
CDM
Memoryless Machines

Klaus Sutner

Carnegie Mellon University
Spring 2024



1 Transition Systems and FSM

2 Basic Results

3 Mealy Machines



The Idea 2

Suppose you have a system that has finitely many internal states.

The system reads a string of symbols from some external source.

Initially, the system is set up in some special state q0.

Each input symbol causes a state transition:

p
a−→ q move from state p to state q under input a

When the last symbol has been read, the last state determines whether
the system accepts the input or not.



Transition Systems 3

Definition
A transition system is a structure

⟨Q, Σ, τ⟩

where Q (states) and Σ (alphabet) are finite sets and δ ⊆ Q × Σ × Q
(transition relation).

It is often best to think about a transition system as a directed graph whose
edges are labeled in Σ, the diagram or transition graph of the transition
system.

We do allow multiple edges and self-loops in the digram: p
a−→ q and p

b−→ q
or p

a−→ p are all fine.



Runs 4

Suppose T = ⟨Q, Σ, τ⟩ is a transition system. Given a word u = a1a2 . . . am

over Σ, a run of T on u is an alternating sequence of states and letters

p0, a1, p1, a2, p2, . . . , pm−1, am, pm

such that pi−1
ai−→ pi is a valid transition for all i. p0 is the source of the run

and pm its target, and m ≥ 0 its length. So a run is just a path in a labeled
digraph.



Traces 5

Given a run
π = p0, a1, p1, a2, p2, . . . , pm−1, am, pm

of an automaton, the corresponding sequence of labels

a1a2 . . . am−1am ∈ Σ⋆

is referred to as the trace or label of the run.

Every run has exactly one associated trace, but the same trace may have
several runs, even if we fix the source and target states (ambiguous automata).



Special Transition Systems 6

Definition
A transition system is complete if for all p ∈ Q and a ∈ Σ there is some q ∈ Q
such that

p
a−→ q

is a transition.

In other words, the system cannot get stuck in any state, we always can
consume all input symbols.

Definition
A transition system is deterministic if for all p, q, q′ ∈ Q and a ∈ Σ

p
a−→ q, p

a−→ q′ implies q = q′

Thus, a deterministic system can have at most one run from a given state for
any input.



Finite State Machines 7

Definition
A finite state machine or finite automaton is a structure

A = ⟨T ; acc⟩

where T = ⟨Q, Σ, δ⟩ is a transition system and acc is an acceptance condition.

The vanilla acceptance condition is comprised of a collection of initial states
I ⊆ Q and a collection of final states F ⊆ Q. The idea is that A accepts some
input x ∈ Σ⋆ if there is a run from a state in I to a state in F with label x in
T .

The (acceptance) language L(A) of the automaton A is the set of all words
accepted by the automaton.



Semiautomata 8

In a sense the most basic type of a FSM is a semiautomaton: we think of all
states as being initial and final.

A = ⟨Q, Σ, τ ; Q, Q⟩

The language of a semiautomaton corresponds to the labels of all possible
paths in the diagram.

For example, these languages are always closed under factors:

uv ∈ L implies u ∈ L, v ∈ L



DFAs 9

Combining the previous acceptance condition with completeness and
determinism produces a particularly useful type of automaton.

Definition
A deterministic finite automaton (DFA) is a structure

A = ⟨T ; q0, F ⟩

where T = ⟨Q, Σ, δ⟩ is a deterministic and complete transition system and
q0 ∈ Q, F ⊆ Q is the standard acceptance condition.

It is straightforward to see that a DFA† has exactly one trace (or run) on any
possible input word.

Since we use the standard acceptance condition, a run is accepting if it leads
from q0 to some q ∈ F (a slight asymmetry).

†These machines should be called DCFA or CDFA, but that ship sailed a long time ago.



Partial DFA 10

Definition
A partial DFA (PDFA) is a structure

A = ⟨T ; q0, F ⟩

where T = ⟨Q, Σ, δ⟩ is a deterministic transition system and q0 ∈ Q, F ⊆ Q is
the standard acceptance condition.

Algorithmically, PDFA are in many ways better behaved than DFAa, since they
may have fewer useless transitions.

If need be, we can always complete a PDFA to a DFA by adding another state
⊥ and fill in missing transitions to p

a−→ ⊥, plus ⊥ a−→ ⊥.



Useless States 11

Definition
Let A = ⟨Q, Σ, τ ; I, F ⟩ be a FSM. A state p ∈ Q is

accessible if it is reachable from I in the diagram
coaccessible if it is coreachable from F in the diagram
useful if it is both accessible and coaccessible; useless otherwise
trap if all transitions with source p also have target p

sink if it is a trap and is not final..
The machine is accessible, coaccessible, trim if all its states are accessible,
coaccessible, useful, respectively.

