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Abstract This paper describes a collection of optimization
algorithms for achieving dynamic planning, control, and state
estimation for a bipedal robot designed to operate reliably
in complex environments. To make challenging locomotion
tasks tractable, we describe several novel applications of
convex, mixed-integer, and sparse nonlinear optimization to
problems ranging from footstep placement to whole-body
planning and control. We also present a state estimator for-
mulation that, when combined with our walking controller,
permits highly precise execution of extended walking plans
over non-flat terrain. We describe our complete system inte-
gration and experiments carried out on Atlas, a full-size
hydraulic humanoid robot built by Boston Dynamics, Inc.
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1 Introduction

The dream of legged robotics is to achieve reliable, versa-
tile, and dynamic locomotion for a robot capable of doing
useful work in a variety of environments. As participants in
the DARPA Robotics Challenge (DRC), we are particularly
interested in tasks related to disaster relief, such as walk-
ing outdoors over irregular terrain and maintaining stability
while applying forces to the environment such as when cut-
ting through a wall with a power tool. Disaster scenarios place
a premium on the ability to walk over and around obstacles
and through narrow passages that require reasoning about the
full kinematics of the robot. Several practical challenges arise
in the design of these systems, such as how to manage the
complexity of the robot and environment model to efficiently
do online planning and feedback control and how to achieve
sufficiently precise execution given inevitable sensor limita-
tions. In this paper we describe our approach to addressing
these problems with Atlas.

Perhaps the most basic capability our system must have
is the ability to navigate to a desired location despite the
presences of obstacles such as steps, gaps, and debris. Our
approach to walking combines an efficient footstep plan-
ner with a simple dynamic model of the robot to efficiently
compute desired walking trajectories. To plan a sequence
of safe footsteps, we decompose the problem into three
steps. First, a LIDAR terrain scan is used to identify obsta-
cles in the vicinity of the robot. Given this obstacle map,
we solve a sequence of optimization problems to compute
a set of convex safe footstep regions in the configuration
space of the foot. Next, a mixed-integer convex optimization
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problem is solved to find a feasible sequence of footsteps
through these regions. Finally, a desired center of pressure
trajectory through these steps is computed and input to the
controller.

For complex dynamic whole-body motions like climbing
out of a car or getting up from the ground, more descriptive
kinematic and dynamic models must be used for plan-
ning motions. However, for complex humanoid systems like
Atlas, solving trajectory optimization problems using the full
dynamics can be computationally prohibitive. We describe
a direct transcription algorithm (Sect. 3.2) that computes
dynamically-feasible trajectories using the full kinematics
and centroidal dynamics of the robot. This formulation
offers a significant computational advantage over existing
full dynamic trajectory optimization algorithms while still
producing dynamically-feasible whole-body trajectories for
running and jumping with an Atlas model.

We use time-varying linear quadratic regulator (LQR)
design to stabilize trajectories for a simplified dynamic model
of the robot (Sect. 4.2). By combining the optimal LQR
cost-to-go with the instantaneous dynamic, input, and con-
tact constraints of the full robot inside a quadratic program
(QP), we exploit the stabilizing properties of LQR while
maintaining the versatility afforded by QP-based control for-
mulations in which whole-body motions can be tracked or
constrained in a variety of ways. To implement our controller
on a physical system requires that we be able to efficiently
compute solutions to the QP at each control step. We describe
an efficient active-set algorithm capable of finding solu-
tions in less than 1 millisecond for Atlas (68 states and 28
inputs).

Inputs to the controller are computed by a low-drift
state estimator that fuses kinematic, inertial, and LIDAR
information (Sect. 5). Despite significant kinematic sen-
sor limitations due to backlash and actuator deflection, our
experiments demonstrate a measurable improvement in our
ability to estimate the robot’s state in a variety of exper-
imental scenarios. We show that the robot is capable of
walking over nontrivial terrain while maintaining extremely
low drift from the desired footstep trajectory—a critically
important capability to navigate efficiently through obstacle-
ridden environments.

The paper is organized as follows. In the following section,
we give a brief overview of the Atlas hardware. In Sect. 3 we
describe our footstep planning and dynamic motion planning
algorithms. In Sects. 4 and 5 we describe our control and state
estimation formulations, respectively. In Sect. 6 we describe
several experiments performed on the physical robot evaluat-
ing the state estimation and control algorithms in practice. We
also describe recent simulation results of controlled highly
dynamic motions that are currently being developed for the
robot. Finally, we conclude with a discussion of future work
in Sect. 7.
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2 Atlas

Atlas is a full-scale, hydraulically-actuated humanoid robot
manufactured by Boston Dynamics, Inc. The robot stands
approximately 188 cm tall with a total mass of 155kg (with-
out hands attached). It has 28 actuated degrees of freedom: 6
in each leg and arm, 3 in the back, and 1 neck joint. A tether
attached to the robot supplies high-voltage 3-phase power
for the on-board electric hydraulic pump, distilled water for
cooling, and a 10 Gbps fiber-optic line to support communi-
cation between the robot and a field computer that runs our
planning, estimation, and control software.

Joint position, velocity, and force measurements are gen-
erated at 1000 Hz on the robot computer and transmitted back
to a field computer. Joint positions are measured by linear
variable differential transformers (LVDTSs) mounted on the
actuators. There are no joint force sensors, but joint forces
are inferred using pressure sensors inside the actuators. In
addition to the LVDT sensors, digital encoders mounted on
the neck and arm joints give low-noise position and velocity
measurements (notably these are not available in the legs).
A KVH 1750 inertial measurement unit (IMU) mounted on
the pelvis provides highly accurate 6-DOF angular rate and
acceleration data used for state estimation (Sect. 5). Two 6-
axis load cells are mounted to the wrists, and arrays of four
strain gauges, one in each foot, provide 3-axis force-torque
sensing.

As illustrated in Fig. 1, the robot is equipped with a Multi-
sense SL sensor head designed by Carnegie Robotics which
combines a fixed binocular stereo camera with a Hokuyo
UTM-30LX-EW planar LIDAR sensor mounted on a spin-
dle that can rotate at up to 30RPM. The LIDAR captures
40 scan lines of the environment per second, each contain-

Fig. 1 The Boston Dynamics Atlas humanoid robot and the Carnegie
Robotics Multisense SL sensor head equipped with a rotating LIDAR
scanner and a stereo cameras. (photo credits: Boston Dynamics and
CRL)
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ing 1081 range returns out to a maximum range of 30m.
The entire head can pitch up and down but it cannot yaw
or roll.

We received the robot on August 12, 2013 and imple-
mented a software system (originally developed in simula-
tion) to compete successfully in the DRC Trials on December
20, 2013. Our related paper describes the many pieces of our
software system used in the competition (Fallon et al. 2015).
The vast majority of the planning, estimation, and control
implementation work described in this paper was done after
this event between January and October 2014. In February
2015, Boston Dynamics completed a major upgrade to Atlas
that included multiple actuator redesigns, reconfiguration of
the arms, 2 additional arm DOFs, approximately 25kg in
additional mass, and capability to operate wirelessly with
battery power and onboard computers for perception and
control. For simplicity we describe our approach in terms
of the earlier system, but we note that the same algorithms
have successfully been applied to the most recent version of
the robot.

3 Motion planning

Motion planning for legged systems is a fundamentally
mixed discrete and continuous optimization problem. Plan-
ning algorithms must decide where and when contacts with
the environment are initiated or broken and, during peri-
ods of unchanging contact, the system must typically move
smoothly while maintaining balance and achieving a desired
motion or interaction with the environment. For typical walk-
ing tasks, we decompose the discrete phase into two parts.
We first analyze the environment and compute a set of con-
vex regions where contacts are allowed. Then we solve an
optimization problem that assigns contacts to these regions
in a way that minimizes cost while respecting kinematic and
dynamic constraints.

We will discuss two distinct approaches for assigning
contacts to convex regions. The first is for the case of foot-
step planning, where kinematic constraints on footstep poses
are defined with respect to the previous step using approx-
imate reachable regions. This formulation is suitable for
the majority of the locomotion scenarios we are interest-
ing in exploring. The second method goes one step further
by including the full kinematics and centroidal dynamics
of the robot in the optimization to guarantee reachability
and support a wider variety of motions and environmental
interactions (such as planning to grab handrails or transition
from prone to standing), at the expense of increased compu-
tation time. We discuss our approach to footstep planning in
the following section and our whole-body dynamic planning
algorithm in Sect. 3.2.

3.1 Footstep planning as a mixed-integer convex
problem

We identify the footstep planning problem as a matter of
choosing footstep placements on a given terrain from a start
state to a goal while ensuring that the sequence of steps can be
safely executed by Atlas. We represent this problem as single
mixed-integer convex optimization, in which the number of
footsteps and their positions and orientations are simultane-
ously optimized with respect to some cost function, while
ensuring that each footstep is on safe terrain.

Existing footstep planning methods, broadly speaking, fall
into two categories: discrete searches and continuous opti-
mizations. We retain some elements from both categories,
performing a simultaneous optimization of the discrete
assignment of footsteps to convex regions and the contin-
uous position of the footsteps within those regions.

Discrete search approaches have typically made use of a
successor set, a list of possible poses for one foot relative to
the position of the other foot. From the set of successors, a
tree of possible footstep plans can be built and explored to
find a path from start to goal. Obstacle avoidance is easily
handled by pruning the tree of successors whenever a foot
would intersect an obstacle. This approach has been used
successfully by Kuffner et al. (2001, 2003), Chestnutt et al.
(2003), Michel et al. (2005), and Baudouin et al. (2011). Later
work by Chestnutt introduced an adaptive successor set, in
which a small continuous search is performed to adjust a
step that would result in collision with an obstacle (Chestnutt
et al. 2007). That approach was demonstrated with online re-
planning over rough terrain (Nishiwaki et al. 2011). Shkolnik
also used a fixed successor set to represent dynamically feasi-
ble bounding motions for a quadruped (Shkolnik et al. 2011).
Implementation of these discrete searches requires very care-
ful selection of the successor set: a small set severely restricts
the possible motions that can be made, while a large set results
in a rapidly branching tree of possible plans. Discrete search
techniques such as A* can be challenging to apply to foot-
step planning due to the difficulty of finding an informative,
admissible heuristic (Garimort and Hornung 2011).

