speed;	
		…	
	
		public	Bicycle(…)	{	…	}	
	
		public	void	accelerate()	{		
				speed++;		
		}	
	
		public	int	speed()	{	return	speed;	}	
}	

12 15-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Michael	Hilton	

13 15-214

Semester	overview	

•  Introduc9on	to	Java	and	O-O	
•  Introduc9on	to	design	

–  Design	goals,	principles,	paSerns	
•  Designing	classes	

–  Design	for	change	
–  Design	for	reuse	

•  Designing	(sub)systems	
–  Design	for	robustness	
–  Design	for	change	(cont.)	

•  Design	case	studies	
•  Design	for	large-scale	reuse	
•  Explicit	concurrency	

•  CrosscuXng	topics:	
–  Modern	development	tools:	

IDEs,	version	control,	build	
automa9on,	con9nuous	
integra9on,	sta9c	analysis	

–  Modeling	and	specifica9on,	
formal	and	informal	

–  Func9onal	correctness:	Tes9ng,	
sta9c	analysis,	verifica9on	

14 15-214

Sorting with a configurable order, version A

	
static	void	sort(int[]	list,	boolean	ascending)	{	
			…		
			boolean	mustSwap;	
			if	(ascending)	{	
						mustSwap	=	list[i]	<	list[j];	
			}	else	{	
						mustSwap	=	list[i]	>	list[j];	
			}	
			…	
}	
	

15 15-214

Sorting with a configurable order, version B
interface	Comparator	{	
		boolean	compare(int	i,	int	j);	
}	
	
class	AscendingComparator		implements	Comparator	{	
		public	boolean	compare(int	i,	int	j)	{	return	i	<	j;	}	
}	
class	DescendingComparator	implements	Comparator	{	
		public	boolean	compare(int	i,	int	j)	{	return	i	>	j;	}	
}	
	
static	void	sort(int[]	list,	Comparator	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.compare(list[i],	list[j]);	
		…	
}	

16 15-214

Sorting with a configurable order, version B'

interface	Comparator	{	
		boolean	compare(int	i,	int	j);	
}	
	
final	Comparator	ASCENDING		=	(i,	j)	->	i	<	j;	
final	Comparator	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Comparator	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.compare(list[i],	list[j]);	
		…	
}	

17 15-214

Which version is better?

static	void	sort(int[]	list,	boolean	ascending)	{	
			…		
			boolean	mustSwap;	
			if	(ascending)	{	
						mustSwap	=	list[i]	<	list[j];	
			}	else	{	
						mustSwap	=	list[i]	>	list[j];	
			}	
			…	
}	

interface	Comparator	{	
		boolean	compare(int	i,	int	j);	
}	
final	Comparator	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Comparator	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Comparator	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.compare(list[i],	list[j]);	
		…	
}	

Version A:

Version B':

18 15-214

It depends?

19 15-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

20 15-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software engineering entails making decisions under
constraints of limited time, knowledge, and resources…

Engineering quality resides in engineering judgment…
Quality of the software product depends on the engineer’s
faithfulness to the engineered artifact…
Engineering requires reconciling conflicting constraints…
Engineering skills improve as a result of careful systematic
reflection on experience…
Costs and time constraints matter, not just capability…

Software Engineering for the 21st Century: A basis for rethinking the curriculum

Manifesto, CMU-ISRI-05-108

21 15-214

Goal	of	so3ware	design	

•  For	each	desired	program	behavior	there	are	infinitely	many	
programs	
–  What	are	the	differences	between	the	variants?	
–  Which	variant	should	we	choose?	
–  How	can	we	synthesize	a	variant	with	desired	proper9es?	

