
115-214

School	of	
Computer	Science

23	Patterns	in	80	Minutes:	a	Whirlwind	Java-
centric	Tour	of	the	Gang-of-Four	Design	Patterns

Josh	Bloch Charlie	Garrod

215-214

Administrivia

• Homework	6	checkpoint	due Friday 5	pm
• Final	exam Tuesday,	May	3, 5:30-8:30	pm,	PH	100
• Final	review	sessionSunday,	May, 7-9	pm,DH	1112

315-214

Key	concept	from	Tuesday…
MapReduce	with	key/value	pairs	(Google	style)

• Master
– Assign	tasks	to	workers
– Ping	workers	to	test	for	
failures

• Map	workers
– Map	for	each	key/value	
pair

– Emit	intermediate	
key/value	pairs

the shuffle:

415-214

• E.g.,	for	each	word	on	the	Web,	count	the	number	of	times	
that	word	occurs
§ For	Map:		key1 is	a	document	name,	value is	the	contents	of	that	
document

§ For	Reduce:		key2 is	a	word,	values is	a	list	of	the	number	of	counts	
of	that	word

Key	concept	from	Tuesday…
MapReduce	with	key/value	pairs	(Google	style)

f1(String key1, String value):
for each word w in value:

EmitIntermediate(w, 1);

f2(String key2, Iterator values):
int result = 0;
for each v in values:

result += v;
Emit(key2, result);

Map: (key1, v1) à (key2, v2)* Reduce: (key2, v2*) à (key3, v3)*

MapReduce: (key1, v1)* à (key3, v3)*

MapReduce: (docName, docText)* à (word, wordCount)*

515-214

Outline

I. Creational	Patterns
II. Structural	Patterns
III. Behavioral	Patterns

615-214

Pattern	Name

• Intent	– the	aim	of	this	pattern
• Use	case	– a	motivating	example
• Key	types	– the	interfaces	that	define	pattern
• JDK	– example(s)	of	this	pattern	in	the	JDK

715-214

Illustration

• Code	sample,	diagram,	or	drawing
– Time	constraints	make	it	impossible	to	include	
illustrations	from	some	patterns

• Some	patterns	lack	an	illustration	L

815-214

I.	Creational	Patterns

1. Abstract	factory
2. Builder
3. Factory	method
4. Prototype
5. Singleton

915-214

Abstract	Factory

• Intent	– Allow	creation	of	families	of	related	
objects independent	of	implementation

• Use	case	– look-and-feel	in	a	GUI	toolkit
• Key	type	– Factory with	methods	to	create	each	
family	member

• JDK	– Not	common

1015-214

Builder

• Intent	– Separate	construction	of	complex	object	
from	representation	so	same	creation	process	
can	create	different	representations

• Use	case	– converting	rich	text	to	various	formats
• Key	types	– (Abstract)	Builder
– GoF has	extra	layer	of	indirection	(“Director”)

• JDK	– StringBuilder,	StringBuffer*
– But	both	produce	String
– And	most	builders	in	the	JDK	are	concrete

1115-214

My	take	on	Builder

• Emulates	named	parameters	in	languages	that	
don’t	support	them

• Reduces	exponential	O(2n)	creational	methods	
to	O(n)	by	allowing	them	to	be	combined	freely,	
at	the	cost	of	an	intermediate	(Builder)	object

1215-214

Builder	Illustration
NutritionFacts twoLiterDietCoke = new NutritionFacts.Builder(

"Diet Coke", 240, 8).sodium(1).build();

public class NutritionFacts {
public static class Builder {

public Builder(String name, int servingSize,
int servingsPerContainer) { ... }

public Builder totalFat(int val) { totalFat = val; }
public Builder saturatedFat(int val) { satFat = val; }
public Builder transFat(int val) { transFat = val; }
public Builder cholesterol(int val) { cholesterol = val; }
... // 15 more setters

public NutritionFacts build() {
return new NutritionFacts(this);