Hence we can compute the trim version trim A in linear time using standard
graph algorithms.

Note that there is an issue with DFA: the accessible part acc A is still a DFA,
but trim A may be just a partial DFA: all the sinks have to be removed.



Recognizable Languages 12

Definition
A language L ⊆ Σ⋆ is recognizable or regular∗ if there is a DFA M that
accepts L: L(M) = L.

Thus a recognizable language has a simple, finite description in terms of a
particular type of finite state machine. As we will see, one can manipulate the
languages in many ways by manipulating the corresponding machines.

In a sense, finite state machines are the bottom of the barrel when it comes to
computation, at least when infinitely many inputs are involved. They are (fast)
linear time and constant space.

∗Regular is more popular in the US, but hopelessly overloaded.



Example: Even/Even 13

4 3

1 2

a

a

a

a

b

b

b

b



Example: kth-Letter 14

0 1 2 3
a, b a, b a

a, b

3 2 1 0
a

a, b

a, b a, b



Example: k = −3 15

aab abb

aaa aba bab bbb

baa bba

Transitions are xyz
s−→ yzs.



Example: Divisibility 16

0

1

2

3

4

0

1

0
1

0 1

0

1

0

1



Example: Dihedral Group 17

4 5

67

0 3

21

a

a

a

a
a

a

a

a

b

b
b

b

b

b
b

b



A Killer App 18

pattern

converter

FSMtext yes/no



1 Transition Systems and FSM

2 Basic Results

3 Mealy Machines



Basic Results 20

Theorem
Recognizable languages are closed under:

1. intersection, union, complement
2. concatenation, Kleene star, reversal
3. homomorphisms and inverse homomorphisms

The key point here is that all these results are perfectly constructive, there are
nice algorithms to build the corresponding machines.



Example: Union and Intersection 21

Suppose we have two FMSs over Σ: Ai = ⟨Qi, Σ, τi; Ii, Fi⟩. We may safely
assume that the state sets are disjoint. There are two simple operations the
combine the computations of both machines:

Sum Automaton

A1 + A2 = ⟨Q1 ∪ Q2, τ1 ∪ τ2; I1 ∪ I2, F1 ∪ F2⟩.

Cartesian Product Automaton

A1 × A2 = ⟨Q1 × Q2, τ1 × τ2; I1 × I2, F1 × F2⟩

In the product construction

((p, q), a, (p′, q′)) ∈ τ1 × τ2 ⇐⇒ τ1(p, a, p′) ∧ τ2(q, a, q′)



Computations 22

Clearly, the computations of A1 + A2 are exactly the union of the
computations of A1 and A2.
The size of the sum automaton is linear in the size of the components.

The computations of A1 × A2 are the computations of A1 combined with the
computations of A2 provided both have the same label: essentially, we are
running both machines in parallel.

A real implementation will only construct the accessible part, but still, the size
of A1 × A2 is potentially quadratic in the sizes of A1 and A2. This causes
problems if a product machine construction is used repeatedly.



The Languages 23

By our choice of acceptance condition we have

L(A1 + A2) = L1 ∪ L2

L(A1 × A2) = L1 ∩ L2

By changing the final states in the product, we can also get union:

union F = F1 × Q2 ∪ Q1 × F2

intersection F = F1 × F2



Determinization 24

Theorem
Languages recognized by nondeterministic FSM are all recognizable by a DFA.

Suppose we have a nondeterministic machine A = ⟨Q, Σ, τ ; I, F ⟩. Define a
DFA B = ⟨Q′, Σ, δ; q0, F ′⟩ by

Q′ = P(Q)
q0 = I
F ′ = { P ⊆ Q | F ∩ P ̸= ∅ }
δ(P, a) = { q ∈ Q | ∃ p ∈ P τ(p, a, q) }

Theorem (Minimal DFA)
For every recognizable language L, there is exactly one DFA (up to isomor-
phism) that recognizes L and has the least number of states of all such DFA.

This provides a (bad) way to check whether two DFA accept the same
language: construct the respective minimal DFA and check that they are
isomorphic.

Determinization is the only way to produce complements, alas, it may require
exponential time and space.



State Complexity of Operations 25

DFA NFA

intersection mn mn

union mn m + n

concatenation (m − 1)2n − 1 m + n

Kleene star 3 · 2n−2 n + 1

reversal 2n n

complement n 2n

Worst case blow-up starting from machine(s) of size m, n and applying the
corresponding operation (accessible part only).

