Support Vector
Machines

Andrew W. Moore
these slides. Andrew would be delighted
if you found this source material useful in Professor
giving your own lectures. Feel free to use:
these slides verbatim, or to modify them 2
1o ft your own needs. PowerPoint School of Computer Science
originals are available. If you make use - - -
ofa significant portion of hese sices n | Carnegie Mellon University
your own lecture, please include this
message, or the following link to the www.cs.cmu.edu/~awm

awm@cs.cmu.edu

source repository of Andrew’s tutorials:

http://www.cs.cmu.edu/~awm/tutorials

Comments and corrections gratefully 412-268-7599
received.

Copyright © 2001, 2003, Andrew W. Moore Nov 23rd, 2001

Features Again

¢ In today’s lecture, we will end up with a design for
a classifier that dates back to the Perceptron work
of the late 50s and early 60s:

ianJtS
generator

Linear
classifier

¢ Vs. nonlinear classifier (multi-layer neural

networks, for example)

* We will talk about how to design the classifier, and

fortuitous choices for the
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feature generator
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New Features Simplify Classification

¢ Xor: AND of inputs makes a linear classifier work.
So does OR of inputs. .
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Spam features

* Word presence, counts

(Bag of words approach)
* Fields with values (From:,

To:, Subject:, ...)

e Use actual word or text, or

classify (lump) text
(xxx@xxx.cmu.edu ->

from-cmu)
e Other features you invent

(has-html, 2-byte-char, is-

short, is-long, ...)

¢ Huge number of features
e Put it all in big vector with

numeric values

Wordcount-free 124
Wordcount-drugs 19
Wordcount-the 12
Wordcount-viagra 10
From-cmu 1
Subject-viagra 0
Date-funny 1
Has-html 1
Mentions-money 1
Salutation 0
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Linear Classifiers {
X-

fix,w,b) = sign(w. x - b)
° denotes +1

° denotes -1

S - : How would you
o classify this data?
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Linear Classifiers by

fix,w,b) = sign(w. x - b)
° denotes +1

° denotes -1

. e L e How would you
J classify this data?
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Linear Classifiers {
X

Classifier Margin i

° denotes +1
° denotes -1

Any of these
would be fine..

°o ..but which is
best?
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* denotes +1
° denotes -1

fix,w,b) = sign(w. x - b)

Define the margin
of a linear
. = classifier as the
width that the
boundary could be
increased by
oo before hitting a
datapoint.
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Maximum Margin
X-

° denotes +1

° denotes -1

i

fix,w,b) = sign(w. x - b)

The maximum
margin linear
. o classifier is the
o linear classifier
with the, um,
maximum margin.

This is the
. simplest kind of
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SVM (Called an

(s o
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Maximum Margin ¢
X

° denotes +1

° denotes -1

Support Vectors?” 4}
are those
datapoints that

the margin

pushes up

against

fix,w,b) = sign(w. x - b)

The maximum
margin linear

e classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of
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SVM (Called an

Cnerswi]
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Why Maximum Margin?

° denotes +1
° denotes -1

Support Vectors 2 ~—>3)

are those
datapoints that
the margin
pushes up
against
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Intuitively this feels safest.

If we've made a small error in the
location of the boundary (it's been
jolted in its perpendicular direction)
this gives us least chance of causing a
misclassification.

LOOCV is easy since the model is
immune to removal of any non-
support-vector datapoints.

There’s some theory (using VC
dimension) that is related to (but not
the same as) the proposition that this
is a good thing.

