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Discounted Rewards
An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

20 + 20 + 20 + 20 + 20 + … = Infinity

What’s wrong with this argument?

$ $
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Discounted Rewards

“A reward (payment) in the future is not worth quite 
as much as a reward now.”

• Because of chance of obliteration
• Because of inflation

Example:
Being promised $10,000 next year is worth only 90% as 
much as receiving $10,000 right now.

Assuming payment n years in future is worth only 
(0.9)n of payment now, what is the AP’s Future 
Discounted Sum of Rewards ?
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Discount Factors
People in economics and probabilistic decision-
making do this all the time.
The “Discounted sum of future rewards” using 
discount factor γ” is

(reward now) +
γ (reward in 1 time step) +
γ 2 (reward in 2 time steps) +
γ 3 (reward in 3 time steps) +

:
:       (infinite sum)
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The Academic Life

Define:
JA = Expected discounted future rewards starting in state A
JB = Expected discounted future rewards starting in state B
JT =       “ “ “ “ “ “ “ T
JS =       “ “ “ “ “ “ “ S
JD =       “ “ “ “ “ “ “ D

How do we compute JA, JB, JT, JS, JD ?
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Computing the Future Rewards of an 
Academic
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A Markov System with Rewards…
• Has a set of states  {S1 S2 ·· SN}
• Has a transition probability matrix

P11 P12 ·· P1N

P=    P21 Pij = Prob(Next = Sj | This = Si )
:
PN1 ·· PNN

• Each state has a reward.  {r1 r2 ·· rN }
• There’s a discount factor γ .   0 < γ < 1

On Each Time Step …
0.  Assume your state is Si

1.  You get given reward ri

2.  You randomly move to another state
P(NextState = Sj | This = Si ) = Pij

3.  All future rewards are discounted by γ
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Solving a Markov System
Write   J*(Si) = expected discounted sum of future 
rewards starting in state Si
J*(Si) = ri + γ x (Expected future rewards starting from your next state)

= ri + γ(Pi1J*(S1)+Pi2J*(S2)+ ··· PiNJ*(SN))

Using vector notation write
J*(S1) r1 P11 P12 ·· P1N
J*(S2) r2 P21   ·.

J=    : R= : P=      :
J*(SN) rN PN1 PN2 ·· PNN

Question: can you invent a closed form expression for 
J in terms of R P and γ ?
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Solving a Markov System with Matrix 
Inversion

• Upside:   You get an exact answer

• Downside:
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Solving a Markov System with Matrix 
Inversion

• Upside:   You get an exact answer

• Downside: If you have 100,000 states you’re 
solving a 100,000 by 100,000 system of 
equations.
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Value Iteration: another way to solve 
a Markov System

Define  

J1(Si) = Expected discounted sum of rewards over the next 1 time step.
J2(Si) = Expected discounted sum rewards during next 2 steps
J3(Si) = Expected discounted sum rewards during next 3 steps

:
Jk(Si) = Expected discounted sum rewards during next k steps

J1(Si) =  (what?)

J2(Si) = (what?)
:

Jk+1(Si) = (what?)
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Value Iteration: another way to solve 
a Markov System

Define  

J1(Si) = Expected discounted sum of rewards over the next 1 time step.
J2(Si) = Expected discounted sum rewards during next 2 steps
J3(Si) = Expected discounted sum rewards during next 3 steps

:
Jk(Si) = Expected discounted sum rewards during next k steps

J1(Si) = ri (what?)

J2(Si) = (what?)
:

Jk+1(Si) = (what?)

∑
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Let’s do Value Iteration
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Value Iteration for solving Markov 
Systems

• Compute J1(Si) for each j
• Compute J2(Si) for each j

:
• Compute Jk(Si) for each j
As   k→∞ Jk(Si)→J*(Si) .  Why?

When to stop?  When
Max    Jk+1(Si) – Jk(Si)     <  ξ

i

This is faster than matrix inversion (N3 style)
if the transition matrix is sparse
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A Markov Decision Process
γ = 0.9
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Markov Decision Processes
An MDP has…
• A set of states    {s1 ··· SN}
• A set of actions   {a1 ··· aN}
• A set of rewards   {r1 ··· rN} (one for each state)
• A transition probability function

k
ijP

( )kijk
ij action  use I and ThisNextProbP ===

On each step:
0.  Call current state Si
1.  Receive reward ri

2.  Choose action ∈ {a1 ··· aM}
3.  If you choose action ak you’ll move to state Sj with  

probability
4.  All future rewards are discounted by γ
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A Policy
A policy is a mapping from states to actions.
Examples

ARF

SRU

APF

SPU

STATE → ACTION
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ARU
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APU

STATE → ACTION
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• How many possible policies in our example?
• Which of the above two policies is best?
• How do you compute the optimal policy?
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Interesting Fact
For every M.D.P. there exists an optimal 
policy.

It’s a policy such that for every possible start 
state there is no better option than to follow 
the policy.