Continuous optimizations avoid the challenges of choos-
ing a particular successor set by allowing the position of each
footstep to vary subject to some constraints. The reachabil-
ity of the robot’s legs can be represented with constraints
on the relative positions of each footstep, and costs or con-
straints can be added to ensure that the footstep plan reaches
its goal position. If the objective function and constraints are
convex, then such an optimization can be solved extremely
efficiently (Boyd and Vandenberghe 2004). Herdt performs a
convex optimization to plan footstep positions and a center-
of-mass trajectory, using linear constraints on the distance
from one foot to the next to represent the robot’s reachable
set (Herdt et al. 2010). However, the need for convex con-
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straints prevents this optimization from considering the yaw
of the robot or its feet and prevents it from handling obstacle
avoidance. Our prior work used a non-convex optimization
to find locally optimal footstep plans and was able to include
yaw as a decision variable, but could still not effectively avoid
obstacles (Fallon et al. 2015).

Prior to planning any walking motion, we classify the area
around Atlas as safe or unsafe for footstep placement. In the
environments used for the DRC, we found it sufficient to
simply exclude areas of the terrain that are steeper than a pre-
defined threshold. To plan footstep contacts, we must ensure
that each footstep lies in the safe terrain set. Unfortunately,
the set of safe terrain is unlikely to be convex or even con-
nected: in an environment as simple as a staircase, the safe
terrain consists of the top surface of every step, a non-convex
and disconnected set. In order to perform an optimization of
footstep placements, we must constrain the footsteps to lie
in this non-convex set. In general, when an optimization has
non-convex constraints, it can be difficult or impossible to
find a globally optimal solution or to prove that none exists
(Boyd and Vandenberghe 2004).

Instead, we choose to explicitly represent the combi-
natorial aspect of footstep planning by decomposing the
non-convex set of safe terrain into a set of convex planar safe
regions. The approximate decomposition we use is described
in Sect. 3.1.1. This transforms the problem of avoiding obsta-
cles into a discrete problem of assigning each footstep to
some convex region that is known to be obstacle-free. In
principle, the exponential number of possible assignments of
footsteps to convex regions may appear to be intractable, but
if we restrict our optimization to an objective function that is
convex, then it is straightforward to represent the problem of
assigning footstep poses to convex regions as a mixed-integer
convex problem. In the worst case, this does not eliminate
the exponential search through the discrete assignments, but
in practice the convex objective can provide an informative
heuristic for the search process and dramatically reduce the
time needed to find the optimal solution. Excellent tools have
been developed in the past decade to solve a variety of mixed-
integer convex problems, and the solvers can provide globally
optimal solutions or proofs of infeasibility where appropriate
(Gurobi Optimization, Inc. 2014; Mosek 2014; IBM Corp.
2010).

The general form of mixed-integer convex programming
is

minimize  f(X,Y)
X,y

subjectto  g(x,y) <0

yeZz",

where f and g are convex functions and the elements of
the vector y € Z™ take on integer values. A special case of
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this is mixed-(0,1) convex programming, in which the y are
restricted to values of only O or 1:

minimize  f(X,y)
X,y

subjectto  g(x,y) <0

y € {0, 1}".

We use binary variables of this form to indicate the assign-
ment of footsteps to regions. Let pi, p2,...,pny be the
poses of the footsteps, expressed as position and yaw with
p; = (xj,y;,2j,0j),andlet G1, G2, ..., G be the regions
of safe terrain, represented as convex polytopes. We create a
matrix Y € {0, 1}8*¥ to represent the assignment of foot-
steps to safe regions. Our optimization problem is

minimize  f(p1, ..., PN)

P1,...PN.Y

subjectto  g(p1,...,pn) <0
Yij = pj€G;
Y; j €{0, 1}

R
> Yij=1 Vje{l,...N}.
i=1

The conditional constraint that ¥; ; == p; € G; can be
represented exactly using a standard big-M formulation, pro-
vided that we have some bounds on the possible values of
the p; (Bemporad and Morari 1999). Such bounds are easy
to provide, since no footstep can be farther from the start
pose than the robot’s maximum stride length multiplied by
the number of footsteps. The additional convex constraints
g1, ..., pn) < 0represent an approximation of the reach-
able set of footsteps for Atlas, discussed further in Sect. 3.1.2.

3.1.1 Convex decomposition

To simplify the combinatorial problem of assigning footsteps
to convex safe regions, we would like to minimize the number
of convex pieces into which the safe terrain set is decom-
posed. This presents a number of challenges. First of all, even
for atwo-dimensional environment with polygonal obstacles,
computing the minimum set of convex obstacle-free pieces
that cover the entire environment is computationally very dif-
ficult and is known to be NP-hard (Lingas 1982). Secondly,
even a truly minimal convex decomposition may result in a
very large number of small convex pieces in order to fill in all
of the crevices in a cluttered environment (Lien and Amato
2004). Here we sacrifice the notion of covering the entire
obstacle-free space and instead focus on creating a few large
convex regions. This choice allows us to cover a large frac-
tion of the feasible terrain without creating an unmanageable
number of regions.
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In order to compute these regions, we have developed
IRIS, an algorithm for greedily computing a single large
obstacle-free convex region (Deits and Tedrake 2014a). IRIS
begins with a seed point that is known to be obstacle-free,
provided by our human operator or by a higher-level planner.
That seed point forms the center of a very small obstacle-free
ellipsoid. The IRIS algorithm alternates between two convex
optimizations. In the first step, a series of small quadratic
programs are solved to find a set of hyperplanes that sepa-
rate the ellipsoid from the set of obstacles. Each hyperplane
defines an obstacle-free half-space, and the intersection of
those half-spaces is a (convex) polytope. In the second step,
a single semidefinite program is solved to find the maximum-
volume ellipsoid inscribed in that polytope. These two steps
can be repeated to grow the ellipsoid until a local fixed point
is found. Two complete iterations of the IRIS algorithm are
shown in Fig. 2.

The result of IRIS is the final polytope or ellipsoid, either
of which can be used as a convex representation of obstacle-
free space. We use the polytope representation in our planner,
since it is always of larger volume than the (inscribed) ellip-
soid and can be represented as a set of linear constraints.

When operating Atlas, our human pilot provides the seed
points at which the IRIS algorithm begins. This allows the
operator to provide high-level input about which surfaces are
appropriate for walking, a task that is well-suited to the pilot’s
expertise but difficult to perform autonomously. We are also
currently investigating methods to automate the selection of
seed points, and have demonstrated autonomous seeding of
regions using a simple heuristic in a 3D environment (Deits
and Tedrake 2015).

™ Polytope intersection " Inscribed ellipsoid

o
Starting point

planes

Sepafating ’

Fig. 2 A demonstration of the IRIS algorithm in a planar environment
consisting of 20 uniformly randomly placed convex obstacles and a
square boundary. Each row above shows one complete iteration of the
algorithm: on the /eft, the hyperplanes are generated, and their polytope
intersection is computed. On the right, the ellipse is inflated inside the
polytope. Figure reproduced from Deits and Tedrake (2014a)

3.1.2 Representing reachability

When planning footstep placements, we must somehow rep-
resent the kinematic reachability of the robot, that is, the set
of foot placements that can be achieved given the constraints
imposed by the dimensions of the limbs and the limits of the
joints. Directly reasoning about this reachable set using the
full kinematic model of the robot would be ideal, but such rea-
soning introduces polynomials of trigonometric functions of
the robot’s joint angles and is not compatible with our convex
formulation. Instead, we use a simplified inner approxima-
tion of the reachable set for Atlas that can be represented
with mixed-integer convex quadratic constraints.

We represent the approximate reachable set of footstep
positions as the intersection of circles fixed in the frame of
reference of the prior footstep. Each circle has radius di and
is located at some fixed offset oy in the frame of the prior
footstep. The reachable region defined by these circles is
shown in Fig. 3. For each footstep j, we require that

Xjvt | f|x) n cosf; —sinb; o ) < )
Y+l v sinf; cosf; -

Xjt1| _ [1X) cosf; —sin6;

o) (] et O B

This is not yet a convex constraint, since cos and sin are
non-convex functions. To mitigate this, we replace sin 6; and
cos 0; with additional decision variables, which we label s
and ¢, respectively. Equation 1 becomes

d
~01 f
®.
P1 P2
S
y d,

Fig. 3 Anapproximation of the reachable set of positions for the center
of the right foot given the position of the left foot (p;). The view is
from above. The two circles have radii d; and d> and are located at
displacements of 0 and 0y from pi, respectively. The shaded region
shows the set of reachable poses for the center of the right foot in the
xy plane. A single feasible pose for the right foot is shown as p»
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=di, 3

Lol
Yj+1 Yj Sj €
which is a convex quadratic constraint. Of course, we still
must ensure that s; and c; behave like sin and cos. To do
this, we create piecewise linear approximations of sin and
cos and use additional integer variables to indicate the active
linear approximation for a given value of 6;. By choosing
the number of piecewise linear segments that we use in our
approximation, we can trade off between accuracy and com-
putational speed. The particular approximation used in our
planner is discussed in more detail in Deits and Tedrake
(2014b).

Alternatively, we can avoid the non-convexity introduced
by sin and cos by fixing the yaw angle of each footstep
beforehand, then running the mixed-integer optimization to
determine the position and assignment to safe terrain for each
footstep. Doing so removes the additional integer variables
which were required for our piecewise linear approximation
of the unit circle, but requires us to run a second, nonlin-
ear optimization to solve for the yaw angles themselves.
We can alternate between the two steps to further refine the
footstep plan: using a nonlinear optimization to choose the
footstep orientations, then running the mixed-integer convex
optimization to choose the optimal position and assignment
of those footsteps at the given orientations. The addition of
the nonlinear program removes any guarantees of global opti-
mality, but may still produce acceptable footstep plans. We
have observed that the nonlinear planner works compara-
tively well for long footstep plans with few or no obstacles,
since it does not require the explicit enumeration of each
possible yaw bin for each footstep. When the environment is
cluttered, however, the full mixed-integer convex optimiza-
tion discussed above is required in order to find feasible
solutions.