Empirically it works very very well.
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Linear Classifiers
X-

° denotes +1
° denotes -1

by

fix,w,b) = sign(w. x - b)

- e Is maximum
margin the right
thing to do in this
case?
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Specifying a line and margin

x> Plus-Plane

Classifier Boundary
Minus-Plane

* How do we represent this mathematically?
e ..in minput dimensions?
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Specifying a line and margin
o Plus-Plane
Classifier Boundary

Minus-Plane

e Plus-plane = {x:w.x+b=+1}
e Minus-plane= {x.w.x+b=-1}

Classify as.. +1 if w.x+b>=1
-1 if w.x+b<=-1
Universe if -I<w.x+b<l1
explodes
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Computing the margin width

o

v = Margin Width

~ A" How do we compute
Min terms of w
and b?

e Its going to have something to do with the length of w
e Demo

e Plus-plane = {x:w.x+b=+1}
e Minus-plane= {x.:w.x+b=-1}
Claim: The vector w is perpendicular to the Plus Plane. Why?
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Computing the margin width

A

\M = Margin Width

~4" How do we compute
Min terms of w
and p?

e Plus-plane = {x:w.x+b=+1}
e Minus-plane= {x.:w.x+b=-1}
Claim: The vector w is perpendicular to the Plus Plane. Why?

Let u and v be two vectors on the

Plus Plane. Whatis w. (u-v)?
7 (u-v)

And so of course the vector w is also
perpendicular to the Minus Plane
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Computing the margin width

—' How do we compute
[x ] P

e o 0% Min terms of w
W0
PO and &?
W
e Plus-plane = {x:w.x+b=+1}

e Minus-plane= {x.:w.x+b=-1}
o The vector w is perpendicular to the Plus Plane
¢ Let x be any point on the minus plane
e Let x* be the closest plus-plane-point to x-.

Any location in
R™: not
necessarily a
datapoint
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Computing the margin width

—{ How do we compute
Min terms of w

07 K
W 0 A o
RIS ke and 5?
o
e Plus-plane = {x:w.x+b=+1}

e Minus-plane= {x.w.x+b=-1}

¢ The vector w is perpendicular to the Plus Plane

¢ Let x be any point on the minus plane

e Let x* be the closest plus-plane-point to x~.

e Claim: x* = x + 1 w for some value of 1. Why?
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Computing the margin width

XM = Margin Width
The line from x to x* is

perpendicular to the
planes.

So to get from x to x*
travel some distance in
direction w.

e Plus-plane =
e Minus-plane= {x.w.x+b=-

e The vector w is perpendicular to the Plus Plane
e Let x be any point on the minus plane

e Let x* be the closest plus-plane-point to x-.

e Claim: x* = x + 2 w for some value of 1. Why?
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Computing the margin width

v = Margin Width

What we know:

o w.xt+b=+1

e w.x +b=-1

e Xt=x+1w

o |xt-x| =M

It's now easy to get M
in terms of wand b
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Computing the margin width

e
w.(x +iw)+b=1

What we know: =>
s w.xt+b=+1
e w.x +b=-1 =>
e Xt=x+,w
o |IxXt-x| =M
It's now easy to get M 2

in terms of wand b A=—
A
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w.x"+b+iw.w=1

-1+iw.w =1
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Computing the margin width

2
AW.wW
O’A
X0 | o2
e O m=|xt-x| = Aw|=
R

What we know:

e w.x*+b=+1

e w.x +b=-1

e Xt=x+iw

o |Ixt-x| =M

* /I:L
A
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=1|w|=Aww
_2dww 2

w.w VW.W
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Learning the Maximum Margin Classifier

2
Vw.w

Given a guess 8? wand bwe can
e Compute whether all data points in the correct half-planes
¢ Compute the width of the margin

So now we just need to write a program to search the space
of w’'s and /s to find the widest margin that matches all
the datapoints. How?

