16-745
Optimal Control
and
Reinforcement Learning
2026

Chris Atkeson, 1/12/26

Be Zac!

| am supposed to teach what Zac taught.
Zac's slides and lecture recordings are available

| expect you to at least look at the slides, and scan the lectures to cover anything
you don't already know. | listen to the lectures at 1.5X.

Class web page

https://www.cs.cmu.edu/~cga/dynopt/

Go over this page now ...

https://www.cs.cmu.edu/~cga/dynopt/

Starting section on Function Optimization

Optimal control vs. optimization

This is a course about generating (control) or (reinforcement) learning dynamic
behavior (things that unfold over time, things we do with our body, vehicles,
industrial processes, ...)

This is not a course on optimization. It is a course about using optimization to
generate dynamic behavior.

However, we will review function optimization.
Assume this subroutine is available to you: optfun(function, constraints, hints)

Please scan https://en.wikipedia.org/wiki/Mathematical optimization to see what
this subroutine can pick from to do the function optimization. We will not talk about
much of this list, such as combinatorial optimization, integer optimization, multiple
agents, games, ...

https://en.wikipedia.org/wiki/Mathematical_optimization

Optimists vs. Pessimists

Maximize reward (psychology, neuroscience, machine learning)
Minimize cost (engineering)

Doesn’t matter

| will typically minimize a cost function (optimization criterion).

Optimization (Engineering) vs. Search (Al)
Optimal Control (Engineering) vs. Reinforcement
Learning (ML)

e How do you find local minima?
e How do you find the (or a) global minimum?

e How do you find local minima?
o Make random guesses and iterate. New guesses are close to
previous good guesses. Or do a more organized search pattern. Or
imitate evolution.

How do you find local minima?
o Figure out which way is downhill and move a little bit in that direction
(step size a (alpha) or ¢ (epsilon)) (This is gradient descent: update =
- step_size * gradient)
m Line search

Initial
Weight

l/ Gradient

]
Cost]
]
I

Incremental
Step

Minimum Cost
Derivative of Cost

Weight

https://medium.com/@anushruthikae/optimizing-machine-learning-a-deep-dive-into-cost-functions-and-gradient-descent-7694ca75cc32

&\ 3,.
%

' Gradlent Descent Algorlthm

“‘v’{: ~Reach fast to Nadlr

; \ | ¥ -.;.':;'.‘.‘f p A) ‘ " -
o \Posted onjanualy 15,2018 R s N
wh2 Y (R s
3 i D\ " ¥ s‘;
1 -"‘ -"‘ - :
b ol = ’w . “v
R " - »
! - & BALAR B 1
Vs, “
A }4\\'\

https://ruthwik.github.io/machinelearning/2018-01-15-gradient-descent/

https://ruthwik.github.io/machinelearning/2018-01-15-gradient-descent/

e How do you find local minima?

o Make random guesses and iterate. New guesses are close to
previous good guesses. Or do a more organized search pattern. Or
imitate evolution.

o Figure out which way is downhill and move a little bit in that direction
(step size a (alpha) or & (epsilon)) (This is gradient descent: update =
- step_size * gradient)

m Line search
o When is a (or b) the best choice?
o When are these methods guaranteed?

Local Minimum

Global Minimum

e 2. How do you find the (or a) global minimum?
o Restart search in random places
o Simulated annealing
o When are these methods guaranteed?

Local Minimum
Global Minimum

1. How do you find local minima?
2. How do you find the (or a) global minimum?

Local Minimum
Global Minimum

Gradient Methods - Taking derivatives seriously

df(x)/dx = limit_as_e goes_to_zero_ of (f(x+e) - f(x))/e

Analytic functions: A Taylor series tells you what the function is nearby.

L@ gy s LD (g L@

f(x) = f(a) + (x —a) + ...

Numerical estimate of a derivative:
df(x)/dx = for_some_finite_e (f(x+e) - f(x-e))/(2%e) NA2 cost

You chose e to match the phenomena you are interested in. In time series (like stock
prices), we might care about sample to sample variations (milliseconds or seconds),
or what happens in a minute, hour, day, week, month, year, decade, or century.

Scanning electron microscopy (SEM) images of clean stainless-steel surfaces at 2260x magnification: (a)
I SO S TN RV o, S ST T WU LT N 5 A e g | .

Sy PN TS TN D N

electropolished finish; (b) mill finish; (c) bead blasted finish ; and (d) aluminum oxide tr

eted finis

At least two points of view/emphases

Zac (Space): Models are known and accurate (model structures are correct and
model parameters are fairly well known/estimated/learned); energy remains constant
(intermittent actuation, no friction, damping, or perturbations). = derivatives are
available, accurate, and useful; gradient-based optimization, more emphasis on
trajectories rather than policies; simulations should conserve energy and accurate
simulation matters.

Chris (Practical Robotics): Models can be accurate, but sometimes are not; models
are often “learned” using generic model structures (bias); models of the task or
environment are generally not easily or cheaply available; energy fluctuates wildly
(constant actuation, impact, perturbations, friction, damping, wind, temperature,
humidity, ...), some sensors are noisy. => gradients are not necessarily reliable; more
use of non-gradient-based optimization; more focused on dynamic programming and
reinforcement learning, more interested in learning rather than computing policies;
more interested in fast simulation than accurate simulation.

ML = The chain rule (for example, neural network training)

A good optimization update can be computed with a first order gradient step
(-step_size*gradient) or a second order step (-inverse(Hessian)*gradient).

Non-gradient methods often numerically estimate derivatives and gradients
implicitly, incurring an N*2 cost in terms of function evaluations.

Symbolic computation of derivatives and gradients using the chain rule greatly
reduces computational cost. Given that one can take the derivative of a computer
program symbolically, this is a huge advantage for gradient-based optimization
methods.

Something to help you remember the chain rule

https://www.youtube.com/watch?v=YC1E8yVJIS4