22 15-214

A	typical	Intro	CS	design	process	

1.  Discuss	so3ware	that	needs	to	be	wriSen	
2.  Write	some	code	
3.  Test	the	code	to	iden9fy	the	defects	
4.  Debug	to	find	causes	of	defects	
5.  Fix	the	defects	
6.  If	not	done,	return	to	step	1	

23 15-214

Metrics	of	so3ware	quality	

•  Sufficiency	/	func9onal	correctness	
§  Fails	to	implement	the	specifica9ons	…	Sa9sfies	all	of	the	specifica9ons	

•  Robustness	
§  Will	crash	on	any	anomalous	event	…	Recovers	from	all	anomalous	events	

•  Flexibility	
§  Must	be	replaced	en9rely	if	spec	changes	…	Easily	adaptable	to	changes	

•  Reusability	
§  Cannot	be	used	in	another	applica9on	…	Usable	without	modifica9on	

•  Efficiency	
§  Fails	to	sa9sfy	speed	or	storage	requirement	…	sa9sfies	requirements	

•  Scalability	
§  Cannot	be	used	as	the	basis	of	a	larger	version	…	is	basis	for	much	larger	version…	

•  Security	
§  Security	not	accounted	for	at	all	…	No	manner	of	breaching	security	is	known	

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

Design		
challenges/goals	

24 15-214

BeSer	so3ware	design	

•  Think	before	coding	
•  Consider	non-func9onal	quality	aSributes	

–  Maintainability,	extensibility,	performance,	…	

•  Propose,	consider	design	alterna9ves	
–  Make	explicit	design	decisions	

25 15-214

Using	a	design	process	

•  A	design	process	organizes	your	work	
•  A	design	process	structures	your	understanding	
•  A	design	process	facilitates	communica9on	

26 15-214

Preview:		Design	goals,	principles,	and	paSerns	

•  Design	goals	enable	evalua9on	of	designs	
–  e.g.	maintainability,	reusability,	scalability	

•  Design	principles	are	heuris9cs	that	describe	best	prac9ces	
–  e.g.	high	correspondence	to	real-world	concepts	

•  Design	pa.erns	codify	repeated	experiences,	common	solu9ons	
–  e.g.	template	method	paSern	

27 15-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Michael	Hilton	

28 15-214

Concurrency	

•  Simply:		doing	more	than	one	thing	at	a	9me	

29 15-214

Summary:		Course	themes	

•  Object-oriented	programming	
•  Code-level	design	
•  Analysis	and	modeling	
•  Concurrency	

30 15-214

So3ware	Engineering	(SE)	at	CMU	

•  15-214:		Code-level	design	
–  Extensibility,	reuse,	concurrency,	func9onal	correctness	

•  15-313:		Human	aspects	of	so3ware	development	
–  Requirements,	teamwork,	scalability,	security,	scheduling,	costs,	risks,	

business	models	

•  15-413	Prac9cum,	17-413	Seminar,	Internship	
•  Various	Master's	level	courses	on	requirements,	architecture,	

so3ware	analysis,	etc.	
•  SE	Minor:	hSp://isri.cmu.edu/educa9on/undergrad	

30

31 15-214

COURSE	ORGANIZATION	

32 15-214

Precondi9ons	

•  15-122	or	equivalent	
–  Two	semesters	of	programming	
–  Knowledge	of	C-like	languages	

•  21-127	or	equivalent	
–  Familiarity	with	basic	discrete	math	concepts	

•  Specifically:	
–  Basic	programming	skills	
–  Basic	(formal)	reasoning	about	programs	

•  Pre/post	condi9ons,	invariants,	formal	verifica9on	
–  Basic	algorithms	and	data	structures	

•  Lists,	graphs,	sor9ng,	binary	search,	etc.	

