
16-264 Notes on Learning Transformations
What are transformations?
Agents often have to convert points (vectors) in one space to another space.

The example we are using in class is that eyes see things in visual space, and an
arm needs commanded joint angles (or some other arm-related variables). To be
specific, we will say that the visual space is 2D coordinates (x, y). We will initially
work with a planar arm with two joints (shoulder θ1 and elbow θ2): Reaching out

to touch an (x, y) target involves generating the desired joint angles (θ1, θ2). This
transformation is known as “inverse kinematics”. You use the reverse transforma-
tion, “forward kinematics”, to know where your hand is in space based on your
sensed joint angles when you can’t see your hand.

Real life kinematics is more complicated. Humanoids might have 50 joints and
have many ways to touch the same target (redundancy). We are going to ignore
that for now.

1



Other transformations a humanoid might learn are transformations between
tasks or problems to solve and commands or solutions. The key issue for super-
vised learning is “Do you have a lot of examples of inputs and outputs (training
data)?”

2



Learning transformations = function approximation
Learning transformations can be viewed as function approximation:

outputs = f(inputs, parameters) (1)

where the parameters are adjusted until the function f() correctly maps the inputs
to the outputs.

3



What does an agent learn from?
“Self-supervised” learning is when an agent can create its own training data

that includes both possible inputs and desired outputs. This is called “labelled”
training data, as the desired outputs are known. For learning kinematics, labelled
training data is available continuously. Whenever a humanoid can see their hand,
a combination of joint angles and visual location of the wrist or hand is available:

(x, y, θ1, θ2) (2)

To learn inverse kinematics, x and y are inputs, and θ1 and θ2 are the outputs. To
learn forward kinematics, θ1 and θ2 are the inputs, x and y are the outputs.

4



What are possible representations?
There are popular choices for the type of functions (representations) used in

learning transformations.
One class is domain-specific parameteric functions based on engineering or

other forms of knowledge, where the structure of the function is motivated by
knowledge about a particular domain. An example is the following parametric
function for forward kinematics you might see in a robot textbook:(

x
y

)
=

(
l1 cos(θ1) + l2 cos(θ1 + θ2)
l1 sin(θ2) + l2 sin(θ1 + θ2)

)
(3)

θ1 and θ2 are the inputs, l1 and l2 are the parameters, and x and y are the outputs.
In a real implementation, one might add additional parameters such as bias and
scale parameters that affect each joint angle.

Another class is domain-independent parametric functions. “Neural networks”
are in this class, as are some kinds of tables, linear, and polynomial models. More
on neural networks later.

Another class is memory-based models, where the training data is stored, and
an output vector is constructed at query time by interpolating training data similar
or “near” to a query. Google “locally weighted learning”

5



What about search, or trial and error?
It is true that an agent can try sets of joint angles out on a real robot arm, and

generate new angles and try them until the target is touched. Given we can turn
off the lights so visual feedback cannot be used in actual search, and still do pretty
well, suggests humans have some learned kinematics function.

It is also true that an agent can try sets of joint angles out in a simulation with
a good forward kinematics model, and generate new angles and try them until the
target is touched. This can be viewed as internal search or optimization to generate
a solution. In this case the forward kinematics model for the simulation must be
represented and learned.

6



Curve fitting using functions that are linear in the ad-
justable parameters (the batch case)

A special case is fitting a data set with a function that is linear in the unknown
parameters. Let’s say that x is an input and that y is the output. p is a vector of
parameters to be learned.

y = f(x,p) (4)

Examples include polynomials such as a line:

y = c1 ∗ x+ c0 (5)

or a parabola (quadratic function):

y = c2 ∗ x2 + c1 ∗ x+ c0 (6)

Note that the equation above is nonlinear in x (x is squared, which is not a line but
a parabola), but it is linear in the unknown coefficients ci.

We can write this in the following vector equation:

(
1 x x2 · · · xn

)

c0
c1
c2
...
cn

 = y (7)

This allows us to add more training data points, indexed by i:
1 x1 x

2
1 · · · xn1

1 x2 x
2
2 · · · xn2

1 x3 x
2
3 · · · xn3
...

1 xn x2n · · · xnn




c0
c1
c2
...
cn

 =


y1
y2
y3
...
yn

 (8)

A compact version of this equation is

Ap = b (9)

7



This is a set of equations for n+ 1 unknowns. If there are n+ 1 equations, we can
solve it using a matrix inverse or your favorite equation solver: p = A−1b

However, the data is typically noisy and we want to use more than n + 1 data
points. In this case, what we do is multiply both sides by AT:

ATAp = ATb (10)

resulting in:

p = (ATA)−1ATb (11)

In this case learning involves a cycle of collecting more data, adding it to the
training set, solving the above equations, and doing it again.

This is minimizing the sum of squared prediction errors. Physical analogy:
springs from data points vertically to a line or plane, minimize potential energy.

8



Iterative curve fitting using gradients
What do we do when functions are nonlinear, or the batch equations are too

expensive to solve?
Gradient descent can minimize a total cost C(p) by adjusting the parameter

vector p in a direction that reduces the cost:

∆p = −ε∂C(p)

∂p
(12)

where ε is a step size.

Using the current parameter vector, we can predict the y values:

ŷi = f(xi,p) (13)

The error ŷi − yi may be made smaller by changing the parameter vector p. The
total cost of a parameter vector p is:

C(p) =
∑
i

(ŷi − yi)
2 =

∑
i

(f(xi,p) − yi)
2 (14)

∂C(p)

∂p
=
∑
i

(f(xi,p) − yi)
∂f(xi,p)

∂p
(15)

This is the sum of the prediction error on each training data point times an estimate
of the effect of each parameter on the prediction at that point.

9