}
}
private NutritionFacts(Builder builder) { ... }

}

1315-214

Factory	Method

• Intent	– abstract	creational	method	that	lets	
subclasses	decide	which	class	to	instantiate

• Use	case	– creating	documents	in	a	framework
• Key	types	– Creator,	which	contains	abstract	
method	to	create	an	instance

• JDK	– not	common.	Iterable.iterator()
• Related	Static	Factory	pattern	is	very	common
– Technically	not	a	GoF pattern,	but	close	enough

1415-214

Factory	Method	Illustration
public interface Iterable<E> {

public abstract Iterator<E> iterator();
}

public class ArrayList<E> implements List<E> {
public Iterator<E> iterator() { ... }
...

}

public class HashSet<E> implements Set<E> {
public Iterator<E> iterator() { ... }
...

}

1515-214

Prototype

• Intent	– Create	an	object	by	cloning	another
and	tweaking	as	necessary

• Use	case	– writing	a	music	score	editor	in	a	
graphical	editor	framework

• Key	types	– Prototype	(AKA	Cloneable)
• JDK	– clone,	but	don’t	use	it	(except	on	arrays)
– Java	and	Prototype	pattern	are	a	poor	fit

1615-214

Singleton

• Intent	– ensuring	a	class	has	only	one	instance
• Use	case	– GoF say	print	queue,	file	system,	
company	in	an	accounting	system
– Compelling	uses	are	rare	but	they	do	exist

• Key	types	– Singleton
• JDK	– java.lang.Runtime

1715-214

Singleton	Illustration
public enum Elvis {

ELVIS;

public sing(Song song) { ... }

public playGuitar(Riff riff) { ... }

public eat(Food food) { ... }

public take(Drug drug) { ... }
}

1815-214

My	take	on	singleton

• It’s	an	instance-controlled	 class;	others	include
– Static	utility	class	(non-instantiable)
– Enum – one	instance	per	value,	all	values	known	at	
compile	time

– Interned	class	– one	canonical	instance	per	value,	
new	values	created	at	runtime

• There	is	a	duality	between	singleton	and
static	utility	class

1915-214

II.	Structural	Patterns

1. Adapter
2. Bridge
3. Composite
4. Decorator
5. Façade
6. Flyweight
7. Proxy

2015-214

Adapter

• Intent	– convert	interface	of	a	class	into	one	that	
another	class	requires,	allowing	interoperability

• Use	case	– numerous,	e.g.,	arrays	vs.	collections
• Key	types	– Target,	Adaptee,	Adapter
• JDK	– Arrays.asList(T[])

2115-214

Adapter	Illustration

Have	this																	and		this?																Use	this!

2215-214

Bridge

• Intent	– Decouple	an	abstraction	from	its	
implementation	so	they	can	vary	independently

• Use	case	– portable	windowing	toolkit
• Key	types	– Abstraction,	Implementor	
• JDK	– JDBC,	Java	Cryptography	Extension	(JCE)
– Both	are	Service	Provider	Interface	(SPI)	frameworks
– SPI	is Bridge	Implementor!

2315-214

Bridge	Illustration

2415-214

Composite

• Intent	– Compose	objects	into	tree	structures.	Let	
clients	treat	primitives	&	compositions	uniformly.

• Use	case	– GUI	toolkit	(widgets	and	containers)
• Key	type	– Component	that	represents	both	
primitives	and	their	containers

• JDK	– javax.swing.JComponent

2515-214

Composite	Illustration
public interface Expression {

double eval(); // Returns value
String toString(); // Returns infix expression string

}

public class UnaryOperationExpression implements Expression {
public UnaryOperationExpression(

UnaryOperator operator, Expression operand);
}
public class BinaryOperationExpression implements Expression {

public BinaryOperationExpression(BinaryOperator operator,
Expression operand1, Expression operand2);