3.1.3 Determining the number of footsteps

In general, we cannot expect to know a priori how many
footsteps will be needed to reach a target position, so the
footstep planner must be responsible for determining this
number. Since the entire set of footsteps is simultaneously
optimized, changing the number of footsteps alters the size
of the optimization problem. We can, of course, simply try a
variety of numbers of footsteps, performing a separate opti-
mization each time, but this results in a great deal of wasted
computation. Instead, we add a binary flag to each footstep
to indicate that the particular step is unused. We label this
flag p; and require that if p; is true, then footstep j be fixed
to the starting pose of that foot

p: if jisodd
pj = Pj = e “)
p> if jis even,
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Fig. 4 Tllustration of the footstep planner being used to climb cinder
blocks. Top the robot approaches cinder block steps, the user selects
clicks regions of interest on the terrain map, and convex regions are
optimized using IRIS. Bottom the robot plans footsteps through the
convex regions using mixed-integer optimization and the robot executes
the desired footsteps

where p; and p; are the fixed initial poses of the feet. Adding
anegative cost on each p; to the objective in our optimization
allows us to reward the planner for taking fewer footsteps
without knowing beforehand how many will be required.
After the optimization is complete, any footstep with p; equal
to 1 can be removed from the plan.

To complete the formulation, we add linear constraints
on the change in z and yaw values from one footstep to the
next, which prevents the robot from turning or climbing too
far in a single step. We also add a quadratic cost on the dis-
placement between adjacent footsteps, to penalize very large
steps that may be more likely to cause a fall. The result is
a single mixed-integer quadratically-constrained quadratic
program (MIQCQP) that, when solved to optimality, chooses
the position and orientation of each footstep, the total number
of footsteps to take, and the assignment of those footsteps to
convex safe regions of terrain. Figure 4 illustrates the use of
this planner in practice.

We formulate the entire footstep planning optimization as
follows:

N
e T
minimize — — + i
xSk o pN(pN Pg) Qg(pN pg) jZIQpPJ
N—1
+ D (@j+1—p) QP —p))
j=1

subjectto, for j =1,..., N
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safe terrain regions:

Yr,_,' :}Arpjfbr r=1,...,R
piecewise linear sin 6 :
<@ <
¢p < j = Go+1 -1 I

Se,j =
sj = gs.00; +hse

piecewise linear cos6 :

<0; <
Crj = Pe=0j = b1 t=1,...,L
Cj = geulj +he

approximate reachability:

e N (AR

fix extra steps to initial pose:

’fdi i=1,2

p: if jisodd

Pi Pj ‘pz if j is even.

R L L
SDHj=DS=> Cuj=1
r=1 =1 =1

Y. i, 8¢, Cej,pj €1{0,1}

bounds on step positions and differences:
Pmin = P; = Pmax

APmin < (Pj —Pj—1) < APmax

where p, € R* is the x, v, z,0 goal pose, Q, € Si and
Q, € Si are objective weights on the distance to the goal
and between steps, g; € R is an objective weight on trim-
ming unused steps, and Pmin, Pmax> APmin, APmax € R* are
bounds on the absolute footstep positions and their differ-
ences, respectively. We also fix p; and p» to the initial poses
of therobot’s feet. The g ¢, hs¢ and g¢ ¢, h¢ ¢ terms represent
a pre-selected piecewise linearization of the sine and cosine
functions, described in more detail in Deits and Tedrake
(2014b).

Despite the very large number of discrete decisions
involved in solving the footstep planning problem to optimal-
ity, the mixed-integer convex formulation leads to extremely
efficient solutions in typical cases. For a footstep plan of
N = 12 steps, in which each step must be assigned to one
of R = 10 safe regions, L = 8 piecewise linearizations
of sin and cos, and 2 values of each p;, there are, naively,
1012 x 812 %212 ~ 3x 10%6 possible discrete combinations to
explore. However, the convex objective and constraints allow
the solver to avoid exploring the vast majority of that search
space without sacrificing optimality. In Deits and Tedrake
(2014b) we demonstrate typical solve times of 1 to 10 sec-
onds for problems of such a size. When the entire terrain is
flat and no safe region assignments are needed, solve times
are typically less than 1 second for plans of up to 16 footsteps.

Given a desired footstep trajectory, a dynamic walking
motion can be defined using a piecewise polynomial cen-
ter of pressure (COP) trajectory through the footsteps (this

idea is described further in Sect. 4). However, for more com-
plex, whole-body motions like running or getting up from the
ground, we require the richer planning formulation described
next.

3.2 Dynamic motion planning

For humanoid robot performing complex motions in nontriv-
ial environments, kinematic and dynamic constraints often
appear together. For example, a robot jumping down off a
ledge must reason about the contact forces being applied
during launch, its center of mass (COM) velocity at the point
of takeoff, the position of its foot with respect to the ledge
during flight, and the kinematic reachability of its legs during
landing.

The descriptiveness of the dynamic model used for plan-
ning strongly affects the range of possible motions. At
one end of the spectrum are optimizations that reason
about the full hybrid dynamics of the legged system. Such
approaches have been shown to produce beautiful results
in model systems (Mombaur 2009; Posa et al. 2014), but
they remain computationally expensive for high-dimensional
systems like Atlas. At the other end are methods based on
reduced dynamical models, where assumptions about the
local flatness of terrain and absence of angular momentum
greatly simplify the dynamics. To produce a larger variety
of dynamic multi-contact motions, we have developed an
approach that strikes a balance between these extremes and
plans using the full kinematics of the robot to enforce geo-
metric contact conditions and a dynamic model that encodes
the relationship between the contact force on the robot and
the robot’s total linear and angular momenta.

For all mechanical systems, the rate of the total linear
and angular momentum of the system must equal the net
external wrench (force/torque) on the system. The instan-
taneous momenta are functions of the generalized position,
q, and velocity, v. In our implementation we represent the
floating base positions and velocities using Euler angles
and their derivatives, although singularity-free representa-
tions can also be used. The centroidal momentum is the total
momentum defined in a coordinate frame at the instantaneous
center of mass (COM) position and aligned with the world
frame. Orin and Goswami (2008) showed that it can be com-
puted easily using the centroidal momentum matrix, Ag:

he = Aoy =[] )

where k and 1 are the centroidal angular and linear momenta,
respectively.

The rate of the centroidal momentum can be expressed by
differentiating (5) or by writing it as a function of external
forces (Lee and Goswami 2012; Dai et al. 2014):
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Fig. 5 Left A conservative
friction polyhedron with

Ny = 4. The force vector, A ;, at
contact j is a positive
combination of the generating
vectors, Wij,i =1,...,4.
Center external forces acting at
a set of contact points (6). Right
external forces and torques
acting on the robot summarized
at the COP (20)

Ne¢
k:Z(c, —1) XA
j=
N (©®)
l=mf=mg+ZXj,
j=1

where r is the COM of the robot, m is the total mass, g is
the acceleration due to gravity, and ¢;, A, are the contact
position and force, respectively, at point j. N, is the number
of active contact points. As will be discussed below, we use a
redundant multiple-force description of the total wrench act-
ing on a rigid body because it permits the use of simple linear
friction constraints in our optimization. There has been com-
pelling recent work in controlling the momenta of humanoids
for balance and locomotion (Koyanagi et al. 2008; Lee and
Goswami 2012; Herzog et al. 2013; Koolen et al. 2013a),
including the resolved momentum control framework pro-
posed by Kajita et al. (2003) and Neo et al. (2007). Inspired
by this work, we design our planning algorithm using the
concept of centroidal momentum.

Our approach is to plan trajectories using the full kine-
matics while reasoning about external forces and moments
and using the centroidal dynamics to ensure dynamic feasi-
bility. In doing so, we are making a fundamental assumption
that the robot’s n — 6 internal degrees of freedom are fully
actuated, and that the dynamic constraints can therefore be
defined in terms of the 6 floating base DOFs. This results in an
optimization problem with far fewer decision variables and
constraints compared to an optimization that includes the full
dynamics. In addition, the gradients of the constraints (which
are required by most nonlinear optimization problem solvers)
are significantly easier to compute. The price for this reduced
computation is the inability to reason about internal torques.
However, in practice this is not a tremendous limitation given
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the considerable strength of Atlas’ actuators. Even for robots
with very restrictive actuator limits, there may be some com-
putational benefit to using the output of this optimization
as an initial seed for a trajectory optimization problem that
reasons about the full dynamics.

To generate reasonable dynamic motions, friction con-
straints on the contact forces must be satisfied. We use a
standard, conservative polyhedral approximation of the fric-
tion cone for each active contact point, ¢;, and require that

Ny
Aj= Zﬁijwij, Bij = 0. @)

i=1

The generating vectors, w;;, are computed as w;; = n; +
wjd;;, where n; and d;; are the contact-surface normal and
i tangent vector for the j contact point, respectively, j
is the Coulomb friction coefficient, and N, is the number
of tangent vectors used in the approximation (Pollard and
Reitsma 2001). Figure 5 illustrates this idea graphically.

Trajectory optimization algorithms fall into two general
classes: shooting methods and transcription methods (Betts
1998). Shooting methods involve only the control inputs as
decision variables and must simulate the system forward in
order to evaluate the cost function. Transcription methods,
on the other hand, include a finite set of states along the
trajectory as decision variables and incorporate the dynamics
of the system as constraints on the state and input variables.
By simultaneously optimizing the states and inputs along the
trajectory, transcription methods avoid numerical issues that
can be present in shooting methods (in which small changes
in inputs early in the trajectory can lead to large changes in
cost and final state) and avoid the need to simulate the system
dynamics during optimization.
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We formulate a direct transcription problem by repre-
senting the differential constraints as algebraic equations at
k = 1,..., M points, with h[k] denoting the time interval
between knot point k and k + 1:

minimize
r

M
Z L(q(k], v[k], ¥[k], A[k], hlk])
k=1

subject to  mi[k] = mg+ > A;[k]
j

k[k] = A¥ (q[k])V[k]
k[k] = D (cjlk] — r[k]) x &;

J

The kinematic constraints typically include unilateral joint
limits, contact location, and collision-free constraints. Simi-
lar constraint sets have been employed to control whole-body

(linear momentum)

(angular momentum)

(angular momentum rate)

Ng

Vi Ajlkl =" Bijlklwi; (friction)
i=1

Vij Bijlk] >0

r[k] = COM (q[k]) (COM location)

Kinematic constraints

Time integration constraints

where the set of decision variables, I, is

I' = {qlk], v[k], h[k], r[k], £[k], ¥[k], ¢;[k], A[K], BLK],
k(k],K[k] | k=1,..., M}, (8)

and the cost function, L(q[k], v[k], ¥[k], A[k], h[k]), is equal
to

hIK] ( lak] = duom k111G, + VKT,

+IFEI + D11, |- ©)
J

where ||x||%2 is shorthand for the quadratic cost, x” Qx, Q >
0, and A'é is a matrix formed by taking the top three rows
of Ag. The cost term (||q[k] — qnom [k]||6q regularizes the
configuration of the robot to a nominal pose (e.g., a typical
standing posture).