Gradient descent? Simulated Annealing? Matrix Inversion?
EM? Newton’s Method?
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Learning via Quadratic Programming

¢ QP is a well-studied class of optimization
algorithms to maximize a quadratic function of
some real-valued variables subject to linear
constraints.
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Quadratic Programming

u Ru 4———____— Quadratic criterion

Find argmax c+d u+
u

Subject to anu, +anp, +...+a,u, <b

Ay Uy + gty + . ¥ Ay, 1, < b, n additional linear
inequality
constraints

a,u, +a,,u, +..+a,u, <b

nm~m n

And subject to o
Apapth T Aty +oo Qg ), Uy, = b(n+1) g g

+ ot =h 25 %

Aoty T Aigphy Tt Ayt =0y | 5 29

o=y

: Z =

« =)

b 4

Aeenty T Agpoplly T oot Al = D) =
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Quadratic Programming

s u Ru

Find argmax c+d u+ 4~ Quadratic criterion
u

Subject to

And sybs

SjuIR1ISUOD

Ayjenbs
Jeaul| |euonippe 8

aeNeymUm = b(n+e)
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Learning the Maximum Margin Classifier
M—; Given guess of w, b we can
\ﬁ- Compute whether all data
points are in the correct
half-planes
o Compute the margin width
Assume R datapoints, each
(x,y.,)where y, = +/- 1

What should our quadratic How many constraints will we
optimization criterion be? have?

What should they be?
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Learning the Maximum Margin Classifier
RN

M; Given guess of w, bwe can
\Tﬁ' Compute whether all data

& g points are in the correct
. . half-planes
w";“ ’ « Compute the margin width
“f*mf" . . Assume R datapoints, each
(x,v.)where y, = +/- 1
What should our quadratic How many constraints will we
optimization criterion be? have? R
Minimize w.w What should they be?

w.x,+b>=1ify =1
w.x,+b<=-1ify,=-1
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Uh'Oh' This is going to be a problem!
What should we do?

° denotes +1

° denotes -1
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Uh'Oh' This is going to be a problem!
What should we do?

* denotes +1 Idea 1:
°_ denotes -1 Find minimum w.w, while
. e minimizing number of
e L. training set errors.
1T - oL ° Problemette: Two things
I to minimize makes for
. e an ill-defined
‘ Lo optimization
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° denotes +1

° denotes -1

o

Uh'Oh' This is going to be a problem!

What should we do?
Idea 1.1:
Minimize
w.w + C (#train errors)

. . Tradeoff parameter

.. There’s a serious practical
° problem that’s about to make
us reject this approach. Can

Copyright © 2001, 2003, Andrew W. Moore

you guess what it is?
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Uh'Oh' This is going to be a problem!
What should we do?

* denotes +1 Idea 1.1:

° denotes -1

Minimize

w.w + C (#train errors)

. : radeoff parameter
. Can't be expressed as a Quadratic
g Programming problem.
° Solving it may be too slow. bri
(Al_so, doesn't distinguish betw_een S0 any
disastrous errors and near misses) | other
US TCjoct U \deaS7-
You guess W
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Uh-oh!  Thisis going to be a problem!

What should we do?

* denotes +1 Idea 2.0:
° denotes -1 Minimize
. ‘ w.w + C (distance of error
s L. points to their
1., . correct place)
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Learning Maximum Margin with Noise
., . \Mz Given guess of w, bwe can

Jwwe Compute sum of distances
of points to their correct
L zones

w"i;“ ’ ¢ Compute the margin width
;M\‘ . . Assume R datapoints, each
(x,v.)where y, = +/- 1
What should our quadratic How many constraints will we
optimization criterion be? have?

What should they be?
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Learning Ma

What should our quadratic How many constraints will we
optimization criterion be? have? R

Minimize

5w.w+Cz
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ximum Margin with Noise
M; Given guess of w, bwe can

Jwwe Compute sum of distances
of points to their correct
L zones

e Compute the margin width
Assume R datapoints, each
(x,y)where y, = +/- 1

R What should they be?
& w.x, +b>=1¢ify, =1

k= wW. X, +b <= -145ify, = -1
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Learning Maximum Margi ise
dimensions jye can

e N M= Giveng
. ‘\'\y‘gz ><§//1/ Jwwe Compute sum O

istances
. P 3 R\
. < Our original (noiseless data) QP had m+1
A ; variables: w,, w,, ... w,, and b.
@ o / . th
W Our new (noisy data) QP has m+1+R
X . .
o variables: wy, W, ... Wy, b, &, &1,..- &r
UK 7TR7 7K