(Not proved in this 
lecture)
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Computing the Optimal Policy
Idea One:

Run through all possible policies.
Select the best.

What’s the problem ??
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Optimal Value Function
Define J*(Si) =  Expected Discounted Future 

Rewards, starting from state Si, 
assuming we use the optimal policy
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Question

What (by inspection) is 
an optimal policy for that 
MDP?

(assume γ = 0.9)

What is J*(S1) ?
What is J*(S2) ?
What is J*(S3) ?
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Computing the Optimal Value 
Function with Value Iteration

Define
Jk(Si) = Maximum possible future sum 

of rewards I can get if I start at 
state Si

Note that  J1(Si) = ri
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Let’s compute Jk(Si) for our example

6
5
4
3
2
1

Jk(RF)Jk(RU)Jk(PF)Jk(PU)k
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Bellman’s Equation
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Value Iteration for solving MDPs

• Compute J1(Si) for all i
• Compute J2(Si) for all i
• :
• Compute Jk(Si) for all i

…..until converged

…Also known as
Dynamic Programming
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Finding the Optimal Policy
1. Compute J*(Si) for all i using Value 

Iteration (a.k.a. Dynamic Programming)

2. Define the best action in state Si as
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(Why?)
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Applications of MDPs
This extends the search algorithms of your first 
lectures to the case of probabilistic next states.
Many important problems are MDPs….

… Robot path planning
… Travel route planning
… Elevator scheduling
… Bank customer retention
… Autonomous aircraft navigation
… Manufacturing processes
… Network switching & routing
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Asynchronous D.P.
Value Iteration:

“Backup S1”, “Backup S2”, ···· “Backup SN”,  
then “Backup S1”, “Backup S2”, ····
repeat  :

:        There’s no reason that you need to do the 
backups in order!

Random Order …still works.  Easy to parallelize (Dyna, 
Sutton 91)

On-Policy Order
Simulate the states that the system actually visits.

Efficient Order
e.g. Prioritized Sweeping  [Moore 93]

Q-Dyna  [Peng & Williams 93]
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Policy Iteration
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Write π(Si) = action selected in the i’th state.  Then π is a policy.

Write πt = t’th policy on t’th iteration

Algorithm:

π˚ = Any randomly chosen policy

∀i compute J˚(Si) = Long term reward starting at Si using π˚

π1(Si) =

J1 = ….

π2(Si) = ….

… Keep computing π1 , π2 , π3 …. until πk = πk+1 .  You now have 
an optimal policy.

Another way to compute 
optimal policies
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Policy Iteration & Value Iteration: 
Which is best ???

It depends.
Lots of actions?  Choose Policy Iter
Already got a fair policy? Policy Iter
Few actions, acyclic?   Value Iter

Best of Both Worlds:
Modified Policy Iteration   [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming
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Time to Moan

What’s the biggest problem(s) with what we’ve 
seen so far?
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Dealing with large numbers of states

S15122189

:

S2

s1

VALUESTATE
Don’t use a Table…

use…
(Generalizers)                                                  (Hierarchies)

Splines

A Function 
Approximator

Variable Resolution

Multi Resolution

Memory
BasedSTATE VALUE

[Munos 1999]
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Function approximation for value 
functions

Polynomials               [Samuel, Boyan, Much O.R.
Literature]

Neural Nets               [Barto & Sutton, Tesauro, 
Crites, Singh, Tsitsiklis]

Splines Economists, Controls

Downside:     All convergence guarantees disappear.

Backgammon, Pole 
Balancing, Elevators, 
Tetris, Cell phones

Checkers, Channel 
Routing, Radio Therapy
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Memory-based Value Functions
J(“state”) = J(most similar state in memory to “state”)

or
Average   J(20 most similar states)

or
Weighted Average  J(20 most similar states)
[Jeff Peng, Atkeson & Schaal,
Geoff Gordon,        proved stuff
Scheider, Boyan & Moore  98]

“Planet Mars Scheduler”
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Hierarchical Methods
Continuous State Space: “Split a state when statistically 

significant that a split would 
improve performance”

e.g. Simmons et al 83, Chapman 
& Knelbling 92, Mark Ring 94 …, 
Munos 96

with interpolation!
“Prove needs a higher 
resolution”

Moore 93, Moore & 
Atkeson 95

Discrete Space:
Chapman & Kaelbling 92, 
McCallum 95 (includes 
hidden state)

A kind of Decision 
Tree Value Function

Multiresolution

A hierarchy with high level “managers” abstracting low level “servants”
Many O.R. Papers, Dayan & Sejnowski’s Feudal learning, Dietterich 1998 (MAX-Q 
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

Continuous Space
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What You Should Know
• Definition of a Markov System with Discounted 

rewards
• How to solve it with Matrix Inversion
• How (and why) to solve it with Value Iteration
• Definition of an MDP, and value iteration to solve 

an MDP
• Policy iteration
• Great respect for the way this formalism 

generalizes the deterministic searching of the start 
of the class

• But awareness of what has been sacrificed.