The time integration constraints include backward-Euler
integration of the generalized velocities, rate of angular
momentum and COM acceleration, and mid-point integra-
tion on COM velocity.

hlk]v[k] = q[k] — q[k — 1] (10
hlkIk[k] = k[k] — k[k — 1] (11)
hIkIF[k] = £[k] — ¥[k — 1] (12)
hlk] . )

— (k] + £k — 1) = r{k] = rlk — 1], (13)

humanoid motions previously (Saab et al. 2011; Dalibard
et al. 2013). Dalibard et al. (2013) separately solve the kine-
matic planning problem using full body model and a point
mass dynamic model. Our approach combines these two
problems together with a more descriptive dynamic model,
and is able to generate motions that cannot be handled by this
kind of two-stage planner (such as the running and jumping
examples in Sect. 6.4).

The gradients of this optimization problem are sparse,
since most of the constraints only depend on decision vari-
ables at one or two knot points. Nonlinear programs with
sparse gradients can be solved efficiently using powerful
sequential quadratic program (SQP) solvers like SNOPT
(Gill et al. 2005). Solution times vary with the particular
planning problem; for the examples shown in Sect. 6.4 our
un-optimized implementation took between 1 and 10min
to find solutions on machines with 3.1-3.3GHz Intel i7
CPUs. More detail including examples of this approach being
applied to plan quadruped gaits and complex humanoid tra-
jectories like traversing monkey bars is available (Dai et al.
2014).

4 Controller design
Our approach to feedback control can be summarized in

the following way. Given a planned trajectory for a reduced
model of the dynamics (e.g., centroidal dynamics), we com-
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pute a time-varying linearization around the trajectory and
derive a stabilizing controller using time-varying linear-
quadratic regulator (TV-LQR) design. But rather than using
the closed-form optimal controller from LQR, we formulate
and solve a quadratic program (QP) that additionally captures
the instantaneous dynamics, input, and contact constraints of
the full walking system. In the following sections, we write
the problem in a general form first, then describe particu-
lar implementations used in conjunction with the planners
described previously.

4.1 General formulation

Given the dynamics, X = f(x, u), and a desired trajectory,
X4(1),uq(t) fort € [0, ], we linearize along the trajectory,

X(t) = AOX() + BOu(), (14)

using the relative coordinates, X(f) = x(t) —x4(t) andu(r) =
u(t) —uy(r). Next we define a quadratic cost function,

g(x(),u(t), 1) = x" (1)Qx(t) +a’ (1HRu(r), (15)

and solve the constrained minimization problem,

i
/ g(x(1),u(r), 1)dt
0

mlI:ll(ItI)nZC

subject to  X(1) = A()X(r) + B()u(r)
Q=Q" >0
R=R" > 0.

The solution to this problem is given by solving the contin-
uous Riccati differential equation, which yields the optimal
cost-to-go (Tedrake 2014b),

J(x,1) = XL (0)S)X(@) + XL (1)s1(1) + $2(7). (16)

By the Hamilton—Jacobi-Bellman (HJB) equation (Bert-
sekas 1995), we know that the optimal controller satisfies

u*(t) = argmﬁin £(x,u,t), (17)

(x,a,t) =al (HRa@) + (ZiT(t)S(t) + s{(z)) Bua(7),
(18)

for all x, where we have dropped constant terms from the
minimization. It is easy to show that (17) can be written as a
time-varying linear policy simply by taking the derivative of
£(x, u, r) with respect to u, setting it equal to zero, and then
solving for u.

The key point here is that for physical systems we typically
have inequality constraints that cannot be ignored, such as
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torque limits or constraints on ground reaction forces. As
long as these constraints can instantaneously be expressed
as linear inequalities, we can formulate and solve a convex!
QP to compute inputs at each control step given X,

minimize (X, u, ¢) subjectto Mu <b. (19)
u

In other words, this optimization finds the steepest descent
direction of the cost-to-go subject to the constraints of the
system. Note that inputs computed by solving this QP are,
in general, not equal to those computed by thresholding the
output of the closed-form LQR policy. In addition, as we
will see below, using this framework allows for additional
constraints to be added to the QP with little additional com-
putational cost.

4.2 COM and COP stabilization

Consider the case where our walking plan is in the form of
a piecewise polynomial center of pressure (COP) trajectory,
cq(t),t € [0, 17], derived based on a desired footstep plan. In
our current implementation, ¢, (¢) is a piecewise linear trajec-
tory that interpolates between the planned footstep centroids
with timing governed by high-level walking parameters such
as swing speed and double-support time.

For a legged system on locally flat terrain, the centroidal
dynamics (6) can be rewritten in terms of the COP (Lee and
Goswami 2012), ¢, as

k= (c—r) X Ac+ Tn,

I=mg+2., 20)
where c is the COP, A, is the net external force at the COP, and
T, is the normal contact moment. This is illustrated on the
right side of Fig. 5. If we assume that the centroidal angular
momentum of the robot, k = 0, k = 0, and the normal
moment, 7, = 0, the centroidal dynamics simplify to

. |
XcMm = Axem + Buey = [gixj oixﬂ XCM
X X

0
+ [ M}uCM, 1)
| %)

¢ = [I2x2 O2x4 | Xem — = rfr
z

P Ixoucwm, (22)

where Xcm = [7x, 1y, 7y, r'y]T is the ground projection of the
COM, and ucym = [y, iiy]7 .

The outputs (22) are nonlinear in general, but they are
linear time-varying given a twice differentiable COM height
trajectory, or linear time-invariant if we assume the COM

! Note that £(X, @, ¢) is convex since R > 0.
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height remains constant (resulting in the well-studied linear

inverted pendulum dynamics). In practice, this is often a rea-

sonable assumption to make despite violations that inevitably

occur during execution. In our implementation, we fix the

COM height and use the linear form of the outputs (22).
We formulate the LQR problem,

/0 g(xem (1), ucm(t), t)dt

minimize
ucm (1)
subject to  Xcm (1) = AXem (1) + Biiem (1)
-

(1) = [I2x2 O2x4 | Xem (1) — EZIUCM(I)
cq(t) =cq(ty), Vit =ty
Q=Q" »0
R=R" > 0.

where Xem = xem(t) — [¢](#7), 0,017 and ucm(r) =

ucm (7). Here the cost is defined in terms of outputs ¢(f) =
C([) —Cq (t)3

g(xem(®), uem (1), 1) = & (1)Qce(t) + uly (HRicm (1),
(23)

where the right hand side can be written in terms of xcm(¢),
ucm(?), and ¢g4(¢) by substituting in the linear output equa-
tion. Deriving the Riccati equation for this problem reveals
that S has no time-dependent terms (amounting to the con-
tinuous algebraic Riccati equation). The linear and affine
cost-to-go coefficients then become linear differential equa-
tions that we can solve with a single backward pass along the
trajectory (i.e. without having to numerically integrate). This
means that in practice £(XcmMm, UcM, ¢) can be computed very
efficiently on time scales appropriate for receding-horizon
footstep planning. A paper containing a full description of
this algorithm is currently in preparation.

4.3 Stabilizing whole-body plans

The planning algorithm described in Sect. 3.2 provides
richer inputs to the controller in the form of full kinematic,
centroidal momentum, and external force trajectories. We
therefore have more flexibility in how we design our LQR
problem. However, in keeping with the simplicity of the COP
LQR formulation, we stabilize the 3D COM trajectory using
simple linear COM dynamics. Given the COM trajectory
Tdes(?), Tdes(t), Faes(t), we define a quadratic cost,

g(xem(t), ucm (1), 1) = &y (1) QXem (1) +iady (D Riacm (1),
(24)

where Xem (1) = Xem (1) — [ (), Pl )17, Gem(r) =
ucMm(f) — Fges(f), and the dynamics are taken to be the

the 3D analog of (21). We found empirically in simulation
experiments that adding terms to explicitly control angular
momentum in addition to the COM trajectory did not notice-
ably improve stability.

If the motion of the robot involves a flight phase, then we
must modify the LQR problem to account for the fact that
the robot COM motion is completely determined by gravity.
To track a desired motion in flight the robot must achieve the
desired COM state at the time of take off. Thus the robot COM
dynamics becomes hybrid: it has the smooth double integra-
tor dynamics above in the support phases, and a discrete
transition from takeoff to landing state in the flight phase.
We compute the cost-to-go for this hybrid system using the
jump Riccati equation (Manchester et al. 2011). Intuitively,
this hybrid LQR approach simply encodes the goal of track-
ing the the COM trajectory up to the point of takeoff and after
landing.

4.4 Additional costs and constraints

In practice, the QP formulation (19) must be augmented with
additional cost terms and linear constraints to achieve satis-
factory performance. To begin with, since the LQR dynamics
we derived above are not the full robot dynamics, we must add
additional constraints to our QP to compute feasible inputs to
the robot. Given the current robot state, q, v, we can compute
the equations of motion,

H(q)V+C(q,v) =Bt +J'1, (25)
T

)=l e
where H(q) is the mass matrix, the vector C(q, v) captures
the gravitational and Coriolis terms, B is the control input
map, and J7 transforms external forces, A, into general-
ized forces. We have explicitly partitioned the dynamics into
unactuated and actuated DOFs. For typical humanoids like
Atlas, the only unactuated DOFs are the floating base and B,
is full rank.

We can use this decomposition to eliminate the input
torques, T, as a decision variable and represent torque con-
straints as linear inequality constraints on A and v. For the
case of robot walking, the vector A = [llT . )‘1(& 17 con-
tains ground contact forces acting at N, contact points. We
use the same polyhedral approximation described in Sect. 3.2
(with N; = 4) to ensure the contact forces remain inside the
friction cone.

