SKELET #17 AND THE FIFTH BUSY BEAVER NUMBER

CHRIS XU

1. DESCRIPTION

1.1. Introduction. The busy beaver function BB(n) is defined to be the maximum number
of moves a halting n-state 2-symbol Turing machine makes before it halts. Although there
is no general algorithm to compute BB(n) in general, researchers have long conjectured that
BB(5) = 47,176,870, perhaps most recently by Aaronson [Aar20).

A massive undertaking by The Busy Beaver Challenge team [Ste| has narrowed down
the determination of BB(5) to showing non-halting of approximately 30 “holdout” machines
[Bla23|. Of those machines, there is significant overlap with a different list of 43 holdouts for
which Georgi “Skelet” Georgiev claimed to find in 2003 [Geo03|: the machine dubbed Skelet
#17 |Cha] is the focus of our paper.

Although most of the 30 holdouts can be grouped into well-known categories, analysis of
Skelet #17 has eluded all known attempts at classification. Members of [Ste| are in general
agreement that Skelet #17, along with Skelet #1, comprise the two most difficult holdouts
to analyze. In this paper, we show that Skelet #17 does not halt (Theorem [1.3)).

1.2. Skelet #17. By [Sav23|, is known that Skelet #17 can be described by the following
process: begin with the state S = (0,2,4,0). Let P(S) be the next state after S. P(95) is
defined by the following rules:

e Overflow: If S = (2a,+1,2a,_1, ..., 2ap), transition to P(S) = (0, 2a,+2,2as_1, . .., 2ag).

e Halt: If S =(0,0,2a,_9,...,2a0), halt.

o Zero: If S = (2ay, 2ay-1, ..., 2a0) and (a1, az) # (0,0), transition to P(S) = (0,0, 2a,+

1,2a,-1,...,2a1,2a9 — 1).
e Halve: If S = (ay,...,a;,—1), transition to P(S) = (ay, ..., a1).

e Increment: If S = (ay,...,a1,a0) is not in the form specified by any of the above
rules, find the rightmost index a; of S with an odd value. Transition to P(S) =
(ap, Gira, aipr + 1,04, a1, a0 — 1).

Remark 1.1. Note that the conventions of [Sav23| are slightly different from ours: the
precise correspondence is as follows:

e (E1) and (E2) in [Sav23| correspond to Zero here.

e (E3) in [Sav23| corresponds to Halt here.

e (O1) in [Sav23| corresponds to Zero o Overflow here.

e (02), (03), (0O4) and (O5) in [Sav23| correspond to Increment here.
e (O6) in [Sav23| corresponds to Halve o Increment here.

Definition 1.2. Given two states S and T, say that S +— T if P¥(S) = T for some k € N.
In this case, define S — T to be the sequence of transition rules that were applied from S
to obtain T'.
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The goal of this paper is to show that the above process never terminates. In particular,
we will establish the following theorem:

Theorem 1.3. We have (0,2,4,...,2%.0) — (0,2,4,...,2%%2 0) for all ¥ € N. Moreover,
during this, we use exactly one Overflow rule. As a result, Skelet #17 never halts.

1.3. Formalization. The author originally wrote up a sketch of this paper in 2023. Re-
cently, “Mxdys” has adapted its contents to a formal proof of Skelet #17’s nonhalting
[Mxd24b|, along with formalizing everything else in the BB(5) program [Mxd24a]. As a
result, we are able to conclude:

Theorem 1.4. We have BB(5) = 47,176, 870.

2. BAsIcs

2.1. State variables. For r € R, let (r) denote the nearest integer to r, where we round
up if r is a half-integer (e.g (1.5) = 2).

Definition 2.1. For n € N, the Gray code of n is defined to be GrayCode(n) := - - - agasa;ao,
where each digit a; € {0,1} equals the mod 2 reduction of (n/2%).

For a state S = (ay,...,ap), introduce the following notation, which is specified in order
to capture the most important properties of Skelet #17:

e Let n := n(S) denote the number GrayCode *(@az_y...a;). Here we let @; :=
a; mod 2, and note that we are not considering ag in the formation of n.
e Let £ := ¢(S) denote the number one less than the size of S, i.e. |S| — 1.
o Let 0 := () € {~1,+1} be +1if 3, a; is odd, and —1 if 3'_ a; is even.
e In addition to the three state variables above, let a; := a;(S) denote the value a; of
the i'" index of S, for i € [0, £].
Under the transition rules, we may write down how the first three state variables change
for each rule that is applied. In particular, one can verify the following table (where the
substitutions in a given rule’s row are performed going left to right):

Rule n 12 o
Overflow |26 — 10l 0+1] +1+— —1
Empty |[0—2—1|¢0—=/l+2| —1— —1
Halve |[nw— [n/2]|{—{(—-1| o0 —0
Increment | n—~n+o 0/ o0

Halt 0—N/A |{—N/A|-1—N/A

The above table does more than just specify how the state variables change with each rule:
it also restricts what (n, ¢, o) can be immediately before a given rule is applied. For instance,

if S is a state for which we Overflow out of, then we must necessarily have n(S) = 249 — 1
and o(5) = +1.

