

Prediction and Search in Probabilistic Worlds

Markov Systems, Markov Decision Processes, and Dynamic Programming

Note to other teachers and users of these slides: Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. Please let the originals be available. If you make use of a significant portion of these slides in your own lectures, please include a message, or the following link to the source repository of Andrew's tutorials: <http://www.cs.cmu.edu/~awm/markov>. Comments and corrections gratefully received.

Andrew W. Moore

Associate Professor

School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm

awm@cs.cmu.edu

412-268-7599

Copyright © 2002, Andrew W. Moore

April 21st, 2002

Discounted Rewards

An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

$20 + 20 + 20 + 20 + 20 + \dots = \text{Infinity}$

What's wrong with this argument?

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 2

Discounted Rewards

"A reward (payment) in the future is not worth quite as much as a reward now."

- Because of chance of obliteration
- Because of inflation

Example:

Being promised \$10,000 next year is worth only 90% as much as receiving \$10,000 right now.

Assuming payment n years in future is worth only $(0.9)^n$ of payment now, what is the AP's Future Discounted Sum of Rewards ?

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 3

Discount Factors

People in economics and probabilistic decision-making do this all the time.

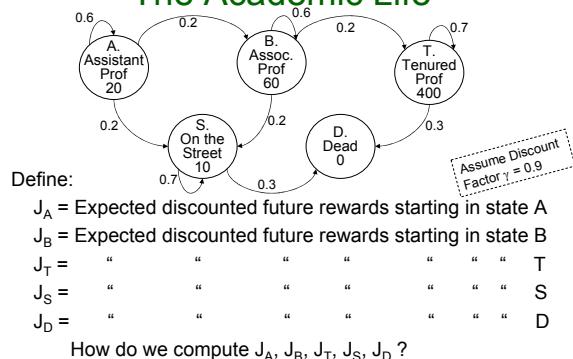
The "Discounted sum of future rewards" using discount factor γ is

$$\begin{aligned}
 & (\text{reward now}) + \\
 & \gamma (\text{reward in 1 time step}) + \\
 & \gamma^2 (\text{reward in 2 time steps}) + \\
 & \gamma^3 (\text{reward in 3 time steps}) + \\
 & \vdots \\
 & \vdots (\text{infinite sum})
 \end{aligned}$$

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 4

The Academic Life



Copyright © 2002, Andrew W. Moore

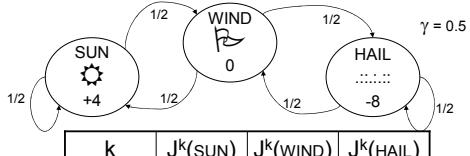
Markov Systems: Slide 5

Computing the Future Rewards of an Academic

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 6

Let's do Value Iteration



Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 13

k	$J^k(\text{SUN})$	$J^k(\text{WIND})$	$J^k(\text{HAIL})$
1			
2			
3			
4			
5			

Value Iteration for solving Markov Systems

- Compute $J^1(S_i)$ for each j
- Compute $J^2(S_i)$ for each j
- ⋮
- Compute $J^k(S_i)$ for each j

As $k \rightarrow \infty$ $J^k(S_i) \rightarrow J^*(S_i)$. **Why?**

When to stop? When

$$\max_i |J^{k+1}(S_i) - J^k(S_i)| < \xi$$

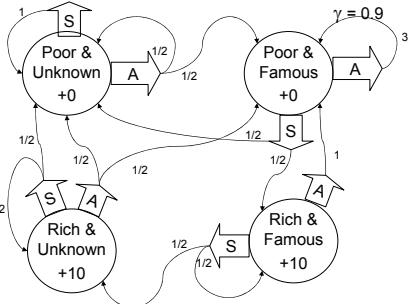
This is faster than matrix inversion (N^3 style)
if the transition matrix is sparse

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 14

A Markov Decision Process

You run a startup company. In every state you must choose between Saving money or Advertising.



Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 15

Markov Decision Processes

An MDP has...

- A set of states $\{S_1 \dots S_N\}$
- A set of actions $\{a_1 \dots a_M\}$
- A set of rewards $\{r_1 \dots r_N\}$ (one for each state)
- A transition probability function

$$P_{ij}^k = \text{Prob}(\text{Next} = j | \text{This} = i \text{ and I use action } k)$$

On each step:

- Call current state S_i
- Receive reward r_i
- Choose action $a \in \{a_1 \dots a_M\}$
- If you choose action a_k you'll move to state S_j with probability P_{ij}^k
- All future rewards are discounted by γ

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 16

A Policy

A policy is a mapping from states to actions.