In addition to respecting friction constraints, the controller
must detect when it can assign nonzero values to external
force variables. For example, during or when entering a swing
phase, the QP should not assign positive ground reaction
forces to that foot. For this we used a simple logic to deter-
mine what contact force variables should be included in the
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optimization: if the robot expects to be in contact (based on
the footstep plan) or foot strain gages are reporting signifi-
cant values on the foot, the force variables for that foot can
be assigned positive values. The exception to this is when
the foot is breaking contact during walking, where the plan
is used exclusively to determine whether a foot is in con-
tact or not. In practice, if the planned contact state is active
but no force is measured, we set the friction coefficient to
be a small constant value (effectively only allowing normal
contact forces on that body). This helps to reduce unwanted
tangental motions of the foot prior to contact.

Since the LQR solutions do not capture the whole-body
motion of the robot, we specify additional motion goals as
desired accelerations of a set of frames attached to bodies on
the robot, such as the feet and pelvis. Desired accelerations
of abody frame, p(7), at time ¢ are computed using a PD rule,

Pref (1) = Ky (pa (1) —p(1)) +Ka (pa (1) —p (1)) +Pa (1), (27)

where pg(7) is a smooth twice-differentiable desired tra-
jectory for the frame. For typical walking, smooth foot
trajectories are computed by the footstep planner and desired
pelvis motion is computed from the footstep plan. In our
implementation, the desired pelvis yaw is equal to the aver-
age foot yaw, and the pelvis height is maintained at a constant
height above the feet. For whole-body dynamic motions, we
track the smooth foot, pelvis, torso, and hand trajectories
specified by the plan.

In addition to or in place of body accelerations, desired
generalized accelerations, v, can be input and incorporated
as costs or constraints in the QP. For example, general-
ized acceleration constraints can be useful for maintaining
a fixed upper body configuration while walking and carry-
ing an object. In practice we found it extremely helpful to
quickly be able to try different combinations of constraints
and change constraints to costs (and vice versa). Our freely-
available implementation in Drake (2014a) supports a variety
of options for making these changes with minimal effort.

The complete QP used in our experiments described in
Sect. 6 is described in Quadratic Program 1.

Quadratic Program 1

minimize  £(XcMm, UcM, 1)
v,AB.e

+ " willBi (V) — Birer (1% + we ]
i¢C

subjectto  Hpyv — J;x =—-Cy (dynamics)
Viec Pi(V) = —np(t) +¢ (no slip)
|€‘ S Emax
Na
Vi=(1.N) Aj = Zﬂijwij (friction)
i=1
Vij Bij =0
B, ' (H,v + Cq — JIX) € [Tmin. Tmax] (input)
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Here the set C contains the indices of bodies that are in
contact with the environment. For bodies in contact, we apply
a “no slip” constraint that, for example, can require that the
acceleration of contact points be 0 or some nonzero value in
the direction opposite their velocity. To avoid infeasibility,
we incorporate slack variables, €, that permit bounded vio-
lations of these constraints (subject to additional cost). For
Atlas balancing in double support, the QP has 90 decision
variables, 30 equality constraints, and 112 inequality con-
straints. Note that Xcy and ucy can be expressed as affine
functions of the decision variables given the state of the robot,

(q, v):

_ COM(q)|

= — es 28
X [JCM(q)v] XCM.d 29
icm = Jem(Q)V + Jem(Q)V — oM des., (29)

where Jom(q) is the COM Jacobian.

Several researchers have recently explored using QPs to
control bipedal systems both in simulation (Abe et al. 2007,
Collette etal. 2007; Macchietto et al. 2009; Kudoh et al. 2002;
Koolen et al. 2013b; Feng et al. 2013) and in hardware (Ames
2012; Herzog et al. 2013; Saab et al. 2013; Johnson et al.
2015). As in our formulation, these optimizations typically
employ low-dimensional dynamic quantities such as center
of mass (COM) acceleration (Abe et al. 2007), rate of change
of linear and angular momenta (Macchietto et al. 2009; Her-
zog et al. 2013; Koolen et al. 2013b), zero moment point
(ZMP) (Saab et al. 2013), or canonical walking functions
(Ames 2012), where the QP cost consists of a weighted dis-
tance from a reference value computed using a simple PD
control rule (Abe et al. 2007; Macchietto et al. 2009; Herzog
et al. 2013).

Johnson et al. (2015) implemented a QP-based momen-
tum controller to achieve balancing and walking with an Atlas
robot and compete successfully in the 2013 DRC Trials. Her-
zog et al. (2013, 2014) used a QP controller for balance
control in a hydraulic humanoid lower-body. Our approach
shares several features with these approaches, particularly
in the definition of constraints, but it differs in the use of
time-varying LQR to stabilize trajectories and construct QP
objectives.

Our use of the optimal cost-to-go as an objective creates
a connection with control Lyapunov techniques. Ames et al.
(2012), Ames (2013) used control Lyapunov functions for
walking by solving QPs that minimize the input norm, ||u||,
while satisfying constraints on the negativity of £(x, u, ).
In the discrete time setting, Wang and Boyd (2011) describe
an approach to quickly evaluating control Lyapunov policies
using explicit enumeration of active sets in cases where the
number of states is roughly equal to the square of the number
of inputs.
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4.5 Efficient QP solver

Implementation on hardware demands that sufficiently high
control rates be achieved. In our case, that means that we must
be able to formulate and solve Quadratic Program 1 in a short
amount of time. A key observation is that, during typically
operation, the active set of inequality constraints changes
very infrequently between consecutive control steps. We can
exploit this by using an efficient active-set solver. We describe
the algorithm briefly below, for more information including
timing results against several general-purpose QP solvers,
please see our previous paper (Kuindersma et al. 2014).
Quadratic Program 1 can be written in the standard form,

1
minimize EZTWZ +glz
z
subjectto Az =Db (30)
Mz <f

where the inequalities are defined by M = (my, ..., m,)’
and f = (f1,..., f,)T. To solve this problem, it is assumed
that ml.T z = f; at optimality for each i/ in a subset A C
{1...n} called the active set. For time step k > 0, this subset
equals the indices of the active inequalities from time step
k — 1. With this assumption, the KKT conditions for the QP
can be written in terms of z, y, and o:

—g = WZ+ATO£+Z)/imi

iceA
Az=bDb (31)
m/z=1f VieA
yi=0 Vi#A
Mz <f
, (32)
yi >0 VieA

Our method solves the linear equations (31) and checks
if the solution (z, y, &) satisfies the inequalities (32). If the
inequalities are satisfied, z solves the QP and the algorithm
terminates. Otherwise, the algorithm adds index i to A if
ml.Tz > f; orremovesindexi if y; < 0 andresolves (31). The
algorithm repeats this process until the inequalities (32) are
satisfied or a until a specified maximum number of iterations
is reached. The method is outlined in Algorithm 1.

On rare occasions when no solution is found, the algorithm
fails over to a more reliable (but on average slower) interior
point solver. This contingency is required since finite termi-
nation cannot be guaranteed for this algorithm. In practice,
instances of QP 1 are almost always solved in one iteration.
Solving the QP for Atlas during typical walking takes approx-
imately 0.2 ms (1 ms including QP setup time) (Kuindersma
etal. 2014). Including all additional controller software com-

ponents, such as those that evaluate the footstep trajectories,
determine whether a body is in contact, handle messages to
and from the robot etc., the controller runs at a rate of approx-
imately 800 Hz.

Data: QP of the form (30), active set A
Result: Optimal solution z with active set A or Failure.
1iter <0
2 repeat
3 Compute candidate solution z, y, & from (31)
4 if miT z > f; then
5 | addito.A
6 end
7 if y; < O then
8 ‘ remove i from A
9 end
10 iter < iter + 1
11 if iter > iteryax then
12 | return Failure
13 end
14 until z and p satisfy (32)
15 return A and z
Algorithm 1: Active-set method for solving convex QPs.

The set A passed to the algorithm at time step k equals the
set of constraints active at optimality for time k — 1.

Other uses of active-set methods for model-predictive con-
trol (MPC) have exploited the temporal relationship between
the QPs arising in MPC. Bartlett et al. compared active-set
and interior-point strategies for MPC (Bartlett et al. 2000).
The described an active-set approach based on Schur comple-
ments for efficiently resolving KKT conditions after changes
are made to the active set. Ferreau et al. (2008) consider the
MPC problems where the cost function and dynamic con-
straints are the same at each time step; i.e., the QPs solved
at iteration differ only by a single constraint that enforces
initial conditions. By smoothly varying the initial conditions
from the previous to the current state, they were able to track
a piecewise linear path traced by the optimal solution, where
knot points in the path correspond to changes in the active
set. Since the controller we considered had changing cost and
constraint structure, this method would have been difficult to

apply.
4.6 Joint-level control

Transitioning from simulation to hardware requires good
low-level control that tracks references from the QP by com-
manding the robot’s hydraulic actuators. The joint-level loop
on the robot runs at 1000 Hz and computes servo valve com-
mands, m € [—10, 10] mA. For lower-body control, we have
two approaches that we selectively implement based on the
operating situation and state of the robot. The first uses
torque-only feedback and the second combines torque and
velocity feedback.
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When compliant interaction with the terrain is desired, we
do torque-only control in the two ankle joints. For example
when the slope of the ground cannot be accurately estimated,
or in the presence of small obstacles like boards or rocks, we
exploit the natural compliance of the ankles to conform to the
terrain under the foot. For torque-only control, we combined
feedback gains on the sensed torque at the joint (computed
via actuator pressure measurements mapped through a fixed
transmission curve) with feedforward velocity gains to can-
cel the actuator dynamics. We found that, with the addition of
simple piecewise-linear friction models fit from data, compli-
ant control was possible, but the ability to precisely position
limbs was limited due to model errors and sensor limitations
(e.g., the lack of joint torque sensors).

Alternatively, by using combined torque and velocity
feedback, we were able to get very good position tracking
results when used with inverse-dynamics-based controllers,
but at the expense of reducing natural compliance of the joint.
For this mode, the valve servo command has the form,

m = K;(Tref —7)+ K;;(vref — ). (33)

To compute v, we output the generalized accelerations in
addition to the joint torques solved for by the QP block and
integrate them over time:

T
ot (T) = / bt (1), (34)
tc

where 7. is the last time the contact state changed (i.e. inte-
grated velocities are reset when feet make and break contact
with the terrain).