2.2. Increments. Define the function

d;(a,b) =

(5)-(5)

The next proposition states how a state’s coordinates change under a series of increments:
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Proposition 2.2. Suppose we have states S and S’ where S +— S’, such that S — S’ consists
of rules of the form Increment. Denote n :=n(S), n’ :==n(S’) and ¢ := o(5) = 0(5’). Then
for each i € [0, /] we have

a:(S") = az(S) —i—di(n,n’) 1 >1
) {ai(S) —di(n,n') i=0.

Proof. For i = 0, we have d;(n,n’) = |n’—n/|, which is precisely the number of Increment rules
in S — S’ Since ag decreases after an Increment rule, the claim dy(n,n’) = aog(S) — ao(5’)
follows immediately. For i > 0, note that by Definition the value d;(n,n') quantifies how
much a; increases when incrementing the Gray code of n to the Gray code of n’. O

3. THE SPEEDUP

3.1. Conventions. From this section onwards, fix k¥ € N and let Sy := (0,2,2%,...,2%,0).
From now on, every state F we will consider will satisfy S, — E, but not Sy, — E. For
E = (ag,...,a1,a0) and i € [0,¢], denote E[i] := (ay,...,a;41,0; +2,a;—1,...,ay), which is
E but with a; incremented by +2.

3.2. Empty and embanked states.

Definition 3.1. Call a state E empty if n(E) = 0 and o(E) = —1, but the next rule applied
is not Halt (so in particular the state immediately after E is achieved by applying Zero).

If £ is empty, then let N(F) := Tg(FE) denote the next state after £ that is empty. Let
Tg denote the sequence of rules £ — N(FE) if N(E) exists, and otherwise let T denote the
sequence of rules after F.

Definition 3.2. Let E be an empty state.

(1) Say that E is embanked if the non-Increment rules of T consist of exactly one Zero
rule at the start and exactly two Halve rules elsewhere.

(2) Say that E is weakly embanked if the rules of Ty consist of one Zero rule at the start
and at least two Halve rules (in particular, there may be arbitrarily many), such that
all other rules before the second Halve rule are Increment rules.

(3) Suppose E is weakly embanked. For i € {1,2}, define h; := h;(E) (resp. s; := s;(F))
to be the value of n for the state immediately after (resp. before) the i Halve rule
is applied in Tg. Let h := h(E) (resp. s := s(FE)) denote the tuple (hi(F), ha(E))
(resp. (s1(E), s2(E))). So in particular we have h; = |s;/2].

In the course of proving Theorem we will in fact see that the vast majority of the
empty states we consider are embanked. In the first non-embanked empty state we see, an
Overflow rule results, at which point an explicit analysis will yield the desired result. It is
in this fact that the reason for the term embanked becomes clear: it signifies that T flows
extremely well as we repeatedly apply N(-), and in particular well enough for us to apply
major speedups to the Skelet #17 process.

Example 3.3. Let £ :=(2,2,6,8,18,0). Then E is embanked with h(FE) = (15,17). Let us
spell out Tk in detail: n will start at 31 after the first Empty rule, with corresponding state
(0,0,3,2,6,8,18,—1). Here, we have ag = —1, so we must immediately apply the first Halve
rule, which takes n to [31/2| = 15 and ¢ to +1, with ensuing state (0,0,3,2,6,8,18). A
series of Increment rules are applied until n = 34, where the state is now (1,1,4,4,11,17, —1).
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Then the second Halve rule is applied to yield (n,0) = (17, —1), and after a further series of
Increment rules we have n = 0, which corresponds to the state £’ = (2,2,6,8,20,0) = E[1].
The reader is highly encouraged to graph the values of n attained in T to gain an intuition
behind this paper.

Proposition 3.4. Empty state F is weakly embanked if and only if the following conditions
hold:

(1) ag(E) < 22k+1 — 1.
(2) a(F) < 3-2% —1.