What should our quadratic How many constrai Ay
optimization criterion be?  have? R — # recor

Minimize 1 R What should they be?
Ew.W+CZSk W.x, +b>=1¢ify =1
k=1 W.x, +b<=-1+g ify, = -1
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Learning Maximum Margin with Noise
M_E Given guess of w, bwe can
\mo Compute sum of distances

of points to their correct

. zones

¢ Compute the margin width

Assume R datapoints, each

(x,,vi)where y, = +/- 1

What should our quadratic  How many constraints will we
optimization criterion be? have? R
Minimize 1 R What should they be?
EW-W+C & w.x +b>=1—¢ify. =1
k=t W. X +b<=-1+gify, =-1

i There's a bug in this QP. Can you spot it? |
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Learning Maximum Margin with Noise
M_E Given guess of w, b we can
\ﬁ- Compute sum of distances

of points to their correct

. zones

e Compute the margin width

Assume R datapoints, each

(x,v)where y, = +/- 1

What should our quadratic  How many constraints will we
optimization criterion be? have? 2R

Minimize 1 R What should they be?
EW~W+C & w.x,+b>=1¢ify, =1
k=t W. X, +b<=-1+gify, =-1

& >= Oforall k
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An Equivalent QP

o R 1 R R
MaxmzeZak —EZZakale,where Oy =X, X))
k=1

k=1 I=1

Subject to these ()< a, <C Vk

R
o =0
constraints: 12:1 £V

Then define:

R PP
W = Z a, Y X, Then classify with:
sl fx,w,b) = sign(w. x - b)

b=y, (l—-ey)— X, W,
where K = arg max a,
k
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An Equivalent QP

R

. R 1 R
Maximize » a, —7ZZaka,QMwhere Ou =X, X))
k=1

= k=1 I=1

R
Subjecttothese (<, <C Vi a =0
constraints: TR ‘Zzl £V
Then define: Data points with 0 < &, < C will be the

support vectors. Data points with
o= C are misclassified.

R

w = z 0 Vi Xy

k=1

..s0 this sum only needs
to be over the
support vectors.

b=yy(-eg)—xpW

where K = arg max a,
k
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An Eauivplent QP
MaximizeR o, ! ‘3 v v "

Why did I tell you about this
S > equivalent QP? z
e o It's a formulation that QP

packages can optimize more

quickly
w=> * Because of further jaw- .
= dropping developments you're 5
about to learn.
b= 7, N

where K*gy//\
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Suppose we're in 1-dimension

What would
SVMs do with
this data?

Xl—ﬂ
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Suppose we're in 1-dimension

Not a big surprise

XLQ C
Positive “plane” Negative “plane”
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Harder 1-dimensional dataset

That's wiped the

smirk off SVM’s
face.

What can be
done about
this?

Xl—ﬂ
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Harder 1-dimensional dataset

Remember how
permitting non-
linear basis
functions made
linear regression
so much nicer?

e Let's permit them
. here too
o o R
x20 2, =(x;,x;)
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Harder 1-dimensional dataset

Remember how
permitting non-
linear basis
functions made
linear regression
so much nicer?

/ Let's permit them
here too

2
) z, =(x;,x;)
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Common SVM basis functions

2z, = ( polynomial terms of x; of degree 1 to g )

z, = ( radial basis functions of x, )
. [x, —c, |
2 [j1=0,(x,)= Kernean(KW’

z, = ( sigmoid functions of x, )
This is sensible.
Is that the end of the story?

