
10.1. Xor Map (50)

Background
Suppose we have a ternary Boolean function f : 23 → 2 . We can extend f to a map F defined on bit sequences (say,
of length at least 3 to avoid awkwardness) by setting

F (x)(i) = f(xi−1, xi, xi+1)

Here the indices are supposed to wrap around, so that x1 is the right neighbor of xn, and xn the left neighbor of
x1. In other words, we think of x as a circular rather than linear sequence and apply f , in parallel, to all blocks of 3
consecutive bits. Note that this also works, without any wrap-around, for biinfinite sequences.
As it turns out, F is additive in the sense that

F (x + y) = F (x) + F (y)

where + stands for bitwise exclusive or (or addition mod 2). If we iterate F on x ∈ 2n, the only a priori upper bound
for the transients and periods is 2n, but it turns out that for additive maps the transients are usually quite short, and
the periods are typically also short. Here are the transient/period values for all one-point seed configurations up to
size 40 for F . Take some time to study this table, a lot of information is hiding there.

n t p n t p
1 − − 21 1 63
2 − − 22 1 62
3 1 1 23 1 2047
4 2 1 24 4 8
5 1 3 25 1 1023
6 1 2 26 1 126
7 1 7 27 1 511
8 4 1 28 2 28
9 1 7 29 1 16383
10 1 6 30 1 30
11 1 31 31 1 31
12 2 4 32 16 1
13 1 63 33 1 31
14 1 14 34 1 30
15 1 15 35 1 4095
16 8 1 36 2 28
17 1 15 37 1 87381
18 1 14 38 1 1022
19 1 511 39 1 4095
20 2 12 40 4 24

Here is the distribution of transient/period pairs for n = 10.

t/p # t/p #
(0, 1) 1 (1, 1) 3
(0, 3) 15 (1, 3) 45
(0, 6) 240 (1, 6) 720

Needless to say, the tables were obtained by brute force computation.
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Task

A. It is easy to check that f is additive. Verify that F is also additive.

B. Why is F never injective on 2n?

C. In the example n = 10, the period of any configurations is a divisor of the period of the one-point seed configu-
ration (6 in this case). Is this always the case? Why?

D. Explain the entries in the main table for n = 2k. Describe all the orbits in this special case.

E. How about n = 2k ± 1 (this is a bit harder).

F. Now consider the biinfinite grid with the one-point seed configuration x defined by x0 = 1, xi = 0 otherwise.
Find a reasonably simple description for the bit at time t ≥ 0 in cell k ∈ Z.

Comment
For the last part, you will undoubtedly run into binomial coefficients. You may find it useful to think about path
counting in a rectangular grid (rotated appropriately so things match up properly with the grid of cells). Think about
a single pebble in position x = 0 at time t = 0 that splits and moves one copy to the left, and one to right at time
t+ 1. Two copies in the same spot cancel out.

Extra Credit 1: Do the same for f(x, y, z) = x + y + z. This may seem like a minor modification, but things turn
out to be considerably more complicated.

Extra Credit 2: Explain the rest of the table. One way to tackle this problem is to identify a configuration
(c0, c1, . . . , cn−1) with the polynomial

∑n−1
i=0 cix

i ∈ F2[x]. The map F can then be expressed elegantly in terms of the
quotient ring F2[x]/(xn + 1). Then use algebra.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Xor Map

Part A: Additive
Write β(x) = ((x−1, x1, x2), (x1, x2, x3), . . . , (x−2, x−1, x1)) for the function that produces a list of overlapping blocks
of length 3 from a given x ∈ 2n and write map(g, L) for the map that applies function g to each element in list L.
Then by the additivity of f we have

F (x + y) = map(f, β(x + y))
= map(f, β(x) + β(y))
= map(f, β(x)) + map(f, β(y))
= F (x) + F (y)

Part B: Injective
Consider the configurations all-ones 1 and all-zeros 0. Then F (0) = 0 = F (1) so that the global map is not injective.
In fact, by additivity,

F (X) = F (X + 1)

for any configuration X.

Part C: Periods
We claim that any configuration has period dividing the period of, say, e1 (which is the same for all unit vectors ei).
To see this consider more generally a map g : A→ A and a point a ∈ A. If a has periods p and q under g where p < q
then clearly a also has period q − p: gp(a) = a = gq(a). It follows that gcd(p, q) is also a period.
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Now consider any configuration x ∈ 2n. We can write x =
∑

i xiei where ei. By additivity

F t(x) =
∑

i

xiF
t(ei)

Since the transient and period of all the ei is the same it is clear that the period q of x cannot be any larger than p,
the period of any unit vector. But if q < p then we must have q | p by the previous comment.

Part D: Powers of 2
For n = 2k, k > 1, the table suggests that all configurations evolve to a fixed point after at most 2k−1 steps. To see
why, it is best to draw a picture of an orbit. For n = 32 we get

At time t = 16 we have reached the fixed point 0. Moreover, one can read off a geometric proof from this picture. By
induction, we can show that for t = 2i − 1, i < k, configuration F t(e1) consists of an alternating block 10101 . . . 0101
of length 2t+ 1, surrounded by 0′s. Hence, at the next step t+ 1 we must have a configuration of two 1’s, separated
by 2t+ 1 many 0′s.
However, because of the periodic boundary conditions we reach 0 at time n/2.

Part E: Nearby
If you geometric intuition is excellent you may be able to deal with the 2k± 1 case by looking at the previous section–
otherwise some more simulation is needed. Here is a typical orbit for n = 15: the transient is 1 and the period is 15.
The same transient and period appear for n′ = 17.

In general, we would expect transient 1 and period 2k − 1 for n = 2k ± 1.
For a proof, we can recycle the result from the last section to explain the “thick” part of the picture as a superposition
of two adjacent unit vector orbits. As a consequence we obtain a configuration of the form 1− ei at time 2k − 1. At
the next step we obtain ei−1 + ei+1 and have completed the first cycle.

Part F: Biinfinite
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Count the number of ways a pebble could travel from cell 0 at time 0 to cell c at time t ≥ 0 (where at each step the
pebble either moves left or moves right by one place). If the number is odd then the state of the cell is 1, otherwise it
is 0. This produces (

t

(c+ t)/2

)
mod 2

whenever c and t have the same parity, and 0 otherwise.
By a famous theorem of Lucas one can determine if a binomial coefficient

(
a
b

)
is odd by computing the binary expansions

of a and b (pad b on the left by 0’s): for every 1 in b there must be a corresponding 1 in a.
This can be used to derive part (D) in a purely algebraic fashion: 0 is reached before the boundary conditions make
the binomial characterization useless (at least in its simple form).
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