}
public class NumberExpression implements Expression {

public NumberExpression(double number);
}

2615-214

Decorator

• Intent	– attach	features	to	an	object	dynamically
• Use	case	– attaching	borders	in	a	GUI	toolkit
• Key	types	– Component,	 implement	by	
decorator	and	decorated

• JDK	– Collections	(e.g.,	Synchronized
wrappers),	java.io streams,	Swing	components

2715-214

Decorator	Illustration

2815-214

Façade

• Intent	– Provide	a	simple	unified	interface	to	a	
set	of	interfaces	in	a	subsystem
– GoF allow	for	variants	where	the	complex	
underpinnings	are	exposed	and	hidden

• Use	case	– any	complex	system;	GoF use	compiler
• Key	types	– Façade	(the	simple	unified	interface)
• JDK	– java.util.concurrent.Executors

2915-214

Facade	Illustration

Facade

√√

√

√

√

√ √

Subsystem classes

3015-214

Flyweight

• Intent	– use	sharing	to	support	large	numbers	of	
fine-grained	objects	efficiently

• Use	case	– characters	in	a	document
• Key	types	– the	Flyweight	(instance-controlled!)
– State	can	be	made	extrinsic to	keep	Flyweight	sharable

• JDK	– Pervasisve!	All	enums,	many	others.	
j.u.c.TimeUnithas		#	units	as	extrinsic state.

3115-214

Flyweight	Illustration

3215-214

Proxy

• Intent	– surrogate	for	another	object
• Use	case	– delay	loading	of	images	till	needed
• Key	types	– Subject,	Proxy,	RealSubject
• Gof mention	several	flavors
– virtual	proxy	– stand-in	that	instantiates	lazily
– remote	proxy	– local	representative	for	remote	obj
– protection	proxy	– denies	some	ops	to	some	users
– smart	reference	– does	locking	or	ref.	counting,	e.g.

• JDK	– RMI,	collections	wrappers

3315-214

Proxy	Illustrations
Virtual Proxy

Smart Reference Remote Proxy

SynchronizedList ArrayList

aTextDocument
image anImage

data

in memory on disk

anImageProxy
fileName

Client

Proxy

Server

3415-214

III.	Behavioral	Patterns

1. Chain	of	Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy
10. Template	method
11. Visitor

3515-214

Chain	of	Responsibility

• Intent	– avoid	coupling	sender	to	receiver	by	
passing	request	along	until	someone	handles	it

• Use	case	– context-sensitive	help	facility
• Key	types	– RequestHandler
• JDK	– Classloader,	Properties
• Exception	handling	could	be	considered	a	form	
of	Chain	of	Responsibility	pattern

3615-214

Command

• Intent	– encapsulate	request	as	object,	letting	
you	parameterize	clients	with	different	actions,	
queue	or	log	requests,	etc.

• Use	case	– menu	tree
• Key	types	– Command (an	execute	method)
• JDK	– Runnable,	executor	framework
• Is	it	Command	pattern	if	you	run	it	more	than	
once?	If	it	takes	an	argument?	Returns	a	val?

3715-214

Interpreter

• Intent	– Given	a	language,	define	class	hierarchy	
for	parse	tree,	recursive	method	to	interpret	it

• Use	case	– regular	expression	matching
• Key	types	– Expression,	NonterminalExpression,	
TerminalExpression

• JDK	– no	uses	I’m	aware	of
– Our	expression	evaluator	(HW2)	is	a	classic	example

• Necessarily	uses	Composite	pattern!

3815-214

Interpreter	Illustration
public interface Expression {

double eval(); // Returns value
String toString(); // Returns infix expression string

}

public class UnaryOperationExpression implements Expression {
public UnaryOperationExpression(

UnaryOperator operator, Expression operand);
}
public class BinaryOperationExpression implements Expression {

public BinaryOperationExpression(BinaryOperator operator,
Expression operand1, Expression operand2);

}
public class NumberExpression implements Expression {

public NumberExpression(double number);
}

3915-214

Iterator

• Intent	– provide	a	way	to	access	elements	of	a	
collection	without	exposing	representation

• Use	case	– collections
• Key	types	– Iterable,	Iterator
– But	GoF recognize	internal	iteration	too

• JDK	– Collections,	for-each	statement,	etc.

