Nonholonomic Distance to Polygonal Obstacles for a
Car-Like Robot of Polygonal Shape

Marilena Vendittelli

joint work with
Paolo Robuffo Giordano  Universita di Roma "La Sapienza”

Jean-Paul Laumond

Philippe Souéres LAAS - CNRS, Toulouse

Optimal Car Crashing September 2005
M. Vendittelli 1



..otherwise known as....
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Introduction

motivation

m motion planning algorithms rely on the obstacles distance
computation; the more accurate the distance, the more
efficient the planning

m euclidean distance is not appropriate for nonholonomic
robots

m Reeds & Shepp shortest paths induce a metric in the
configuration space [Laumond and Souéres, 1993]

definition
m the distance from a car-like robot configuration to an
obstacle is the length of the shortest feasible path

bringing one point on the robot boundary in contact with
the obstacle



related work

m sufficient family of shortest feasible paths linking two
configurations

[Reeds and Shepp, 1990; Sussmann and Tang, 1991; Boissonnat et
al, 1992; Soueres and Laumond, 1996]

m shortest paths to polygonal obstacles for a point robot
[Vendittelli and Laumond, 1996]

m shortest paths to polygonal obstacles for a polygonal robot
[Mirtich et al, 1996; Vendittelli et al, 1999]



contribution

m characterization of the shortest paths to polygonal
obstacles for a car-like robot of polygonal shape

m definition of an algorithm for distance computation

tool

m Pontryagin Maximum Principle + transversality conditions



Shortest paths for the Reeds & Shepp car
RS model

£ = f(&u) = g1(ur + g2(§uz

§(t) = (z(t),y(),0(1))

4 ’ cosé 0
- g1(§) = | sind g2) =1 O
0 ’ 0 1

|u1(t)| = | |’LL2(t)| S 1
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hotation

C, S elementary path types

|,;50), r70), s,*0) elementary paths of length a

example: path | 1, %b is of type C|C
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cost functional

ty
i / dt
e ti
Hamiltonian

H = (¢, f) = 11 cosBui + Y2 Sin Ouy + Y3uz

with -
h(t) = —a—g(w(t%é(t),w))

PMP: consider an admissible u(t) and the corresponding trajectory E(t):
a necessary condition for (1) to be optimal is that there exist a nontrivial
W(t) and a constant Y, <0 s.t.

—tho = (¥ (1), 91(£(¢)))ur + (¥(2), g2(£(2)))u2
— maX’U:(’Ul,’Ug)EL‘r(<¢(t)’gl (é-(t))>’01 _I_ <¢'(t)7 gQ(&(t))>’v2)
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the sufficient family of optimal paths contains

A paths C|C|...|C with length(C) £ T for any C
B paths lying between two parallel lines D" and D

straight line segments and inflection points are on D,
cusps lie perpendicularly on D* and D -



with

Do :  Pry(t) — oz (t) + ¥3(to) =0
Dt i h1y(t) — ox(t) 4+ ¥3(to) + o =0
D~ . ry(t) —2x(t) + ¥3(to) — o =0

- ¢1 and v constant

- 41 /1 = slope of DF, D-and Dy

- 3(t) = P1y(t) — vox(t) +v3(to) (= Do : 3(t) = 0)
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the sufficient family F of optimal paths

(1) I or vy rt

a
0<a<m, 0<b<m, O0<e<mw

(II1)(III) Co|CpCe Or CoCh|Ce

0<a<b, 0<e<b, 0<b<7/2

(IV) CoCh|CpCe

(V) @Lleses|e: a, b, e: RS path parameters

(VI G| 84 | G

0<a<w/2, 0<b, 0<e<n/2

(VII)(VIII) Ca|Cr/28yCe OF CoSpCr/a|Ce

0<a<m, 0<b, 0<e<n/2

(IX) C.S;C.

0<a<w/2, 0<b, 0<e<n/2
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to every path p, is associated a smooth function

% i(a, b, e)
y | =Wi(a, b, e) = i(a, b, e)
0 ©;(a, b, e)

mapping the three RS parameters into the configuration space
[Mirtich et al, 1996]

~ =
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B it is possible to build a "sphere”

(the RS ball) of radius { around a

given robot configuration §,
[Laumond and Souéres, 1993]

B points on the sphere are reachable
by paths of length {

B points inside the sphere are closer

than £ to So



Problem decomposition

it is sufficient to solve the three subproblems of bringing in contact

a robot vertex with d r'ob.o’r vertex Vf“Th the line SUPPOPT'”Q
the line supporting a robot edge with

an obstacle vertex

(VV) an obstacle edge an obstacle vertex
(VE) (EV)
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idea

B a “contact manifold" can be associated to each sub problem
and each vertex/edge of the robot/obstacles

M (x,y,0)={(x,y.0)|there is a VV, VE, EV contact}

B the distance is determined by the RS ball of minimum radius
tangent to one of the M_'s



distance function definition

given the optimal solutions to each of the three sub problems

1.

2

3.