Examples

Policy Number 1:	
STATE → ACTION	
PU	S
PF	A
RU	S
RF	A

Policy Number 2:	
STATE → ACTION	
PU	A
PF	A
RU	A
RF	A

- How many possible policies in our example?
- Which of the above two policies is best?
- How do you compute the optimal policy?

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 17

Interesting Fact

For every M.D.P. there exists an optimal policy.

It's a policy such that for every possible start state there is no better option than to follow the policy.

(Not proved in this lecture)

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 18

Computing the Optimal Policy

Idea One:

Run through all possible policies.
Select the best.

What's the problem ??

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 19

Computing the Optimal Value Function with Value Iteration

Define

$J^k(S_i)$ = Maximum possible future sum of rewards I can get if I start at state S_i

Note that $J^1(S_i) = r_i$

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 21

Bellman's Equation

$$J^{n+1}(S_i) = \max_k \left[r_i + \gamma \sum_{j=1}^N P_{ij}^k J^n(S_j) \right]$$

Value Iteration for solving MDPs

- Compute $J^1(S_i)$ for all i
- Compute $J^2(S_i)$ for all i
- ⋮
- Compute $J^k(S_i)$ for all i

.....until converged

$$\left[\text{converged when } \max_i |J^{k+1}(S_i) - J^k(S_i)| < \xi \right]$$

...Also known as

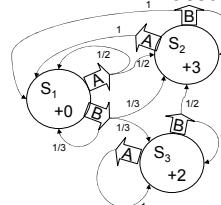
Dynamic Programming

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 23

Optimal Value Function

Define $J^*(S_i)$ = Expected Discounted Future Rewards, starting from state S_i , assuming we use the optimal policy



Question

What (by inspection) is an optimal policy for that MDP?
(assume $\gamma = 0.9$)

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 20

Let's compute $J^k(S_i)$ for our example

k	$J^k(PU)$	$J^k(PF)$	$J^k(RU)$	$J^k(RF)$
1				
2				
3				
4				
5				
6				

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 22

Finding the Optimal Policy

- Compute $J^*(S_i)$ for all i using Value Iteration (a.k.a. Dynamic Programming)
- Define the best action in state S_i as

$$\arg \max_k \left[r_i + \gamma \sum_j P_{ij}^k J^*(S_j) \right]$$

(Why?)

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 24

Applications of MDPs

This extends the search algorithms of your first lectures to the case of probabilistic next states.
Many important problems are MDPs....

- ... Robot path planning
- ... Travel route planning
- ... Elevator scheduling
- ... Bank customer retention
- ... Autonomous aircraft navigation
- ... Manufacturing processes
- ... Network switching & routing

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 25

Asynchronous D.P.

Value Iteration:

"Backup S_1 ", "Backup S_2 ", ..., "Backup S_N ",
then "Backup S_1 ", "Backup S_2 ", ...
repeat :
: There's no reason that you need to do the
backups in order!

Random Order ...still works. Easy to parallelize (Dyna, Sutton 91)

On-Policy Order

Simulate the states that the system actually visits.

Efficient Order

e.g. Prioritized Sweeping [Moore 93]
Q-Dyna [Peng & Williams 93]

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 26

Policy Iteration

Another way to compute
optimal policies

Write $\pi(S_i) =$ action selected in the i th state. Then π is a policy.

Write $\pi^t = t$ th policy on t th iteration

Algorithm:

$\pi^* =$ Any randomly chosen policy

$\forall i$ compute $J^*(S_i) =$ Long term reward starting at S_i using π^*

$$\pi_1(S_i) = \arg \max_a \left[r_i + \gamma \sum_j P_{ij}^a J^*(S_j) \right]$$

$J_1 = \dots$

$\pi_2(S_i) = \dots$

... Keep computing $\pi^1, \pi^2, \pi^3, \dots$ until $\pi^k = \pi^{k+1}$. You now have an optimal policy.

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 27

Policy Iteration & Value Iteration: Which is best ???

It depends.

Lots of actions? Choose **Policy Iter**

Already got a fair policy? **Policy Iter**

Few actions, acyclic? **Value Iter**

Best of Both Worlds:

Modified Policy Iteration [Puterman]

...a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 28

Time to Moan

What's the biggest problem(s) with what we've seen so far?

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 29

Dealing with large numbers of states

Don't use a Table...

STATE	VALUE
s_1	
s_2	
\vdots	
$s_{1000000}$	

use...

(Generalizers)

Splines

A Function Approximator

STATE → VALUE

(Hierarchies)

Variable Resolution

[Munos 1999]

Multi Resolution

Memory Based

Copyright © 2002, Andrew W. Moore

Markov Systems: Slide 30