5 State estimation

The controller requires a high-rate, low-latency estimate of
the full state of the robot at every control step. This section
presents a state estimator which fulfills this need, has low
drift, and satisfies the computation constraints required to run
on-line. Figure 6 illustrates the flow of signals from planners
and the state estimator to the controller. The core filtering
approach was presented in our previous paper (Fallon et al.
2014) and was adapted from the estimator introduced by Bry
et al. (2012).

5.1 Requirements and approach

The sensors that are available for use in state estimation com-
prise an accurate inertial measurement unit (IMU) attached
to the pelvis, joint position sensors at each joint, as well as
exteroceptive sensors: LIDAR and vision, the latter of which
is currently not used.
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Fig. 6 Block diagram illustrating the flow of signals through the sys-
tem. The footstep planner (Sect. 3.1) or the whole-body motion planner
(Sect. 3.2) provide input desired trajectories to the control system. The
controller (Sect. 4) runs in a closed loop with the state estimator (Sect. 5)
at approximately 800 Hz. LQR solutions can be recomputed online (typ-
ically in a separate thread) using the current state of the robot to reduce
the systems sensitivity to deviations from the nominal walking trajec-
tory

The state estimator uses these sensors to produce esti-
mates of the position and velocity of the revolute joints, as
well as the pose and twist of the ‘floating base’ (i.e. the
pelvis link). Since the robot has no joint velocity sensors,
velocity estimates must be derived from position differenc-
ing and filtering. Moreover, while high-quality measurement
of the floating base orientation can be readily achieved with
an IMU, achieving high-precision positioning with low drift
remains a significant challenge. To allow traversal of the
uneven terrain described in Sect. 3.1, a drift rate below 1cm
per step is required. The proposed state estimator runs at
333 Hz with a latency of 0.5ms for the floating base state
estimate.

Rather than estimating the full state of the robot using a
single process model, we factor the problem by estimating
the joint states separately from the floating base. We filter the
leg joint positions and velocities using a simple first-order
Kalman filter for each joint. The filtered leg joint positions
are subsequently used to estimate the state of the floating
base. We estimate the floating-base state using an extended
Kalman filter (EKF).

To support longer duration plan execution, we remove
global drift by localizing to the robot’s environment. In
Sect. 5.5.2 we discuss how this can be achieved by using
the LIDAR sensor to localize against a map of the robot’s
environment.



Auton Robot (2016) 40:429-455

443

5.2 Related work

There are several notable examples of state estimators being
developed for legged systems in the literature. Stephens
(2011) demonstrated state estimation of a humanoid using a
dynamics model and the planned state trajectories. Xinjilefu
etal. (2014) extended this approach and applied it to the Atlas
robot. They avoid computational challenges of formulating
a single extended Kalman filter (EKF) for a humanoid with
many degrees of freedom, and propose instead to estimate
the pelvis position and joint dynamics in separate filters.

An EKF-based estimator is presented by Bloesch et al.
(2012) for a quadruped that uses a prediction model driven
by inertial measurements and creates filter corrections using
foothold measurements. This approach incorporates the posi-
tions of footholds into the state vector (using a point model
for each foot) and analyzed system consistency and observ-
ability. This approach has also been extended to bipedal
locomotion on a simulated version of the SARCOS humanoid
robot (Rotella et al. 2014).

While significant progress has been made in robotic map-
ping using combinations of vision, LIDAR and other sensors,
its usage on a humanoid platform in field operations has been
limited due to computation, latency and sensitivity reasons.
An example result by Stasse et al. (2006) demonstrated loop-
closing with a real-time monocular vision SLAM system in
a laboratory setting.

Finally, the work of Hornung et al. (2010) utilized a
LIDAR sensor to localize an Aldebaran NAO robot within a
multi-level environment in a manner similar to our algorithm
presented in Sect. 5.5.2. However that approach was limited
in accuracy and probabilistic consistency as estimation was
carried out with a first-order particle filter separate from the
estimation of velocities and the robot’s height.

5.3 Signal preprocessing

Some preprocessing is required to obtain useful measurement
data. This preprocessing step is specific to the Atlas robot.

Firstly, we note that the IMU measures vibrations induced
by the hydraulic pressurizer, which corrupt the acceleration
and rotation rate measurements. We notch filter these signals
to remove this 85 Hz signal before integration. Secondly, the
angle of each leg joint is sensed by measuring the travel of
its hydraulic actuator with an LVDT, and then computing a
transformation through the joint linkage. This mapping does
not account for flexion of the joint linkage when loaded or
backlash when a joint changes direction. To account for these
effects, we preprocess the joint angle measurements using the
correction model, previously introduced by Johnson et al.
(2015). The model assumes linear compliance at the joint
level,

q!" " = g™ — 1 /K; (35)

where ¢/*%

;% is the raw joint angle measurement, 7; is the
measured joint torque, and K; is the joint-level stiffness. In
practice, we limit the magnitude of the modification term,
|ti/ K|, t00.1rad. We used K; = 10000 Nm/rad for all joints
except the hip yaw joints, where we used K; = 7000 (John-

son et al. 2015).

5.4 Process model
5.4.1 State

The state of the floating base can be described in singularity-
free fashion by the tuple

Xbase = (bwbvb vu," Rp,Y pb) , (36)

where Pw), € R3 and %v, € R3 are the angular and lin-
ear velocities, "R, is the floating-base rotation matrix, and
Ypp = [px, Py, p-]7 is the base position. The angular and
linear velocities are expressed in the base (pelvis) frame b,
while the position and orientation of the pelvis are expressed
in a fixed world frame w (as indicated by the leading super-
scripts above).

As the IMU provides accurate measurements of the angu-
lar velocity bwb, we use the measured values directly and
do not incorporate “wj, in the EKF state. In addition to the
floating-base state, the EKF also estimates gyro and acceler-
ation biases, denoted b,, and b, respectively. This leads us
to define the global state of the EKF as the tuple

Xoase = (75" Ro." By, by, b ) (37)

The fact that the rotation matrix YR}, is an overparameter-
ization of orientation leads to constraints on the global state
that cannot be handled in a standard EKF setting. To over-
come this problem, we maintain orientation uncertainty in
terms of a perturbation rotation in body frame represented
by a minimal set of coordinates.

Omitting superscripts and subscripts and summarizing
(Bry et al. 2012), the true orientation of the floating base
is represented by the rotation matrix R. The estimated orien-
tation, ﬁ, is related to it through

R = RR(y), (38)
where x € R is the rotation error in exponential coordinates
relative to the body frame and R(x) = eX is the corre-

sponding perturbation rotation matrix. Here, * denotes the
skew-symmetric matrix such that *x = - x x forany x € R3,
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so that eX is the rotation matrix corresponding to a rotation
of | x| about the axis defined by x.

Parameterizing the orientation error in terms of a mini-
mal set of coordinates y € R allows the orientation error
covariance to be maintained as a 3 x 3 matrix X ,. This
covariance matrix has no inherent constraints which would
appear if an overparameterization of orientation were used,
and allows easy interpretation. However, we still maintain
the mean estimate of the floating base orientation, R, as a
rotation matrix to avoid singularity issues inherent to any
three-degree-of-freedom orientation parameterization.

We can now define the error state vector of the EKF as

X
by |, (39)

where ~ is the estimated value of - minus the actual value.
Covariances are maintained in terms of this error state vector.

5.4.2 Inputs

Similar to angular velocity, the acceleration ”ay, is measured
accurately by the IMU. We treat both ®w;, and "a,, as inputs
to the process model rather than measurements in the EKF
—a common approach. Hence, the input vector for the EKF
can be written as

b
®
Upase = [ba:] : (40)

5.4.3 Dynamics

We separately define the dynamics of the global state, used
to propagate the mean of the state estimate, and those of the
error state, used to propagate the covariances.

The evolution of the global floating-base state can be
derived from the Newton—Euler equations. The gyro and
acceleration bias dynamics are modeled by a simple random
walk. This results in the following dynamics for the global
state:

by = Loy xP vy + YRE Vg + ba, +w,
wa — wa bé)b
“pp = "Ry vy + W)

b, = w;,

w

Wh, s (41)

a

where g denotes gravitational acceleration in world frame;
Wy, Wy, Wy, and wj, are Gaussian random variables; and
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b &, and Pa, are the bias-corrected angular velocity and linear

acceleration vectors, respectively:

@y = "wp + by (42)
ba, = Pa, + b,. (43)

The error dynamics can be trivially derived from the global
state dynamics for all but the orientation error, which is
expressed in terms of the exponential coordinates y. Bortz
(1971) showed that the orientation error dynamics can be
written as

b

b X X "Wp

. _ by
X b+ 5

1 Il Il sin [ x| } b
+ 1- X X (X X co;,).
X2 [ 2(1 —cosxIh
(44)

Following the linearization derivations from Bry et al. (2012),
Euler integration is used to produce the a priori state and
covariance.

5.5 Measurement model

Here we describe how each sensing modality is used to form
Kalman measurement updates of parts of the state vector—as
summarized in Table 1. Section 5.5.1 describes the measure-
ments due to leg kinematics, and Sect. 5.5.2 describes the
positioning information derived from the LIDAR sensor.

5.5.1 Leg kinematics

As with many floating base state estimation algorithms
(Stephens 2011; Bloesch et al. 2012), our approach to using
the leg kinematics assumes that the robot’s stance foot main-
tains stationary contact with the ground during part of the
gait. This allows instantaneous velocity and position mea-
surements of the robot’s floating base to be inferred via
forward kinematics. Given the accuracy of the IMU orien-
tation sensors, we choose to use joint sensing to measure

Table 1 Contribution of various sensors to the filtered state estimate

Quantity Pos Orient  Velocity =~ Angrate  Accel
“pr "Ry by, by, YV

Accelerometers v

Gyroscopes v

Leg sensing X X 4 X

LIDAR v v

Modes of integration found to be useful are marked v/and those not used
here (for a variety of reasons) are indicated X
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only the position and velocity of the pelvis. Of course, per-
fectly clean and stable ground contact is seldom achieved in
practice. However, we assert that for short periods (on the
order of the sample time of our sensors) these assumptions
are reasonable.