LVVZ R4
(¢:, 05)

LVE : R4
(i, ;)

B R*
(wi, 05)

s

—

l

l

L

R
LYY (gi, 05)

R
LVE (Qi, /Uj)

R
L= (wi, o)

the distance function is

d) : R°—=R
d) = min{minL"" (gi, 0;),min LY *(q:, v;), min L”" (w;, 0;)}
1,7 1,]
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proposed approach to the solution of the three sub problems

m definition of the contact manifold
M.(x,y,0) -- > constraint on the final state x(zs,ys,07) =0

® for each path p, €, closed-form solution in the RS parameter space

X(""“"fi((l, b, (3)) = () *)

the problem is underconstrained: the number of constraints are < 3
'A%

one-dimensional M_--> (*) is a system of 2 equations with 3 unknowns
VE and EV

two-dimensional M, --> (*) defines 1 equation in 3 unknowns
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to make the problem “square”

® type A paths
m geometric properties of the RS ball
the boundary of the C|C|C domain coincides

with the level curve {=|0|

m type B paths

m transversality conditions

where

Wi = (Pu(ts), Yalts), Pa(ts))"

Er = (x(tr),y(ts),0(t5))"
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Vertex-Vertex

m contact manifold

MC(:E):U:Q) — {(I,UQ)IQL . Oj}
/ g =t e s (@ )y Telasinll - B))

0; = (0j,,05,)

xf — 05, + licos(0f + ¢i) 0
e 0= . x

September 2005
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® type A paths

if a path of type A is optimal for the VV problem then it is a C|C path

Y

> X(Wp,(0,b,e)) =0

Optimal Car Crashing
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m type B paths

if a path of type B is optimal for the VV problem then the

corresponding line D, passes through the point obstacle o,

ox(&r) :( 1 0 —lisin(f5 + ¢:) )

O ¢ 0 1 licos(ff + ¢i)
Y5 = ——aé(éf)C

Py = (1

(15 = (2

Ya(ty) =

—lisin(0y + ¢i)C1 + licos(0f + ¢:)C2
P3(t) = Y1y(t) — Y2 (t) + ¥3(to)
% ys(to) = =105, + 1205,

Y3(t) = Y1(y — 05,) — Y2(x —05,) =0
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® to each path p, € we associate a map VV,,(q;, 0;) which solves VV for
the couple (g;, o)) using p,: it is determined by the solution of

X(VVALUH b: 6))) =0 _
01+ (Vila, b, €) —03,) — 2 - (Ki(a, b, €) — 05,) = 0

where Y (a, b, €)and X (a, b, e)represent the position

of the robot on the line D, computed via Wy (a, b, )

B the optimal solution to the problem VV is

LY (gi, 0j) = min length V'Vp, (4, 05)
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VV - example 1

| b | = 0.3, ¢=1/4, obstaclein(1,1)

Ca, Cb Type

start end
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0.5

05

VV - example 2

0 | = 0.3, ¢=-1/4, obstacle in (0.5,1)

________________________________________________________
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0.5

0

path1 ..

length=1.5

| = 0.3,

_________________________________________________________

Optimal Car Crashing
M. Vendittelli

VV - example 3

o e e .
B Rt et gt SR A 4

1 R T -

obstacle in (1.5,0.3)

length=1.39
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Vertex-Edge

m contact manifold

MC(CU, Y, 9) = {(x,y,9)| qi € Uj}

¢i = (z + licos(0 + ¢),y + lisin(6 + ¢))
VLY =M+ N

x(x,y,0) = y—mjx—n;j—Il;m; cos(0+¢;)+1; sin(0+¢;) =0
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® type A paths
if a path of type A is optimal for the VV problem then it is a C|C path
but x(W,,(0,b,¢)) =0 is now underspecified

an “ad hoc" analysis is heeded to obtain a square system of equations
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®m  type B paths
if a path of type B is optimal for the VE problem then

1. the corresponding line D, is perpendicular to the line v,

2. the contact point lies at the intersection between D, and v,

= the contact constraint and the above two necessary conditions
allow to define a system of three equations in the three
unknowns (a, b, ¢)

= asolution is sought for each path in the sufficient family ‘F

= as in the VV case, the optimal solution to the VE problem is
obtained by choosing the path of minimum length among all the
paths in ‘F
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045

0.5

VE - example

A\e 103, ¢=T/4, v;y=15

--------------------------------------------------------

---------------------------------------------------------

........................................................

start
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Edge-Vertex

m contact manifold

Mc(ilf, Y, 9) — {(x7y79)|0j = w’b}
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® type A paths
if a path of type A is optimal for the VV problem then it is a C|C path
but x(W,, (0,b,¢)) =0 is underspecified

the same analysis of VE apply to obtain a square system of equations

® type B paths
if a path of type B is optimal for the EV problem then
1. the corresponding line Dy is perpendicular to the edge w,
at the end of the path
2. the contact point lies at the intersection between D, and w,

optimal solution to the EV problem : as before
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EV - example

,=0.3, ¢, =104, 1,=03, ¢,= -4

Il/’/\/\
’ \ .
R obstacle in (1.4, 0.5)
¢ —1>
N I
S P ;!
l2 \\\/l
AY 1.5 .
BEBUEG NS
MR A G B g Cally Type
T AU
B R
0.5 0 035 1 1.5 2
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Family refinement

using continuity of the RS path parameters (a, b, e) w.r.t. the
robot parameter [, it is possible o show that

paths types (IV), (V), (VI), (VIII) are never optimal
solutions of the problems VV, VE, EV

the search can be restricted to 26 path types
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examples
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smoothness

the defined distance function is piecewise smooth; the not derivable points are
located at the switches between the LYY, LVE and LEY functions

A
. edge of an obstacle
— P, © © P,
>
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P,(0,0.4) P,(0.3,0.4)

07 | | | | | | .
—— V'V with P,
0.6
——— VV with P,
— EV with P,
A
0.3
0.4
0.2
>
0.1 \ | \ \ \ \
0 1 2 3 4 5 6 7
o(t;)
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level curves

point robot: [=0, ¢=0
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Conclusion

main result
characterization of the shortest paths between
polygonal RS car-like robot and polygonal obstacles

B analytic expression of the distance function
B reduction of the sufficient family of optimal paths
future work

® extend to general manifolds in configuration space
® apply to motion planning