Proof. For E to be weakly embanked, the sequence Tzero(z) must have two Halve rules before
any non-Increment rule. To guarantee that the first Halve rule occurs before any non-
Increment rule, the variable ay must decrement to —1 from ag(Zero(FE)) = ao(E) — 1 before
the variable n decrements to 0 from n(Zero(E)) = 2?**1 — 1. This is the same as the first
condition.

Assume condition (1) holds, and let E’ be the state immediately after applying the first
Halve rule in Tg. To guarantee that the second Halve rule occurs before any non-Increment
rule, the variable ag must decrement from ay(E’) to —1 before the variable n increments
from n(E’) to 22#*2 — 1 (after which an Overflow rule would have to be applied). We readily
compute

ag(E') = ai(E) + dy (271 — 1,271 — 1 —qy)

e - |21t

so that the desired condition becomes the inequality

ar1(B) + dy (2241 — 1,224 — 1 —qo(B)) + 1 < 222 — 1 — L : ao( )J .

Note that ag(E) is necessarily even (since F is empty), so the above inequality becomes

E E)+2
al(E)+““(2 )+1<22’f+2—1—(22k_—a°( )+ )

2

which further simplifies to a;(E) < 3 - 22 — 1. This is exactly condition (2), so we win. [J

3.3. Speedup.

Lemma 3.5. Let £ = (ay,...,a1,a9) be an embanked state with h(E) =: (hy, hs), s(E) =:
(s1,52), and choose i € [0, /] such that E|i] is weakly embanked. Then we have

(hy —1,hy) =0
h(Efi]) = < (hi,ha+1) =1
| (h1, h2) i>2
((s1—2,8) i=0
s(E[i]) = { (s1,82+2) i=
(s1, $2) 7>
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Proof. Note that h(FE) depends on only the indices a; and ag of F (this immediately implies
h(E[i]) = h(F) fori > 2). In particular, ag influences hy while a; influences he. Thus, if i = 0,
then, before the first Halve rule of Tgj;, we must apply the Increment rule two additional

times compared to Tx before the necessary ag = —1 occurs; it follows that h(E[0]) =
(h1 — 1, h). A similar analysis for the states preceding the second Halve rule of Ty yields
h(E[1]) = (hy, ha + 1). O

Proposition 3.6. Suppose E is an embanked state such that N(E) = Eli] for some i €
[0,¢(E)], and suppose N(F) is weakly embanked. Let ¢ = ¢(FE), h(E) = (hi,hs) and
s(E) = (s1,82). Then N(F) is in fact embanked, with

N(E)[va(h)] L=
N(N(E)) =< N(E)[pa(ha +1)+1] i=1
N(E)[i — 2] 1> 2.

Proof. 1f i > 2, then by Lemma [3.5, h(N(E)) = h(E). N(E) is just E with a; incremented
by +2, and the i"* index will shift to the (i — 2)"" index upon another application of N.
Since the indices a; and ag are the same for E and N(FE), we have T = Ty (g), hence N(E)
is embanked with N(N(E)) = N(E)[i — 2].

The nontrivial cases are ¢ € {0,1}. If ¢ = 1, then Lemma implies that, compared to
Ty, the transition Ty acquires exactly two additional Increment rules between the first and
second Halve rules, as well as one additional Increment rule after the second Halve rule. Let
us analyze what happens to the j index for each j € [0,4]. Let T} denote the transition
Zero(E) — N(E); this is T but with the first transition removed. By Proposition we
have

ajio(Zero(E)) + dj+2(2g —1,81) +djr1(h1, s2) +dj(he,0) j>1

0 (EN1)) = b .
ajy2(Zero(E)) + dj2(2° — 1, 51) + djp1(ha, 55) — dj(he,0) j =0,

noting that (1) the indices shift every time a Halve rule is applied, and (2) all d;’s are in
fact defined, since Zero adds two extra indices to the state. Moreover, define

a;(N(E[1])) = {GM(@(EHD) +djy2(2" = 1,51) + djr(h,so+2) +dj(he +1,0) j>1

which agrees with a;(N(E[1]) if N(E) = E[1] is embanked, but will still make sense if
N(E) is only weakly embanked. Note that N(FE) will fail to be embanked if and only if
ao(N(E[1])) < 0; in this case, for Ty after the second Halve rule, the quantity ag decrements
to —1 before n can decrement to 0, at which point a third Halve rule has to be applied. From
the above expressions, we obtain

(djs1(h1, 52 +2) — dji1(hy, 52)) + (dj(he + 1,0) — dj(h2,0))
(djs1(h1, 82 +2) — dja (b, 52)) —
_ dit1(s2 +2,s2) +dj(ha+ 1, ho)

dj_,_l(Sg + 2, 82) d: <h2 + 1 hg)

