
16-264: Probabilistic reasoning

Combining information
Suppose we have two experts that each predict the temperature at noon tomor-

row. How should we combine their estimates?
Suppose we believe one more than the other, how should we combine their

estimates?
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Modeling knowledge with probability distributions
One way to combine information is to model the information sources with prob-

ability distributions.
A well known probability distribution that is common and easy to work with is

the Normal (Gaussian) distribution. This distribution looks like a symmetric hill.
It is characterized by where the hill is (the mean) and how wide the hill is (the
variance). The Normal distribution is what you get if you add a large number of
independent identically distributed random variables (coin flips or dice rolls, for
example).

The mean is the average of the numbers that are generated by a probability
distribution. A way to write this is using expectations (E):

E(x) = x̄ =
N∑
1

xi/N (1)

In estimating the mean from data the formula
∑N

1 xi/(N − 1) to avoid bias. See
a Statistics textbook.

The variance is the expectation of the deviation from the mean squared:

E((x− x̄)2) = σ2 (2)

If we are more sure, the variance is smaller. If we are less sure, the variance is
larger.
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Normal/Gaussian random variables
We will use some facts about Gaussian random variables. George Kantor’s

notes on Kalman Filtering http://www.cs.cmu.edu/˜cga/controls-intro/
kantor/16_299_Kalman_Filter.pdf have a nice review of Gaussian ran-
dom variables.

Fact 1: A Gaussian random vector is fully characterized by its mean (first mo-
ment) and variance (2nd moment). A compact notation is x ∼ N(mean, variance).

Fact 2: For any random vector x ∼ N(m,Σ), Ax ∼ N(Am,AΣAT). For the
scalar case, ax ∼ N(am, a2σ2).

Fact 3: If any two independent random vectors ( x1 ∼ N(m1,Σ1) and x2 ∼
N(m2,Σ2)), are added, the result is N(m1 + m2,Σ1 + Σ2)

Fact 4: If you are given two predictions or belief states about a random variable
x, and the accuracy of these predications is x̂1 ∼ N(m1,Σ1) (the belief of expert
1) and x̂2 ∼ N(m2,Σ2) (the belief of expert 2), your best linear unbiased estimate
(BLUE) of x is W1m1 +W2m2, with W1 = Σ2(Σ1 + Σ2)

−1 and W2 = Σ1(Σ1 +
Σ2)

−1. The variance of this estimate is:

Σ2(Σ1 + Σ2)
−1Σ1Σ2(Σ1 + Σ2)

−1 + Σ1(Σ1 + Σ2)
−1Σ2(Σ1 + Σ2)

−1Σ1 (3)

What a mess! However, all the above matrices are symmetric, so we can reorder
them and get

Σ1Σ2(Σ1 + Σ2)
−1 (4)

A useful way to express the same thing (since W1 = (1 −W2)) that we will
use in the derivation of the Kalman Filter is:

m = m1 + W2(m2 −m1) (5)

and

Σ = Σ1 − Σ1(Σ1 + Σ2)
−1Σ1 (6)
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Scalar derivation of the optimal combination rule
If you are given two predictions or belief states about a random variable x,

and the accuracy of these predications is x̂1 ∼ N(m1, σ
2
1) (the belief of expert 1)

and x̂2 ∼ N(m2, σ
2
2) (the belief of expert 2), your best linear unbiased estimate

(BLUE) of x is w1m1 +w2m2, with w1 = σ22(σ
2
1 +σ22)

−1 and w2 = σ21(σ
2
1 +σ22)

−1.
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Taking into account transformations
To combine measurements it is easiest if both quantities are measurements of

the same thing. This might require transforming a measurement: x′ = T(x). The
new mean is T(x̄) and the new variance is(

∂T

∂x

)
Σx

(
∂T

∂x

)T

(7)

The Kalman filter (next section) uses a transformation from one time to another
(the prediction step), as well as converting measurements from different sensors
into corrections of the same belief state (the measurement updates).

5



The Kalman Filter
The Kalman Filter estimates the state of a dynamic process, using a model of

sensor noise and process noise (deviations from the dynamics due to perturbations
and/or modeling error). Minimizing the variance of the state estimation error (a
form of optimization) drives the design.
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Kalman Filter Derivation: The Prediction Step
The Kalman Filter alternates between predicting the probability distribution of

the belief state on the next step (the prediction step), and incorporating an observa-
tion (the measurement update step). After a prediction step we have a belief state
x̂ ∼ N(m−,Σ−) and after a update step we have a belief state x̂ ∼ N(m+,Σ+).
The superscripts - and + keep track of whether we have incorporated the current
measurement or not.

For a nonlinear discrete time system F(), the belief state mean is propagated
forward in time just using the nonlinear dynamics:

m−next = F(m+,u) (8)

The variance Σ is propagated by linearizing F() about m:

Σ−next = AΣ+AT + Σp (9)

Σp is the variance of the process noise. The Gaussian process noise is a perturba-
tion, or a way to model modeling error. Note that u plays no role in uncertainty
propagation, since the commands are known perfectly and the local dynamics are
linear.
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Kalman Filter Derivation: The Measurement Update
Step

Let’s model sensor noise as additive Gaussian noise with w ∼ N(0,Σo):

y = Cx + w (10)

Ĉx is a prediction of a measurement. One way to predict it is to use Cx̂ =
Cm−, which has variance CΣ−CT.

Another way to predict it is to use the actual measurement y, which has vari-
ance Σo.

Now we use Gaussian Fact 4 to combine these predictions. The optimal esti-
mate is:

Ĉx = WpCm− + Wmy (11)

where the weight on the prediction is

Wp = Σo(Σo + CΣ−CT)−1 (12)

and the weight on the measurement is

Wm = CΣ−CT(Σo + CΣ−CT)−1 (13)

We will use the definition S = Σo + CΣ−CT, and the fact that symmetric
matrices commute in matrix multiplication to simplify what follows

So the optimal estimate for Ĉx is:

mean(Ĉx) = (1−Wm)Cm− + Wmy

= Cm− −Wm(Cm− − y)

= C(m− − Σ−CTS−1(Cm− − y))

(14)

Since C is a constant and the mean() operation is linear,

mean(x̂) = m+ = m− − Σ−CTS−1(Cm− − y)

= m− −K∗(Cm− − y)
(15)

so the optimal Kalman filter gain is K∗ = Σ−CTS−1.
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We also need to propagate the variance

Var(Ĉx) = CΣ−CT −CΣ−CTS−1CΣ−CT (16)

Peeling off the left C and right CT:

Var(x̂) = Σ− − Σ−CTS−1CΣ− (17)

and substituting in Σ+ and K∗ gives the update equation for Σ:

Σ+ = Σ− −K∗CΣ− (18)

We can see that the reduction in variance of the belief state due to the Kalman
Filter is K∗CΣ−. Interestingly, it is proportional to the variance of the belief state
before the update Σ−. It makes sense that when there is no uncertainty before the
update, the update can’t reduce it further.
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