No...there’s one more trick!
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1 [~ Constant Term Q H
- uadratic
oL ear Terms Basis Functions
V2x, Number of terms (assuming m input

o dimensions) = (m+2)-choose-2

ot

X2 Pure = (M+2)(Mm+1)/2

uadratic
) Terms = (as near as makes no difference) m%/2

X,
D(x) =
O (2,
V2xx, You may be wondering what those
: ﬁ 's are doing.
Vaxx Quadratic 9
o 0ss-Terms *You should be happy that they do no
V2, harm
) «You'll find out why they're there
Vaxix, soon.
V2x, %,
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QP with basis functions

QP with basis functions

Maximize z o = z z 00,0 where O, =y, v, (D(x,).D(x,)

klll

Maximize Zak zzak 0, Oy where Oy =y, v, (P(x,). D(x,)
I

klll

R
Subjectto these (<, <C Vi o =0
constraints: TR ,Z‘ £V

Then define:

w = z o, y,®(x,) Then classify with:
kst a;>0 fix,w,b) = sign(w. §(x) - b)
b=y, Q-—ep)—X,.W,
where K = arg max a,
k

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 49

We must do R%/2 dot products to [
get this matrix ready.

Subject to these
cg)nstraints: 0< % < Each dot product requires m?/2

additions and multiplications
The whole thing costs Rz m2 /4.

Then define: Yeeks!
w = zakykq)(xk) =
kst oo,>0 ‘ fix,w,b) = sign(w. ¢(X) -b)

b=y, (l-—¢ep)—X,.W,

where K = arg max o,
k
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g 1 1
1
S8, | |lw]| I!
B 2a, 2b, N
-3 : 2 2ab,
°3 V2a, || A2,
< 2 @ I +
© A B P2
8 a: o) m asz
: N P o
oweam)-| b
2)s®(b) = .
2aa, V2bp
2a,a \/Eb,b3 +
2aa, || ~2bb,
V2a,a; | | N2bb, 3 2a,abb,
. pgr)
ﬁal“m ﬁblbrvv
V24, a,) \N2b, b,
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Just out of casual, innocent, interest,
let’s look at another function of @ and
(ab+1)

=(ab)’ +2ab+1

[Zab] +2Zab +1

®(a)ed(b) = n n
(@eEE) :Z a,b,a,b/+22a,b,+l
=1 i=l

1+Zia,b, +ia,zbf "‘i iZa,a,b,b/ [Egy=
i=l i=1

=1 j=itl

Quadratic Dot
Products

b,) +2z Zaba,b, +2ia,b,+l
i=1

i=l j=i+l
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)
o Just out of casual, innocent, interest,
o n let’s look at another function of a and

+ b:
Lo
"é -8 (ab+1)°
o xc_) =(ab)’ +2ab+I1
5o z
= ab, | +2) ab,+1
& (Bon) <25
®(a)ed(b)= n m
@) =">abab, +2) ab +1
i=l

1+2Zab +Za 1243 S 2aa,b0, ERE

i=1 j=i+l

= i(a,b,)2 + 22 ia,b,a,b/ + 2i ab, +1
i=l i=1

[y =n]

They're the same!
And this is only O(m) to
compute!
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QP with Quadratic basis functions

Maximize Zak Zzak Q) where O =y, ¥, (®(x,).D(X,)
-~

klll

We must do R%/2 dot productsto [
get this matrix ready.

Subject to these 0<a,

<
constraints: ~—| Each dot product now only requires

/m additions and multiplications

Then define:

w = z o,y,® (x . ) Then classify with:
Fet =0 foqw,5) = sign(w. §(x) - 1)
b=y, (l—ep)— X, W,
where K = arg max a,
k
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Higher Order Polynomials

QP with Quintic basis functions

We must do R?/2 dot products to get this

matrix ready. Oy =y (P(x,).D(x,)