An estimate ¥ Py, [k] of the position of the floating base at
time step k can be computed using the current floating base
orientation estimate in the world frame, YRy, [k], and the pre-
vious estimated position of the stationary foot, “p s [k — 1],

Py [kl ="pslk — 114+ "pp/r [K], (45)

where “py, /¢ [k] denotes the position of the floating base with
respect to the foot, which can be computed using the filtered
leg joint positions and the floating base orientation estimate,
Yo, [k].

Two types of filter measurement could be formulated using
this position estimate. The simplest approach would be to
directly apply (45) as a position measurement within the
EKF. However, because of the inaccuracy in joint sensing and
because the robot’s foot does not always remain motionless
after initial contact, we use the difference between consecu-
tive position estimates over a short period of time to create a
velocity measurement of the pelvis frame,

Ypp k] = Vpp [k — 1]

Y, [k] = ; , (46)

where 7 = 3ms is the time step duration. This approach
is more attractive because each resultant observation is
a separate measurement of the robot’s velocity and does
not accumulate a history of, for example, the effects of
non-ideal ground contact or the footplate rolling or slid-
ing. The influence of an erroneous velocity is transient and
quickly corrected by subsequent observations. Using both
measurement types together has been explored in related
work (Xinjilefu et al. 2014), but we avoid doing so as it
raises the possibility of creating inconsistencies, particularly
when combined with position measurements derived from
the LIDAR module (presented in the following section).

To use the leg kinematics for state estimation, it is nec-
essary to determine which of the feet is most likely to be in
stationary contact with the ground. We use a Schmitt trigger
with a threshold of 575N to classify contact forces sensed
by the robot’s 3-axis foot force-torque sensors and detect
whether either foot is in contact. A simple state machine
then decides which foot is most reliably in contact and thus
will provide the basis for kinematic measurements. The out-
put of the foot contact classifier is demonstrated in the upper
plot in Fig. 7.

In the specific case of walking up stairs, the controller
needs to use the toe of the trailing foot to push the robot for-
ward and upward while the foot is not in stationary contact.
While the design of the state estimator is almost entirely
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Fig. 7 Top Evolution of foot force signals for the left (green) and right
(red) foot during two steps. Bar Chart classification of the primary
standing foot (light color indicates a ground contact event). Lower
plots pelvis lateral (body Y-direction) velocity estimates for (/) raw
leg odometry, (2) filter output, (3) VICON-based ground truth and (4)
error of (1) and (2) relative to VICON. Vertical axis units are m/s. Note
that VICON velocity ground truth is of variable accuracy

independent of the walking controller, as we increased the
speed of locomotion we needed to feedback the active con-
tact points from the controller to the state estimator in this
situation.

We also classify other events in the gait cycle. Striking
contact is determined when a force of 20-30N is maintained
for more than 5ms. Breaking contact is determined when
force falls below 275 N. Because these impacts create unreal-
istic measurements, the EKF integrates these measurements
with higher measurement covariance. We note that when
the robot is in a double support stance, information from
both legs could be leveraged to provide additional kinematic
measurements. For simplicity we currently neglect this infor-
mation.

Figure 7 contains a number of plots comparing (1) the
raw pelvis velocity measurements inferred from kinemat-
ics with (2) the output of our integrating filter and (3) the
velocity estimated from VICON motion capture. Using only
raw leg position signals, the typical pelvis velocity standard
deviation measured while standing stationary was 7.6 cm/s.
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Adding joint-level filters reduced this to 2.3 cm/s. Integrat-
ing filtered leg joint position into the EKF further reduced
the error standard deviation to 1.4 cm/s.

Finally, as mentioned in Sect. 5.5 the revolute joints
states are filtered separately. The compliance model men-
tioned above is again used in preprocessing, before extended
Kalman Filtering.

5.5.2 LIDAR

While the drift of the combined inertial and kinematic esti-
mator is capable of achieving relatively low drift, it remains
unsuitable for accurate walking over tens of meters. We aim
to use our exteroceptive sensors to remain localized with the
robot’s environment. In particular, we use LIDAR to contin-
uously infer the robot’s position relative to a prior map while
walking.

We cannot assume that the sensor is oriented horizon-
tally (Dellaert et al. 1999), nor can we afford time to stop
moving and perform static 3D registration, e.g., using an
Iterative Closest Point algorithm (Besl and McKay 1992).
Instead we aim to incorporate information from each individ-
ual LIDAR scan into the state estimate using a Gaussian Par-
ticle Filter (GPF), as originally proposed by Bry et al. (2012).

In typical operation, the robot is first commanded to stand
still for about 30 s while it collects a full 3D point cloud
of its environment (see Fig. 8). This cloud is then converted
into a probabilistic occupancy grid (OctoMap) (Wurm et al.
2010) against which efficient localization comparisons later
performed during locomotion. While the MAV experiments
presented in Bry et al. (2012) required offline mapping with
a separate sensor, our legged humanoid and actuated LIDAR
with 30m range permit the map to be constructed imme-
diately prior to operation and immediately utilized while
walking. Furthermore, if the robot were to approach the map

Fig. 8 The robot initially collects a static LIDAR point cloud of its
environment, which is then converted into an occupancy map for sub-
sequent localization
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boundary, on-line construction of a new map could easily be
performed during operation.

Since the LIDAR is fundamentally a planar 2D sensor,
only a subset of the state vector (namely x, y and yaw in the
rotating sensor plane) is observable at any given instant. We
therefore partition the full state vector into observable and
unobservable sub-states, and use a GPF to incorporate each
laser measurement over the observable variables. The particle
filter samples are weighted according to the proposed sub-
state likelihood, which is computed by comparing the LIDAR
measurements, projected from the sub-state, to the prior map.
From these weighted samples a mean and covariance, and in
turn an equivalent Kalman measurement update for the full
state vector are calculated resulting in a correction to the base
position and yaw.

One technical note is that our projection of LIDAR range
returns as points in the 3D workspace accounts for the robot’s
motion, and more importantly, the spindle rotation during
the 1/40s scanning period of the internal mirror of the sen-
sor. Neglecting this effect would result in mis-projections of
returns to the side of the robot by as much at 2.5 m at the high-
est spindle rotation speed. Accurate projection also requires
precise calibration of the LIDAR sensor, as discussed in Fal-
lon et al. (2015).

Given the competition environment of the DARPA Robot-
ics Challenge and our inability to test in precisely the DRC
conditions (outdoors with a large crowd of moving people),
we typically operated without the LIDAR localization mod-
ule.

Without this information, the robot’s position is subject to
drift. While linear position drift rate was satisfactorily low,
the yaw of the robot is unconstrained by any kinematic mea-
surements and is subject to a slow persistent rotation drift. In
particular while standing still for tens of minutes during test-
ing, a few degrees of error can accrue causing fixtured objects
(e.g. terrain height-maps) in the scene to become incorrectly
positioned.

5.6 Latency and computation

Using the presented state estimator in a real-time system
requires careful consideration of latency. The LIDAR range
measurements require significantly more time to be sensed
and processed, which introduces significant latency relative
to the 1 kHz kinematic and inertial information. These laten-
cies are shown in Table 2 for a 3.3 GHz 12-core desktop PC.
We use a multi-process messaging architecture to parallelize
computation, with the GPF algorithm requiring a single CPU
core. Within the estimator, the EKF retains a 1s history of
measurements to accommodate the LIDAR/GPF latency.

The values and the experiments presented in Sect. 6.1
use 1000 GPF samples, although reliable performance (and
reduced latency) is possible with just 300 samples.



Auton Robot (2016) 40:429-455

447

Table 2 Latencies and frequencies of various state estimator compo-
nents

Component Latency Frequency
Lower joint Kalman filters 0.16 ms 1kHz
Pose extended Kalman filter 0.54ms 333Hz
LIDAR data transmission 7ms 40Hz
GPF processing time 11.4ms 40Hz
Overall LIDAR latency 18.4ms 40Hz

6 Experiments

We describe several experiments performed on the robot and
in simulation. Code for our planning and control algorithms,
along with a variety of simulation examples, is available for
download in the Drake (2014a) toolbox.

6.1 State estimation evaluation

To characterize the state estimator we evaluate its per-
formance in a variety of experiments. In our first set of
experiments, we compare our state estimator to the estimator
provided by Boston Dynamics (BDI) in a variety of walking
scenarios. Because the robot’s BDI estimator requires infor-

1. Typical — 35m — 15 min

0.8 116 08
06 - 06f -
04 108 04f

2. Typical - 37m — 12 min

mation from their walking controller, we were unable to use
our walking controller in these tests. In the following our
localization estimate system sequentially updated a set of
desired footstep locations that were individually passed to
the BDI controller during locomotion. Figure 9 summarizes
the results of a substantial set of experiments for a variety
of walking patterns totaling 57 min of operation and 155 m
traveled.

The kinematic-only estimates continuously drift, typically
at 1.2-1.5cm per step. This drift rate generally increases
when the walking dynamically or on non-flat terrain. Orienta-
tion estimation performance is comparable between different
estimators. Note that the precision of the ground truth orienta-
tion determined using VICON measurements is on the order
of 1°, so we were unable to differentiate yaw drift on a finer
scale than this.

As the reader can see in Fig. 9 the value of fusing
LIDAR-based corrections becomes evident after just a few
steps. Walking for just 10 mins, the kinematic-only estima-
tors drift by as much as a meter while the LIDAR aided
approach remains accurate to within 2 cm throughout. In the
manipulation experiment, the LIDAR contribution actually
degrades performance slightly due to occlusions caused by
arm motions. For this reason, we typically discard LIDAR
data when standing still.

