
1

April 21st, 2002Copyright © 2002, Andrew W. Moore

Andrew W. Moore
Associate Professor

School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu

412-268-7599

Markov Systems, Markov
Decision Processes, and
Dynamic Programming

Prediction and Search in Probabilistic Worlds

Note to other teachers and users of
these slides. Andrew would be delighted
if you found this source material useful in
giving your own lectures. Feel free to use
these slides verbatim, or to modify them
to fit your own needs. PowerPoint
originals are available. If you make use
of a significant portion of these slides in
your own lecture, please include this
message, or the following link to the
source repository of Andrew’s tutorials:
http://www.cs.cmu.edu/~awm/tutorials .
Comments and corrections gratefully
received.

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 2

Discounted Rewards
An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

20 + 20 + 20 + 20 + 20 + … = Infinity

What’s wrong with this argument?

$ $

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 3

Discounted Rewards

“A reward (payment) in the future is not worth quite
as much as a reward now.”

• Because of chance of obliteration
• Because of inflation

Example:
Being promised $10,000 next year is worth only 90% as
much as receiving $10,000 right now.

Assuming payment n years in future is worth only
(0.9)n of payment now, what is the AP’s Future
Discounted Sum of Rewards ?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 4

Discount Factors
People in economics and probabilistic decision-
making do this all the time.
The “Discounted sum of future rewards” using
discount factor γ” is

(reward now) +
γ (reward in 1 time step) +
γ 2 (reward in 2 time steps) +
γ 3 (reward in 3 time steps) +

:
: (infinite sum)

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 5

The Academic Life

Define:
JA = Expected discounted future rewards starting in state A
JB = Expected discounted future rewards starting in state B
JT = “ “ “ “ “ “ “ T
JS = “ “ “ “ “ “ “ S
JD = “ “ “ “ “ “ “ D

How do we compute JA, JB, JT, JS, JD ?

A.
Assistant

Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 6

Computing the Future Rewards of an
Academic

2

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 7

A Markov System with Rewards…
• Has a set of states {S1 S2 ·· SN}
• Has a transition probability matrix

P11 P12 ·· P1N

P= P21 Pij = Prob(Next = Sj | This = Si)
:
PN1 ·· PNN

• Each state has a reward. {r1 r2 ·· rN }
• There’s a discount factor γ . 0 < γ < 1

On Each Time Step …
0. Assume your state is Si

1. You get given reward ri

2. You randomly move to another state
P(NextState = Sj | This = Si) = Pij

3. All future rewards are discounted by γ
Copyright © 2002, Andrew W. Moore Markov Systems: Slide 8

Solving a Markov System
Write J*(Si) = expected discounted sum of future
rewards starting in state Si
J*(Si) = ri + γ x (Expected future rewards starting from your next state)

= ri + γ(Pi1J*(S1)+Pi2J*(S2)+ ··· PiNJ*(SN))

Using vector notation write
J*(S1) r1 P11 P12 ·· P1N
J*(S2) r2 P21 ·.

J= : R= : P= :
J*(SN) rN PN1 PN2 ·· PNN

Question: can you invent a closed form expression for
J in terms of R P and γ ?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 9

Solving a Markov System with Matrix
Inversion

• Upside: You get an exact answer

• Downside:

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 10

Solving a Markov System with Matrix
Inversion

• Upside: You get an exact answer

• Downside: If you have 100,000 states you’re
solving a 100,000 by 100,000 system of
equations.

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 11

Value Iteration: another way to solve
a Markov System

Define

J1(Si) = Expected discounted sum of rewards over the next 1 time step.
J2(Si) = Expected discounted sum rewards during next 2 steps
J3(Si) = Expected discounted sum rewards during next 3 steps

:
Jk(Si) = Expected discounted sum rewards during next k steps

J1(Si) = (what?)

J2(Si) = (what?)
:

Jk+1(Si) = (what?)

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 12

Value Iteration: another way to solve
a Markov System

Define

J1(Si) = Expected discounted sum of rewards over the next 1 time step.
J2(Si) = Expected discounted sum rewards during next 2 steps
J3(Si) = Expected discounted sum rewards during next 3 steps

:
Jk(Si) = Expected discounted sum rewards during next k steps

J1(Si) = ri (what?)

