Prediction and Search in Probabilistic Worlds
Markov Systems, Markov
Decision Processes, and

Dynamic Programming

Note o other teachers and users of Andrew W. Moore
these slides. Andrew would be delighted
ifyou found this source material vetutn :
GG your own lecre. Fee free 0 use Associate Professor
e sides vrbatm. or 1o mocity them

Lot your own neccs. Powerpont :
e e avae. ivos ke s | SCh 00Ol 0of Computer Science
19 Signiicant porion of these sides m

your own lecture, please include this H i i
i e memameone | Carnegie Mellon University
Sourc repocitory of Andhews tonas:

hittp://wwwcs.cmu.edu/~awm/tutorials www.cs.cmu.edu/~awm

c ts and correcti tefull
Camments and camectons graetuly awm@cs.cmu.edu

412-268-7599

Copyright © 2002, Andrew W. Moore April 21st, 2002

Discounted Rewards

An assistant professor gets paid, say, 20K per year.
How much, in total, will the A.P. earn in their life?

20+20+ 20+ 20 + 20 + ... = Infinity

-
fool

)

What'’s wrong with this argument?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 2

Discounted Rewards

“A reward (payment) in the future is not worth quite
as much as a reward now.”
» Because of chance of obliteration
* Because of inflation
Example:
Being promised $10,000 next year is worth only 90% as
much as receiving $10,000 right now.
Assuming payment n years in future is worth only
(0.9)" of payment now, what is the AP’s Future
Discounted Sum of Rewards ?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 3

Discount Factors

People in economics and probabilistic decision-
making do this all the time.

The “Discounted sum of future rewards” using
discount factor y” is

(reward now) +
y (reward in 1 time step) +
y 2 (reward in 2 time steps) +
y 3 (reward in 3 time steps) +

(infinite sum)

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 4

The Academic Life

Define: 0.7\ Fat
J, = Expected discounted future rewards starting in state A
Jg = Expected discounted future rewards starting in state B

Jr= * “ * .
Jg= ¢ * * “r 8
b= * * ! "D
How do we compute J,, Jg, J1, Jg, Jp ?
Copyright © 2002, Andrew W. Moore Markov Systems: Slide 5

Computing the Future Rewards of an
Academic

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 6

A Markov System with Rewards...

* Has aset of states {S, S, - S\}
« Has a transition probability matrix

Py P Piy
P=|P,, P; = Prob(Next = S| This = ;)
Py P

« Each state has areward. {r,r, - ry}
* There’s a discount factory. 0<y<1
On Each Time Step ...
0. Assume your state is S,
1. You get given reward r;
2. You randomly move to another state
P(NextState = S; | This = S;) = P;

3. All future rewards are discounted by y

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 7

Solving a Markov System

Write J*(S;) = expected discounted sum of future
rewards starting in state S;

J*(Si) =I; + v X (Expected future rewards starting from your next state)

=1+ (P d*(S4)+PiJ*(So)+ -+ Pind*(Sy))

Using vector notation write
J*(Sy)

1 I Py Piz - Pyy
J*(S,) p) Par .
J=| R=| + | P= |:
J*(S\) N Pnt Pz = Pan

Question: can you invent a closed form expression for
Jintermsof R P andy?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 8

Solving a Markov System with Matrix
Inversion

» Upside: You get an exact answer

* Downside:

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 9

Solving a Markov System with Matrix
Inversion

» Upside: You get an exact answer

* Downside: If you have 100,000 states you're
solving a 100,000 by 100,000 system of
equations.

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 10

Value lteration: another way to solve
a Markov System

Define

J1(S;) = Expected discounted sum of rewards over the next 1 time step.
J2(S;) = Expected discounted sum rewards during next 2 steps
J3(S;) = Expected discounted sum rewards during next 3 steps

JK(S;) = Expected discounted sum rewards during next k steps

Value lteration: another way to solve
a Markov System

Define

J1(S;) = Expected discounted sum of rewards over the next 1 time step.
J4(S;) = Expected discounted sum rewards during next 2 steps
J3(S;) = Expected discounted sum rewards during next 3 steps

JX(S;) = Expected dis| s during next k steps
N = Number of states

JI(S) = (what?)
J4S) = (what?)
Je1(s) = (what?)