3. Long Steps — 28m - 10 min
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0.4
0.3

0.4 1.0
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XYZ drift  Z drift Yaw drift XYZ drift

4. Dynamic — 7m - 2 min
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Fig. 9 Summary of localization accuracy for a variety of walking
experiments. Position drift is measured with the left scale (in meters) and
yaw drift with the right scale (in degrees). Error (versus ground truth)
of the BDI state estimator (blue), our kinematic-only EKF (green), and

0.2 I 021 I
0 - H 0 0 |_|

Z drift  Yaw drift

5. Manip - 6m — 4 min

Z drift  Yaw drift
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6. Blocks — 40m — 14 min

2.0 1 16.7
0.8 _
0.6

1.0 13.3
0.4
0.2

XYZ drift  Z drift  Yaw drift

LIDAR (red) estimators are shown. Clockwise from upper left: 1 typical
gait (15 cm forward steps), 2 typical gait with a partial map, 3 long steps
(36 cm forward steps), 4 dynamic walking, 5 carrying out manipulation,
6 traversing the cinder block course
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6.2 Walking and balancing control

We have evaluated the walking controller in several operat-
ing scenarios relevant to the DRC. During typical walking,
we observe low-error COP and footstep tracking perfor-
mance. Figure 10 illustrates the COP measured using the
foot force/torque sensors during a typical walking trajectory.
Note that unlike many COP-based walking controllers in the
literature, we are not using the COP measurement from the
foot force/torque sensor in our feedback loop. This tracking
performance suggests that a model-based controller and state
estimator with sufficiently low error be used to achieve stable
walking with minimal force information at the foot.

We are currently capable of walking approximately 13
times faster (0.40 vs. 0.03 m/s) with 30cm longer steps
(70cm) compared with the quasi-static walking controller
provided with the robot while maintaining equal or better
footstep placement precision. At this speed the double-
support time per step is roughly 0.1 s and the gait is fully
dynamic (the COM is outside of the support polygon).
Although this is still a slow gait by human standards, we point
out that our primary development goal to this point has been
to achieve accurate and robust walking control in environ-
ments related to the DRC (cinder blocks, ramps, gaps, etc.)
and we have not yet invested considerable effort improving
the speed and efficiency of the robot’s walking motions.

For traversing ramps and cinder blocks, raising the heel of
the trailing foot while walking improves kinematic reacha-
bility. The controller actively monitors the knee angle and
breaks heel contact when the trailing leg is nearly fully
extended, resulting in a heel-raising behavior. In our imple-
mentation, the controller and state estimator are separate
processes that independently estimate foot contacts (the con-
troller uses both sensed and desired contact information to
classify a foot as in contact). We therefore had to tune the
contact classifier in the estimator to handle the slightly differ-
ent contact behaviors encountered in flat ground, steps, and
ramps.

25 T T T T T T 0.25

Figure 11 highlights some test cases we have used to evalu-
ate the robot’s balancing and walking capabilities including
carrying unmodeled loads, traversing irregular terrain, and
climbing narrow stairs with partial foot contacts (realized
by shrinking the effective foot contact surface in both the
planner and controller).

6.3 Closed-loop walking with LIDAR feedback

During the December 2013 DRC Trials, most teams executed
the terrain course two steps at a time. In our case at least,
state estimation drift was the primary factor that motivated
this conservative approach (see our previous paper for an
analysis of this task (Fallon et al. 2015)).

We designed a simple experiment to compare the per-
formance of our LIDAR-based state estimator and the
kinematic-only estimator. In this experiment, the robot used
each estimator in a closed loop while attempting to walk con-
tinuously up 6 cinder block steps using a fixed footstep plan.
This scenario requires great precision, if the state estimator
drifts by even a few centimeters, the robot will hit a step edge
and fall.

Directly feeding the higher-variance low-rate LIDAR cor-
rections through to the state estimator can result in significant
jumps in the position (1-2 cm) and yaw of the robot. Instead,
our approach was to maintain a second estimate exposed to
the LIDAR measurements and to corrected drift in our pri-
mary estimate by slowing correcting it to stay aligned to the
LIDAR-based estimate using a high covariance position cor-
rection.

Using this approach Fig. 12 illustrates the robot suc-
cessfully climbing to the top of the stack of blocks. The
kinematic-only estimator only reached the fourth step. At
each step the state drifted characteristically backwards,
resulting in the robot drifting forward. The robot’s trailing
foot eventually collided with the front of the step resulting
in a fall.

x—distance [m]
y—distance [m]

Measured COH
08 Desired COP.

y—distance [m]

time [s]

time [s]

20 25 30 35 0 05 1 15 2

x—distance [m]

Fig. 10 Typical COP tracking performance for Atlas walking on flat terrain
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Fig. 11 Example walking and
balancing test cases: a balancing
with one foot on a moving pallet
jack, b walking while carrying
an unmodeled 8.5 kg aluminum
truss, ¢ climbing stairs using
partial foot contact, d traversing
a set of tilted cinder blocks

Fig. 12 Atlas walking continuously up six cinder block steps using LIDAR-based state estimation in a closed loop with the walking controller.
Top images of the robot climbing the stack of cinder blocks in our laboratory. Bottom the state estimate rendering in our user interface
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Fig. 13 Snapshots from a
half-stride of simulated running
at 2m/s. a Touch-down, b
mid-stance, ¢ toe-off, d
mid-flight

Fig. 14 Snapshots from a
simulated jump. a Starting
posture, b Heel-off, ¢ toe-off, d
apex

6.4 Dynamic motion planning

We are actively developing new dynamic behaviors for the
robot using the whole-body motion planning and control
algorithms described previously. Here we present two results
executing running and jumping motions in simulation.

6.4.1 Running

To plan a running motion for Atlas, we consider a single half
stride starting at the apex of a flight phase. We fix the contact
sequence to be flight, left-stance, left-toe-stance, flight. By
constraining the initial and final conditions of the trajectory
such that all quantities are mirrored about the robot’s sagittal
plane, we obtain a trajectory that can be mirrored to yield
a full stride. In addition to enforcing the contact sequence
and the periodicity of the trajectory, we also specify a stride-
length and average speed (1.5m and 2m/s respectively for
the gait shown in Fig. 13), require at least 3 cm of clearance
between links to avoid self-collisions, and constrain the gaze
of the robot’s head cameras to be no more than 15° from the
direction of travel. Solving for the half-stride motion takes
approximately 2.5min on a computer with a 3.3 GHz Intel
i7 CPU. The controller described in Sect. 4 is used to stabi-
lize the resulting trajectory (mirrored and looped to produce a
ten-stride sequence) on a simulated model of Atlas with accu-
rate torque limits. One half-stride of the simulated motion is
depicted in Fig. 13.
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6.4.2 Jumping

Figure 14 shows the first half of a jumping motion generated
by the whole-body planner and stabilized by the controller
from Sect. 4. This motion was generated by constraining the
corners of the feet to be at least Scm above the ground at
the mid-point of the trajectory, and requiring that the robot’s
motion be symmetric about its sagittal plane. Solving for
the jumping motion takes approximately 1.5 min on a com-
puter with a 3.1 GHz Intel i7 CPU. As in the running case,
this entire motion was stabilized in a simulation with torque
limits.

Our final example is another jumping motion, this time
from a cinder block to the ground. The robot’s starting pos-
ture on top of the cinder block is specified, but its final
posture is not. We require that the feet maintain at 3cm of
clearance from the cinder block at all times after take-off
and that they be on the ground at the end of the trajec-
tory. Given these constraints, and the requirement that the
robot’s motion be symmetric about its sagittal plane, the
planner finds the motion depicted in Fig. 15. This sort of
maneuver will be useful in competition, as stepping down
from obstacles is challenging given Atlas’ leg kinematics.
Solving this problem takes approximately 10 min on a com-
puter with a 3.1 GHz Intel i7 CPU. The jump down motion
was stabilized by our controller in simulation with torque
limits.
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(d) (e) ®

Fig. 15 Snapshots from a motion plan for jumping off a cinder block.
a Starting posture, b toe-off, ¢ apex, d avoiding collision, e touch-down,
f final posture

7 Future work

Our ambitions for future work can be summarized in a few
words: robustness, speed, and versatility. In terms of robust-
ness, we have only recently begun to explore reactiveness
of the robot to large external perturbations. This is a criti-
cally important feature for any dynamically-stable field robot
(especially those that weigh more than 150kg). Our approach
to efficiently (re-)computing LQR solutions online combines
nicely with standard approaches to step recovery on flat ter-
rain. However, recovering safely in cluttered environments
and on irregular terrain remains an exciting open question.

Another potential improvement has to do with the method
by which we integrate LIDAR corrections. Currently, we
input low-pass filtered corrections from the LIDAR into the
estimated state used by the controller. Alternatively, one
could use receding horizon footstep planning to adjust the
plan based on LIDAR corrections without directly modify-
ing the state estimate that is input to the controller. We expect
this approach would be significantly more robust in the pres-
ence of rapid state drift.

We are excited about improving the locomotion speed of
Atlas to match what we have been able to achieve in simula-
tion (over 1.0 m/s). Our hypothesis is that improved system
identification (so as to reduce our dependence on the inte-
grated joint velocity references) and better leg swing and
COP trajectories will contribute significantly to closing this

gap.

We also intend to translate the running and jumping behav-
iors to hardware and explore dynamic multi-contact motions,
such recovering after a fall. For the latter goal, we expect to
generalize our state estimator to reason about contacts dis-
tributed throughout the robot’s body. Stabilizing whole-body
plans in hardware will demand general techniques for achiev-
ing torque-feasibility without significant human interaction,
possibly by processing the output of our dynamic motion
planner. This is an important open problem that still must be
addressed.

8 Conclusion

In this paper we described the optimization algorithms that
comprise our approach to achieving reliable locomotion
in demanding environments with varied terrain and geo-
metric constraints. For planning typical walking motions,
our footstep planner efficiently solves a mixed-integer con-
vex optimization to compute an obstacle-free sequence of
footsteps from estimates of the terrain. For more complex
kinematically-constrained, multi-contact motions, we pro-
posed a sparse nonlinear trajectory optimization algorithm
that combines full body kinematics with centroidal dynam-
ics to efficiently compute whole-body dynamic motions.
Our controller exploits time-varying LQR solutions on
reduced dynamical models to construct an efficiently-
solvable QP to stabilize both walking and whole-body tra-
jectories. Despite significant sensor limitations and inevitable
model inaccuracies, we have been able to achieve reliable bal-
ancing and walking with Atlas. Notably, by combining IMU,
kinematic, and LIDAR data within our state estimator, we
have demonstrated precise navigation over extended walk-
ing trajectories. Our current efforts are focused on improving
both the speed and variety of dynamic locomotion strategies.
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