33 15-214

Learning	goals	

•  Ability	to	design	medium-scale	programs	
•  Understanding	OO	programming	concepts	&	design	decisions	
•  Proficiency	with	basic	quality	assurance	techniques	for	

func9onal	correctness	
•  Fundamentals	of	concurrency	
•  Prac9cal	skills	

34 15-214

Course	staff	

•  Michael	Hilton	
mhilton@cmu.edu	
Wean	5122	

	

•  Charlie	Garrod	
charlie@cs.cmu.edu	
Wean	5101	

	

•  Teaching	assistants:		Alex,	Alvin,	Dus9n,	Nick,	Shuli,	Zilei	

35 15-214

Course	mee9ngs	

•  Lectures:	Tuesday	and		Thursday	12:00	–	1:20pm	Wean	7500	
–  Electronic	devices	discouraged	

•  Recita9ons:		Wednesdays	9:30	-	…	-	2:20pm	
–  Supplementary	material,	hands-on	prac9ce,	feedback	
–  Bring	your	laptop	

•  Office	hours:		see	course	web	page	
–  hSps://www.cs.cmu.edu/~charlie/courses/15-214/	

Recitation
attendance
is required

Smoking
Section

36 15-214

Infrastructure	

•  Course	website:	hSp://www.cs.cmu.edu/~charlie/courses/15-214	
–  Schedule,	office	hours	calendar,	lecture	slides,	policy	documents	

•  Tools	
–  Git,	Github:	Assignment	distribu9on,	hand-in,	and	grades	
–  Piazza:	Discussion	board	
–  Eclipse	or	IntelliJ:	Recommended	for	code	development	(other	IDEs	are	fine)	
–  Gradle,	Travis-CI,	Checkstyle,	Findbugs:	Prac9cal	development	tools	

•  Assignments	
–  Homework	1	available	tomorrow	

•  First	recita9on	is	tomorrow	
–  Introduc9on	to	Java	and	the	tools	in	the	course	
–  Install	Git,	Java,	some	IDE,	Gradle	beforehand	

37 15-214

Textbooks	

•  Required	course	textbooks	(electronically	
available	through	CMU	library):		
–  Joshua	Bloch.	Effec9ve	Java,	Second	Edi9on.	

Addison-Wesley,	ISBN	978-0321356680.	
–  Craig	Larman.		Applying	UML	and	PaSerns.		3rd	

Edi9on.		Pren9ce	Hall,	ISBN	978-0321356680.	

•  Addi9onal	readings	on	design,	Java,	and	
concurrency	on	the	course	web	page	

38 15-214

Approximate	grading	policy	

•  50%	assignments	
•  20%	midterms	(2	x	10%	each)	
•  20%	final	exam	
•  10%	quizzes	and	par9cipa9on	

This	course	does	not	have	a	fixed	leSer	grade	policy;	i.e.,	the	final	
leSer	grades	will	not	be	A=90-100%,	B=80-90%,	etc.	

39 15-214

Collabora9on	policy		(also	see	the	course	syllabus)	

•  We	expect	your	work	to	be	your	own	
–  You	must	clearly	cite	external	resources	so	that	we	can	evaluate	your	own	

personal	contribu9ons.	

•  Do	not	release	your	solu9ons	(not	even	a3er	end	of	semester)	
•  Ask	if	you	have	any	ques9ons	
•  If	you	are	feeling	desperate,	please	mail/call/talk	to	us	

–  Always	turn	in	any	work	you've	completed	before	the	deadline	

•  We	use	chea9ng	detec9on	tools	

40 15-214

Late	day	policy	

•  You	may	turn	in	each*	homework	up	to	2	days	late	
–  5	free	late	days	per	semester	
–  10%	penalty	per	day	a3er	free	late	days	are	used	

•  …but	we	don't	accept	work	3	days	late	
•  See	the	syllabus	for	addi9onal	details	
•  Got	extreme	circumstances?		Talk	to	us	

41 15-214

10%	quizzes	and	par9cipa9on	

•  Recita9on	par9cipa9on	counts	toward	your	par9cipa9on	grade	
•  Lecture	has	in-class	quizzes	

42 15-214

Summary	

•  So3ware	engineering	requires	decisions,	judgment	
•  Good	design	follows	a	process	
•  You	will	get	lots	of	prac9ce	in	15-214!	

