16-264: Probabilistic reasoning

Combining information

Suppose we have two experts that each predict the temperature at noon tomor-
row. How should we combine their estimates?

Suppose we believe one more than the other, how should we combine their
estimates?



Modeling knowledge with probability distributions

One way to combine information is to model the information sources with prob-
ability distributions.

A well known probability distribution that is common and easy to work with is
the Normal (Gaussian) distribution. This distribution looks like a symmetric hill.
It is characterized by where the hill is (the mean) and how wide the hill is (the
variance). The Normal distribution is what you get if you add a large number of
independent identically distributed random variables (coin flips or dice rolls, for
example).

The mean is the average of the numbers that are generated by a probability
distribution. A way to write this is using expectations (E):

Ex)=x=)» x/N (1)

In estimating the mean from data the formula 3.7 x; /(N — 1) to avoid bias. See
a Statistics textbook.
The variance is the expectation of the deviation from the mean squared:

E((x — %)% = o? (2)

If we are more sure, the variance is smaller. If we are less sure, the variance is
larger.



Normal/Gaussian random variables

We will use some facts about Gaussian random variables. George Kantor’s
notes on Kalman Filtering http://www.cs.cmu.edu/~cga/controls—-intro/
kantor/16_299 Kalman Filter.pdf have anicereview of Gaussian ran-
dom variables.

Fact 1: A Gaussian random vector is fully characterized by its mean (first mo-

ment) and variance (2nd moment). A compact notation is x ~ N(mean, variance).

Fact 2: For any random vector x ~ N(m, ¥J), Ax ~ N(Am, AYA"). For the
scalar case, ax ~ N(am, a’0?).

Fact 3: If any two independent random vectors ( x; ~ N(my, Y1) and xo ~
N(msy, ¥5)), are added, the result is N(m; + my, 31 + X»)

Fact 4: If you are given two predictions or belief states about a random variable
x, and the accuracy of these predications is X; ~ N(mjy, 1) (the belief of expert
1) and X5 ~ N(my, 35) (the belief of expert 2), your best linear unbiased estimate
(BLUE) of x is W1m1 + ngg, with W1 = 22(21 + 22)_1 and Wg = 21(21 +
¥5) 1. The variance of this estimate is:

(X1 4 Z9) IS (B + ) T A (B 4 8) (i + )7 (3)

What a mess! However, all the above matrices are symmetric, so we can reorder
them and get
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A useful way to express the same thing (since W; = (1 — W3)) that we will
use in the derivation of the Kalman Filter is:

m =m; + Wy(my — my) (5)
and

Y=% -1+ 22)_121 (6)


http://www.cs.cmu.edu/~cga/controls-intro/kantor/16_299_Kalman_Filter.pdf
http://www.cs.cmu.edu/~cga/controls-intro/kantor/16_299_Kalman_Filter.pdf

Scalar derivation of the optimal combination rule

If you are given two predictions or belief states about a random variable z,
and the accuracy of these predications is £; ~ N(my1, o}) (the belief of expert 1)
and 9 ~ N(mso,03) (the belief of expert 2), your best linear unbiased estimate
(BLUE) of x is wymy + wyms, with wy = 05(0} +03) ! and wy = 03 (0} +03) L.



Taking into account transformations

To combine measurements it is easiest if both quantities are measurements of
the same thing. This might require transforming a measurement: x’ = T'(x). The
new mean is T(X) and the new variance is
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The Kalman filter (next section) uses a transformation from one time to another

(the prediction step), as well as converting measurements from different sensors
into corrections of the same belief state (the measurement updates).



The Kalman Filter

The Kalman Filter estimates the state of a dynamic process, using a model of
sensor noise and process noise (deviations from the dynamics due to perturbations
and/or modeling error). Minimizing the variance of the state estimation error (a
form of optimization) drives the design.



Kalman Filter Derivation: The Prediction Step

The Kalman Filter alternates between predicting the probability distribution of
the belief state on the next step (the prediction step), and incorporating an observa-
tion (the measurement update step). After a prediction step we have a belief state
x ~ N(m~,X7) and after a update step we have a belief state x ~ N(m™, 7).
The superscripts - and + keep track of whether we have incorporated the current
measurement or not.

For a nonlinear discrete time system F(), the belief state mean is propagated
forward in time just using the nonlinear dynamics:

mr?ext — F(m+7 LI) (8)

The variance 3 is propagated by linearizing F'() about m:

E next

=AYTAT + 3, 9)

>, 1s the variance of the process noise. The Gaussian process noise is a perturba-
tion, or a way to model modeling error. Note that u plays no role in uncertainty
propagation, since the commands are known perfectly and the local dynamics are
linear.



Kalman Filter Derivation: The Measurement Update
Step

Let’s model sensor noise as additive Gaussian noise with w ~ N(0, 3J,):
y=Cx+w (10)

Cx is a prediction of a measurement. One way to predict it is to use Cx =
Cm™, which has variance CX~CT.

Another way to predict it is to use the actual measurement y, which has vari-
ance X,.

Now we use Gaussian Fact 4 to combine these predictions. The optimal esti-
mate is:

Cx=W,Cm + W,y (11)
where the weight on the prediction is

W, =3,(%, +Cx-CchH™! (12)
and the weight on the measurement is

W, =Cx Cl(x,+CcxchH! (13)

We will use the definition S = X, + CX~CT, and the fact that symmetric
matrices commute in matrix multiplication to simplify what follows
So the optimal estimate for Cx is:

mean(é;() =(1-W,)Cm +W,y
=Cm —W,(Cm™ —y) (14)
=C(m — Y C'SHCm —y))
Since C is a constant and the mean() operation is linear,
mean(X) =m" =m~ — X C'S™{(Cm™ —y)

=m —K'(Cm -y) (15)

so the optimal Kalman filter gain is K* = X~ CTS™1,



We also need to propagate the variance
Var(Cx) = Cx CT — cx C's'cxC” (16)
Peeling off the left C and right C*:
Var(x) =%~ — £~ CTS™ICx~ (17)
and substituting in ¥ and K* gives the update equation for X:
Y»t=% —-K'CX~ (18)

We can see that the reduction in variance of the belief state due to the Kalman
Filter is K*CX ™. Interestingly, it is proportional to the variance of the belief state
before the update >~. It makes sense that when there is no uncertainty before the
update, the update can’t reduce it further.