In 100-d, each dot product now needs 103

operations instead of 75 million

But there are still worrying things lurking away.
What are they? vk

R
Z a,y, =0
k=1

Poly- o) Cost to | Cost if 100 ¢(a).¢(p) | Cost to | Cost if
nomial build Q,, |inputs build @, | 100
matrix matrix | inputs
tradition sneakily
ally
Quadratic | All m2/2 m R? /4 |2,500 R? (a.b+1P | mR?/2 |50 R?
terms up to
degree 2
Cubic All m/6 m’ R? /12| 83,000 R? (a.b+1P | mR?/2 |50 R?
terms up to
degree 3
Quartic Al m?/24 | m?R? /48| 1,960,000 R? | (a.b+1) | mR?/2 |50 R?
terms up to
degree 4
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‘ CUTrSuranitts,.

Then define:
w = z a,y,®(x;)
kst oa;>0

b=y, (l-—¢ep)—X,.W,

Then classify with:

where K = arg max a,
k fxyw,b) = sign(w. §(x) - b)
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QP with Quintic basis functions

QP with Quintic basis functions

We must do R2/2 dot products to get this

matrix ready. Oy =y, (®(x,).D(x,)
In 100-d, each dot product now needs 103

operations instead of 75 million

But there are still worrying things lurking away. R
What are they? ‘ vk Y 0,y, =0
‘ COTIStranTis. —__——1 *The fear of overfitting with this enormous

number of terms

Then define: «The evaluation phase (doing a set of

predictions on a test set) will be very
expensive (why?)

w = Z a,y,®(x,5

kst a,>0

b=y, (l—-ey)—xX,. W,
where K = arg max a,
k

Then classify with:

fx,w,b) = sign(w. §(x) - )
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We must do R?/2 dot products to get this
aiideady 0. =1, v.(Px)P(X.)

In 100-d, each dot product now needs 103 The use of Maximum Margin
operations instead of 75 million magically makes this not a r
problem

But there are still worrying things lurking away.
What are they? ‘ k 7 0,y, =0
‘ LuTISUanTs. —__——1 *The fear of overfitting with this enormous

number of terms

Then define: The evaluation phase (doing a set of

predictions on a test set) will be very
_ expensive (why?)
w = Z a,y,®(x;Y

kst oa;>0 Because each w. ¢(x) (see below)
needs 75 million operations. What
b = Vi (I_SK)_XK‘WK can be done?

Then classify with:

fx,w,b) = sign(w. O(x) - b)
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where K = arg max a,
k
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QP with Quintic basis functions

We must do R2/2 dot products to get this
FERHES (R 0. =v. v(DPENDP(X)

In 100-d, each dot product now needs 103 The use of Maximum Margin
operations instead of 75 million magically makes this not a [

But there are still worrying things lurking away. problem
What are they? a,y, = 0
‘ OTISantes. ] eThe fear of overfitting with this enormous

number of terms

Then define: The evaluation phase (doing a set of

predictions on a test set) will be very
expenswe (why?)
w = Z 0, Y, ®(x,}

kst oag>0 Because each w. ¢(x) (see below)
needs 75 million operations. What
w-®(x)= Zakykd)(xk)-Q(x) be done?
_ K si ak;ﬂkyk(Xk x4 1) Then classify with:
kst ag>0
Only Sm operations (S=#support vectors) Rx,w,b) = sign(w. §(x) - b)
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We must do R2/2 dot products to get this
atideacy 0. =v. v.(PENDP(X)

In 100-d, each dot product now needs 103 The use of Maximum Margin
operations instead of 75 million magically makes this not a [

But there are still worrying things lurking away. RIoblel

What are they? 7 0,V = 0]

‘ CUTISUanTs. —__—— *The fear of overfitting with this enormous
number of terms

Then define: «The evaluation phase (doing a set of
predictions on a test set) will be very
expensive (why?)