Note that we are only dealing the state complexity, not transition complexity
(which is arguably a better measure for NFAs).



1 Transition Systems and FSM

2 Basic Results

3 Mealy Machines



Finite State Machines with Output 27

A transducer is a finite state machine that reads some input string x and
returns an output string y. In general, transducers are nondeterministic: a
single input is can be associated with multiple potential outputs. We will focus
on the functional case.

The maps Σ⋆ → Σ⋆ described by a transducer are called transductions.

In the most restricted case, the transducer generates exactly one output symbol
for each input symbol, so these are length-preserving transductions. Moreover,
we will insist that our machines are deterministic: there is exactly one output
for each input.

Warning: For the general theory of transducers this is much too narrow, we
really need to confront nondeterministic and non-length-preserving machines.



Mealy Transducers 28

Definition
A Mealy transducer or Mealy machine is a deterministic and complete
transition system A = ⟨Q, Σ × Σ, τ⟩.

Since we require the transition system to be both deterministic and complete
(just like a DFA), we can think of the transitions as being given by a transition
function

τ : Q × Σ −→ Σ × Q

We can copy&paste all the definitions from the acceptor case: the only
difference is that the language of a transducer is a map rather than a language.

In general, transducers and Mealy machines have initial and final states, but
that will not be necessary for our purposes.



Alternative Definition 29

Instead of using a single transition function τ : Q × Σ → Σ × Q it is
sometimes more convenient to split things into two functions

δ : Q × Σ → Q state transitions
ρ : Q × Σ → Σ output

In particular the curried versions of these functions

δa : Q → Q a ∈ Σ

ρp : Σ → Σ p ∈ Q

are often convenient.



Output Modules 30

One can add initial states and final states, but in our definition there are none
(Sam Eilenberg referred to this type of machine as output modules).

For any state p in a Mealy machine we get a transduction

p : Σ⋆ → Σ⋆

by starting the computation at state p.

Note that this is really a function since Mealy machines are deterministic.



Successor 31

p q0:1

1:0 a:a

We can describe the transductions defined by this machine as follows:

p (0x) = 1 q (x)
p (1x) = 0 p (x)
q (x) = x

On k-bit strings†, p is the successor modulo 2k.
In the literature, this is called the “adding machine.”

†On infinite strings we get the true successor function, but on 2-adic numbers.



Predecessor 32

The last machine has a special property: its transduction is a bijection on 2⋆.

Moreover, the corresponding transducer is obtained by simply flipping the
labels:

p q1:0

0:1 a:a



Invertible Mealy Automata 33

Definition
A Mealy transducer is invertible if, for every state p, the output maps ρp are
permutations of Σ.

In particular for Σ = 2 there are only two types of states: copy and toggle.

p

q0

q1

p

q0

q1

0/0

1/1

0/1

1/0

We will focus on invertible transducers from now on.



Transduction Semigroups and Groups 34

By moving the initial state in an invertible Mealy machine A around, we get a
collection of transductions p , p ∈ Q that are all permutations of Σ⋆. Define

Sgrp(A) = the semigroup generated by the p

Grp(A) = the group generated by the p

For the semigroup we take all possible compositions of the basic transductions,
producing an automaton semigroup.

For the group we add the inverse transductions of all the basic ones. producing
an automaton group.

There is a very similar concept of automatic semigroup/group, but that is
slightly different. And sometimes there is confusion about the two ideas.
Semigroups are a bit of a mess, but for groups we have a huge body of results,
it seems plausible that we might be able to analyze these groups.



But Why? 35

Why should anyone care about these semigroups/groups?

Two reasons:

Automatic groups have become the goto source for examples and coun-
terexamples in group theory. The key is that some enormously compli-
cated groups have descriptions in terms of automata with just a handful
of states.

Transducers operating on binary and 2-adic numbers are quite useful in
understanding digital circuits. Take a look at Vuillemin.

https://cs.cmu.edu/~syco/resources/Vuillemin1993.pdf


Jean-Pierre Serre 36

Fields Medal, Abel Prize, Steele Prize,
Wolf Prize

Member Bourbaki

Arbres, Amalgames, SL2 (1977)



Trees? 37

One can think of the transductions of our Mealy machines as automorphisms of
the infinite binary tree:

Ε

1 0

10 11 00 01

100 101 110 111 001 000 011 010

1001 1000 1011 1010 1101 1100 1111 1110 0010 0011 0000 0001 0110 0111 0100 0101

More later.


	Transition Systems and FSM
	Basic Results
	Mealy Machines