4015-214

Mediator

• Intent	– Define	an	object	that	encapsulate	how	a	
set	of	objects	interact	to	reduce	coupling.
– O(n)	couplings	instead	of	O(n!)	=	O(2n)

• Use	case	– dialog	box	where	change	in	one	
component	affects	behavior	of	others

• Key	types	– Mediator,	components
• JDK	– Unclear

4115-214

Mediator	Illustration

4215-214

Memento

• Intent	– Without	violating	encapsulation,	allow	
client	to	capture	an	object’s	state,	and	restore

• Use	case	– undo	stack	for	operations	that	aren’t	
easily	undone,	e.g.,	line-art	editor

• Key	type	– Memento	(opaque	state	object)
• JDK	– none	that	I’m	aware	of	(not serialization)

4315-214

Observer

• Intent	– Let	objects	observe	the	behavior	of	
other	objects	so	they	can	stay	in	sync

• Use	case	– multiple	views	of	a	data	object	in	a	GUI
• Key	types	– Subject (“observable”),	Observer
– GoF are	agnostic	on	many	details!

• JDK	– Swing,	left	and	right

4415-214

State

• Intent	– use	an	object	internally	to	represent	the	
state	of	another	object;	delegate	method	
invocations	to	the	state	object

• Use	case	– TCP	Connection	(which	is	stateful)
• Key	type	– State
• JDK	– none	that	I’m	aware	of	but
–Works	great in	Java
– Use	enums as	states
– Use	AtomicReference<State> to	store	it

4515-214

Strategy

• Intent	– represent	a	behavior	that	parameterizes	
an	algorithm	for	behavior	or	performance

• Use	case	– line-breaking	for	text	compositing
• Key	types	– Strategy
• JDK	– Comparator

4615-214

Template	method

• Intent	– define	skeleton	of	an	algorithm	or	data	
structure,	deferring	some	decisions	to	subclasses

• Use	case	– application	framework	that	lets	
plugins	implement	all	operations	on	documents

• Key	types	– AbstractClass,	ConcreteClass
• JDK	– Skeletal	collection	impls (e.g.,	AbstractList)
• Note	– template	method	is	dual	to	strategy,	you	
can	mechanically	convert	one	to	the	other

4715-214

Template	Method	Illustration
// List adapter for primitive int arrays
public static List<Integer> intArrayList(final int[] a) {

return new AbstractList<Integer>() {
public Integer get(int i) {

return a[i];
}

public Integer set(int i, Integer val) {
Integer oldVal = a[i];
a[i] = val;
return oldVal;

}

public int size() {
return a.length;

}
};

}

4815-214

Visitor

• Intent	– Represent	an	operation	to	be	
performed	on	elements	of	an	object	structure	
(e.g.,	a	parse	tree).	Visitor	lets	you	define	a	new	
operation	without	modifying	the	type	hierarchy.

• Use	case	– type-checking,	pretty-printing,	etc.
• Key	types	– Visitor,	ConcreteVisitor,	all	the	types	
that	get	visited

• JDK	– None	that	I’m	aware	of

4915-214

More	on	Visitor

• Visitor	is	NOT	merely	traversing	a	graph	
structure	and	applying	a	method
– That’s	Iterator

• The	essence	of	visitor	is	double-dispatch
– First	dynamically	dispatch	on	the	Visitor
– Then	on	the	object	being	visited

5015-214

Summary

• Now	you	know	all	the	Gang	of	Four	patterns
• Definitions	can	be	vague
• Coverage	is	incomplete
• But	they’re	extremely	valuable
– They	gave	us	a	vocabulary
– And	a	way	of	thinking	about	software

• Look	for	patterns	as	you	read	and	write	software
– GoF,	non-GoF,	and	undiscovered