w = Z‘ZAJ/k(I)(Xk ‘

kst oa,>0 Because each w. ¢(x) (see below)
needs 75 million operations. What

w-®(x)= Zakka(xk)-CI)(x) be done?
kst ay>0 1

= 5 I When you see this many callout bubbles on
= o,y (X -x+1) I b P

a slide it's time to wrap the author in a

kst oap>0 blanket, gently take him away and murmur
Only Sm operations (S=#support vectors) £{| “someone’s been at the PowerPoint for too
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QP with Quintic basis functions

R 1 R R
Maximize z o, —— z z a,((l,le wh Andrew’s opinion of why SVMs don't
- 2 1 = overfit as much as you'd think:
k=1 k=1 I=1

No matter what the basis function,
there are really only up to R
parameters: @, a;,.. ag and usually

Subject to these (< a, <C

constraints: most are set to zero by the Maximum
Margin.
Then define: Asking for small w.w is like “weight

decay” in Neural Nets and like Ridge
Regression parameters in Linear
w = Z o,y () (X ) regression and like the use of Priors
k. k k . . N :
in Bayesian Regression---all designed
to smooth the function and reduce

WD (x)= Y a,y,®(x,) ®(x) Pverfiting.

kst oa,>0

_ ks‘znk;o,fy,,(xk x+1)° Then classify with:

kst ag>0

Only Sm operations (S=#support vectors) fix,w,b) = sign(w. ¢(X) -b)
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SVM Kernel Functions
e K(a,b)=(a. b +1)is an example of an SVM
Kernel Function

* Beyond polynomials there are other very high
dimensional basis functions that can be made
practical by finding the right Kernel Function

* Radial-Basis-style Kernel Function:

_ (a-b)’ o, k and & are magic
K(ab)= exp(— 207 parameters that must

. be chosen by a model
* Neural-net-style Kernel Function: | selection method
such as CV or
VCSRM*

*see last lecture

K(a,b) = tanh(xab — &)
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VC-dimension of an SVM

o Very very very loosely speaking there is some theory which
under some different assumptions puts an upper bound on

the VC dimension as
Diameter
Margin
e where

» Diameter is the diameter of the smallest sphere that can
enclose all the high-dimensional term-vectors derived
from the training set.

o Marginis the smallest margin we'll let the SVM use

¢ This can be used in SRM (Structural Risk Minimization) for
choosing the polynomial degree, RBF o, etc.

e But most people just use Cross-Validation
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SVM Performance

¢ Anecdotally they work very very well indeed.

e Example: They are currently the best-known
classifier on a well-studied hand-written-character
recognition benchmark

o Another Example: Andrew knows several reliable
people doing practical real-world work who claim
that SVMs have saved them when their other
favorite classifiers did poorly.

e There is a lot of excitement and religious fervor
about SVMs as of 2001.

» Despite this, some practitioners (including your
lecturer) are a little skeptical.
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Doing multi-class classification

¢ SVMs can only handle two-class outputs (i.e. a
categorical output variable with arity 2).
e What can be done?
o Answer: with output arity N, learn N SVM's
e SVM 1 learns “Output==1" vs “Output != 1"
e SVM 2 learns “Output==2" vs “Output != 2"
e SVM N learns “Output==N" vs “Output != N”
Then to predict the output for a new input, just
predict with each SVM and find out which one puts
the prediction the furthest into the positive region.
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Other applications of SVM

¢ Regression, density estimation?

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 66




References

* An excellent tutorial on VC-dimension and Support
Vector Machines:

C.J.C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):955-974, 1998.
http://citeseer.nj.nec.com/burges98tutorial.html
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What You Should Know
e Linear SVMs

e The definition of a maximum margin classifier

* What QP can do for you (but, for this class, you
don't need to know how it does it)

¢ How Maximum Margin can be turned into a QP
problem

¢ How we deal with noisy (non-separable) data
¢ How we permit non-linear boundaries

¢ How SVM Kernel functions permit us to pretend
we're working with ultra-high-dimensional basis-
function terms
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