J2(Si) = (what?)
:

Jk+1(Si) = (what?)

∑
=

+
N

j
jiji sJpr

1

1)(

∑
=

+
N

j
j

k
iji sJpr

1
)(

N = Number of states

3

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 13

Let’s do Value Iteration

5
4
3
2
1

Jk(HAIL)Jk(WIND)Jk(SUN)k

SUN

+4

WIND

0
HAIL
.::.:.::

-81/2

1/2

1/21/2

1/2

1/2

γ = 0.5

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 14

Value Iteration for solving Markov
Systems

• Compute J1(Si) for each j
• Compute J2(Si) for each j

:
• Compute Jk(Si) for each j
As k→∞ Jk(Si)→J*(Si) . Why?

When to stop? When
Max Jk+1(Si) – Jk(Si) < ξ

i

This is faster than matrix inversion (N3 style)
if the transition matrix is sparse

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 15

A Markov Decision Process
γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising. S

AA

S

AA

S

S
3

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 16

Markov Decision Processes
An MDP has…
• A set of states {s1 ··· SN}
• A set of actions {a1 ··· aN}
• A set of rewards {r1 ··· rN} (one for each state)
• A transition probability function

k
ijP

()kijk
ij action use I and ThisNextProbP ===

On each step:
0. Call current state Si
1. Receive reward ri

2. Choose action ∈ {a1 ··· aM}
3. If you choose action ak you’ll move to state Sj with

probability
4. All future rewards are discounted by γ

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 17

A Policy
A policy is a mapping from states to actions.
Examples

ARF

SRU

APF

SPU

STATE → ACTION

ARF

ARU

APF

APU

STATE → ACTION

P
ol

ic
y

N
um

be
r 1

:

• How many possible policies in our example?
• Which of the above two policies is best?
• How do you compute the optimal policy?

PU
0

PF
0

RU
+10

RF
+10

RF
10

PF
0

PU
0

RU
10

S

S A

A

A A

A A

1

1
1

1

1

1/2

1/2
1/2

1/2 1/2

1/2

P
ol

ic
y

N
um

be
r 2

:

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 18

Interesting Fact
For every M.D.P. there exists an optimal
policy.

It’s a policy such that for every possible start
state there is no better option than to follow
the policy.

(Not proved in this
lecture)

4

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 19

Computing the Optimal Policy
Idea One:

Run through all possible policies.
Select the best.

What’s the problem ??

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 20

Optimal Value Function
Define J*(Si) = Expected Discounted Future

Rewards, starting from state Si,
assuming we use the optimal policy

S1

+0

S3

+2

S2

+3

B

B

A

A

B

A

1/2

1/2
1/2

1/2

0

1

1

1

1/3

1/3

1/3

Question

What (by inspection) is
an optimal policy for that
MDP?

(assume γ = 0.9)

What is J*(S1) ?
What is J*(S2) ?
What is J*(S3) ?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 21

Computing the Optimal Value
Function with Value Iteration

Define
Jk(Si) = Maximum possible future sum

of rewards I can get if I start at
state Si

Note that J1(Si) = ri

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 22

Let’s compute Jk(Si) for our example

6
5
4
3
2
1

Jk(RF)Jk(RU)Jk(PF)Jk(PU)k

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 23

Bellman’s Equation
() ()⎥⎦

⎤
⎢⎣
⎡ ∑+=

=

+
N

j
j

nk
iji

k
i

n r
1

1 SJPmaxSJ γ

() () ⎥⎦
⎤

⎢⎣
⎡ 〈−+ ξi

k
i

k

i
SJSJmax when converged 1

Value Iteration for solving MDPs

• Compute J1(Si) for all i
• Compute J2(Si) for all i
• :
• Compute Jk(Si) for all i

…..until converged

…Also known as
Dynamic Programming

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 24

Finding the Optimal Policy
1. Compute J*(Si) for all i using Value

Iteration (a.k.a. Dynamic Programming)

2. Define the best action in state Si as

()⎥
⎦

⎤
⎢
⎣

⎡
+ ∑ ∗

j
j

k
iji

k

r SJPmaxarg γ

(Why?)