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 11

J(S)=r, el (what?)
N
1
ss)= +JZ::‘ Pyd(5)) (what?)
: . k
JUS) = 1 +Z p;d“(s;) (what?)
Copyright © 2002, Andrew W. T/I](-mre Markov Systems: Slide 12

Let’s do Value lteration

5

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 13

Value lteration for solving Markov
Systems
+ Compute J(S;) for each j
+ Compute J%(S;) for each j

« Compute JK(S;) for each j
As ko JK(S)—J*(S) . Why?
When to stop? When
Max | J<I(S) - JXS) | < &
i

This is faster than matrix inversion (N3 style)
if the transition matrix is sparse

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 14

A Markov Decision Process

You run a
startup
company.

Poor &
Unknown

In every
state you
must
choose
between
Saving
money or

Advertising. Rich &

Unknown
+10

Famous
+10

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 15

Markov Decision Processes

An MDP has...

+ Asetofstates {s, - Sy}

» Asetofactions {a, - ay}

+ Asetofrewards {r, - r} (one for each state)
+ Atransition probability function

PY =Prob(Next = j|This =iand I use action k)

On each step:
0. Call current state S;
1. Receive reward r,
2. Choose action € {a; - ay}
3. If you choose action a, you'll move to state S; with
probability Pi}<
4. All future rewards are discounted by y
Copyright © 2002, Andrew W. Moore Markov Systems: Slide 16

A Polic

A policy is a mapping frgm staXas to actiorns.

Examples ol 2
STATE — ACTION @

f 1/2{
[
£ PU s N N
2 PF A 2 &)
12
e e @
& RF A
& [sTATE - ACTION o "9/77 Y
3
PU A -
| @ﬂ
Z RU A AN S
8 \ _—)

How many possible policies in our example?
* Which of the above two policies is best?
How do you compute the optimal policy?
Copyright © 2002, Andrew W. Moore Markov Systems: Slide 17

Interesting Fact

For every M.D.P. there exists an optimal
policy.

It's a policy such that for every possible start
state there is no better option than to follow
the policy.

(Not proved in this
lecture)

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 18

Computing the Optimal Policy

Idea One:
Run through all possible policies.
Select the best.

What's the problem ?7?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 19

Optimal Value Function

Define J*(S;) = Expected Discounted Future
Rewards, starting from state S;,
. assﬁuming we use the optimal policy

. N
// (a7)° Question

What (by inspection) is

|/ P

VOR i S

\) ' e an optimal policy for that
7 = '\',2 MDP?

(assume y =0.9)

u
What is J*(S,) ?
What is J*(S,) ?
What is J*(S;) ?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 20

Computing the Optimal Value
Function with Value lteration

Define

JK(S;) = Maximum possible future sum
of rewards | can get if | start at
state S,

Note that J'(S)) =r;

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 21

Let's compute JX(S;) for our example

k | JPU) | JNPF) | J{RU) | JYRF)
1
2
3
4
5
6

Bellman’s Equation

IS,)= mkax[fi +7%1F’nk3"(sj)}
=

Value lteration for solving MDPs

« Compute J'(S;) for all i
« Compute J%(S)) for all i

« Compute JXS,) for all i
..... until converged
[converged when max ‘J“(S.)—Jk(S‘](é]
...Also known as
Dynamic Programming

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 23

Finding the Optimal Policy

1. Compute J*(S;) for all i using Value
Iteration (a.k.a. Dynamic Programming)

2. Define the best action in state S; as

arg [nax{ri o) PJJ*(S,-)}

(Why?)

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 24

Applications of MDPs

This extends the search algorithms of your first
lectures to the case of probabilistic next states.

Many important problems are MDPs....

.. Robot path planning

.. Travel route planning

.. Elevator scheduling

.. Bank customer retention

.. Autonomous aircraft navigation
.. Manufacturing processes

.. Network switching & routing

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 25

Asynchronous D.P.
Value lteration:

“Backup S,”, “Backup S,”, -+ “Backup S,
then “Backup S,”, “Backup S,”, -
repeat :

There’s no reason that you need to do the
backups in order!

Random Order ...still works. Easy to parallelize (Dyna,
Sutton 91)
On-Policy Order
Simulate the states that the system actually visits.
Efficient Order
e.g. Prioritized Sweeping [Moore 93]
Q-Dyna [Peng & Williams 93]

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 26

Another way to compute
optimal policies

Policy Iteration
Write 11(S;) = action selected in the i'th state. Then 1 is a policy.
Write 1t = t'th policy on t'th iteration

Algorithm:

" = Any randomly chosen policy
Vi compute J°(S;) = Long term reward starting at S; using "
m(S) = arg maX|:I’| +72Pua‘]a(sj)}
Jy= ’ J
TMy(S) = ...

... Keep computing 1t , 2, 3 ... until ¢ = <1 | You now have
an optimal policy.

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 27

Policy Iteration & Value lteration:
Which is best ?7?7?
It depends.
Lots of actions? Choose Policy lter
Already got a fair policy? Policy Iter
Few actions, acyclic? Value lter
Best of Both Worlds:

Modified Policy Iteration [Puterman]
...a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 28

Time to Moan

What's the biggest problem(s) with what we’ve
seen so far?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 29

Dealing with large numbers of states

STATE VALUE

Don’t use a Table...

s

S

(Generalizers) - (Hierarchies)

./0\/ I [Munos 1999]
Il

A Function Multi Resolution
Approximator D@)

% Markov Systems: Slide 30

Copyright © 2002, Andréw W. Moore

Function approximation for value
functions

Polynomials [Samuel, Boyan, Much O.R.
Literature]
Neural Nets [Barto & Sutton, Tesauro,

Crites, Singh, Tsitsiklis]

Checkers, Channel
Routing, Radio Therapy

Backgammon, Pole

Balancing, Elevators,
Tetris, Cell phones

Splines

Downside:| All convergence guarantees disappear.

Economists, Controls

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 31

Memory-based Value Functions

J(“state”) = J(most similar state in memory to “state”)
or

Average J(20 most similar states)
or

Weighted Average J(20 most similar states)

[Jeff Peng, Atkeson & Schaal,

Geoff Gordon, proved stuff

Scheider, Boyan & Moore 98]
A

“Planet Mars Scheduler” |

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 32

Hierarchical Methods

Continuous State Space: “Split a state when statistically
significant that a split would
Discrete Space: improve performance”

Chapman & Kaelbling 92, s C;OTtégu%J: Space
McCallum 95 (includes €.g. Simmons et al 83, Chapman

hidden state) f/llt(r:]oeslb;)igg 92, MT?(Ring 94 ...,

Akind of Decision

m with interpolationu

Tree Value Function “Prove needs a higher
resolution”
‘ Multiresolution ‘ Moore 93, Moore &
P m— Atkeson 95

A hierarchy with high level “managers” abstracting low level “servants”

Many O.R. Papers, Dayan & Sejnowski’'s Feudal learning, Dietterich 1998 (MAX-Q
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 33

What You Should Know

+ Definition of a Markov System with Discounted
rewards

* How to solve it with Matrix Inversion
* How (and why) to solve it with Value Iteration

« Definition of an MDP, and value iteration to solve
an MDP

» Policy iteration

» Great respect for the way this formalism
generalizes the deterministic searching of the start
of the class

» But awareness of what has been sacrificed.

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 34