5

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 25

Applications of MDPs
This extends the search algorithms of your first
lectures to the case of probabilistic next states.
Many important problems are MDPs….

… Robot path planning
… Travel route planning
… Elevator scheduling
… Bank customer retention
… Autonomous aircraft navigation
… Manufacturing processes
… Network switching & routing

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 26

Asynchronous D.P.
Value Iteration:

“Backup S1”, “Backup S2”, ···· “Backup SN”,
then “Backup S1”, “Backup S2”, ····
repeat :

: There’s no reason that you need to do the
backups in order!

Random Order …still works. Easy to parallelize (Dyna,
Sutton 91)

On-Policy Order
Simulate the states that the system actually visits.

Efficient Order
e.g. Prioritized Sweeping [Moore 93]

Q-Dyna [Peng & Williams 93]

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 27

Policy Iteration

()⎥⎦
⎤

⎢⎣
⎡ ∑+

j
j

a
iji

a
r SJPmaxarg oγ

Write π(Si) = action selected in the i’th state. Then π is a policy.

Write πt = t’th policy on t’th iteration

Algorithm:

π˚ = Any randomly chosen policy

∀i compute J˚(Si) = Long term reward starting at Si using π˚

π1(Si) =

J1 = ….

π2(Si) = ….

… Keep computing π1 , π2 , π3 …. until πk = πk+1 . You now have
an optimal policy.

Another way to compute
optimal policies

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 28

Policy Iteration & Value Iteration:
Which is best ???

It depends.
Lots of actions? Choose Policy Iter
Already got a fair policy? Policy Iter
Few actions, acyclic? Value Iter

Best of Both Worlds:
Modified Policy Iteration [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 29

Time to Moan

What’s the biggest problem(s) with what we’ve
seen so far?

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 30

Dealing with large numbers of states

S15122189

:

S2

s1

VALUESTATE
Don’t use a Table…

use…
(Generalizers) (Hierarchies)

Splines

A Function
Approximator

Variable Resolution

Multi Resolution

Memory
BasedSTATE VALUE

[Munos 1999]

6

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 31

Function approximation for value
functions

Polynomials [Samuel, Boyan, Much O.R.
Literature]

Neural Nets [Barto & Sutton, Tesauro,
Crites, Singh, Tsitsiklis]

Splines Economists, Controls

Downside: All convergence guarantees disappear.

Backgammon, Pole
Balancing, Elevators,
Tetris, Cell phones

Checkers, Channel
Routing, Radio Therapy

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 32

Memory-based Value Functions
J(“state”) = J(most similar state in memory to “state”)

or
Average J(20 most similar states)

or
Weighted Average J(20 most similar states)
[Jeff Peng, Atkeson & Schaal,
Geoff Gordon, proved stuff
Scheider, Boyan & Moore 98]

“Planet Mars Scheduler”

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 33

Hierarchical Methods
Continuous State Space: “Split a state when statistically

significant that a split would
improve performance”

e.g. Simmons et al 83, Chapman
& Knelbling 92, Mark Ring 94 …,
Munos 96

with interpolation!
“Prove needs a higher
resolution”

Moore 93, Moore &
Atkeson 95

Discrete Space:
Chapman & Kaelbling 92,
McCallum 95 (includes
hidden state)

A kind of Decision
Tree Value Function

Multiresolution

A hierarchy with high level “managers” abstracting low level “servants”
Many O.R. Papers, Dayan & Sejnowski’s Feudal learning, Dietterich 1998 (MAX-Q
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

Continuous Space

Copyright © 2002, Andrew W. Moore Markov Systems: Slide 34

What You Should Know
• Definition of a Markov System with Discounted

rewards
• How to solve it with Matrix Inversion
• How (and why) to solve it with Value Iteration
• Definition of an MDP, and value iteration to solve

an MDP
• Policy iteration
• Great respect for the way this formalism

generalizes the deterministic searching of the start
of the class

• But awareness of what has been sacrificed.