~J2dj(ha +1,h9) j>1
—]o j=0

& (N(E[L))) — a;(E[1]) = {

aj42(Zero(B1])) + dj42(2° — 1,81) + djsr (b, 52+ 2) — dj(ha + 1,0) j =0,

> 1
(dj(he +1,0) = d;(hs,0)) 7 =0
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where the first equality is justified by the fact that a;io(Zero(E[1])) = ajio(Zero(E)) by
the definition of E[i], and the third equality is justified by verifying that d;ii(s2 +2,52) =
dj(ha+1, hy) always holds. We learn a);(N(E[1])) —a;(E[1]) > 0, and therefore that N(E) is
embanked. Moreover, we have exactly one index j € [0, ¢(E)] such that N(E[1]) = E[1][j];
this is the index for which d;(he + 1, hy) > 0. Such j is characterized by (hg + 1)/27 being
a half-integer, and this occurs precisely when v5(hs + 1) = j — 1. The desired claim follows
for the ¢ = 1 case.

If i« = 0, a completely analogous analysis occurs: we compute

ajs2(Zero(E)) + dj2(2° — 1, 51) + djsr(ha, s2) + dj(he,0) j>1

ulE0) = {aj+2<@(E>> +dj2(2° = Ls1) + dji (b, 52) — dj(ha,0)  j =0,

and define

(N(E[0])) := {

ajy2(Zero(E[0])) + dji2(2° = 151 = 2) + djpa(ha — 1, 80) + dj(he,0)  j > 1
aj+2(Zero(E[0])) + dj+2(2€ — ]_, S1 — 2) + dj+1(h1 - 1, 82> - dj(hg, 0)

so that for all j € [0,¢], we have

a;(N(E[0])) = a;(E[0]) = djsa(s1 = 2,81) + djpa (ha — 1, 1)
= 2dj+1(h1 — 1, hl)

As in the i = 1 case, the fact that o} (N(E[0])) — a;(£[0]) > 0 immediately implies that
N(E) is embanked, and in fact a}(N(E[0])) — a;(E[0]) positive if and only if hy /27! is a
half-integer, which occurs precisely when v5(h;) = j. This completes the proof. O

In light of Proposition we are induced to speed up the function N(-) to a new function

N'(+):

Definition 3.7. Define the following terms:

(1) For an embanked state F such that N(FE) = E[i], define N'(E) to be the state

N'(E) := NIGEE)+1)/2] (E)

where the second equality holds by Proposition

(2) Say that an embanked state E is rooted embanked if it is the result of applying N’ to
Sy some amount of times, i.e. there exists e € N such that F = (N')¢(Sy).

(3) For i € {0,1}, say that a rooted embanked state E is i-rooted embanked if E =
N~Y(E)[i]. Every rooted embanked state is either O-rooted embanked or 1-rooted
embanked.

(4) For a state transition £ — E’ of rooted embanked states, let T7, , denote the
sequence of N’s that were applied to E to achieve E.

We have the immediate corollary:
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Corollary 3.8. For i € {0,1}, let E be an i-rooted embanked state with h(N"}(E)) =
(h1, hy), and assume that N(FE) is weakly embanked. Then we have

[ Eva(h)] i=0
N(B) = {E[UQ(hQ +1)+1] i=1,

so that N'(E) is va(h1)-rooted embanked if i = 0, and v5(hy + 1) + 1-rooted embanked if
1= 1.

4. PROOF OF NONHALTING

Proposition 4.1. Let E be a 1-rooted embanked state such that there exists m € [0, 22 —2)
of odd 2-adic valuation such that h(N~Y(E)) = (22 —m — 1,2% + m). Then the following
hold:

(1) If m’ > m in [0, 22* — 2] denotes the next number after m satisfying v5(m’) = 1 mod 2,
then there exists a unique 1-rooted embanked state F’ satisfying F +— E’, such that
h(N"YE")) = (2% —m’ — 1,22F +m’).

(2) In the setting of (2), let d := m' — m. Then a;(E’) = a;(EF) + 2d for i € {0,1}.

Proof. Suppose E and m are as in the problem statement. In what follows, the quantities a,
and ag never breach the bounds given by the conditions in Proposition combining this
with Corollary [3.8] it follows that all N'-iterates of E we consider will be rooted embanked.

We claim that for each e € [0,m —m — 1], E. := (N')¢(E) is 1-rooted embanked with
h(N7YE.)) = (2% —m —1,2%* + m+e¢). This follows by induction on e: the base case e = ()
is given, while for the induction step, if e < m’ — m — 1 satisfies the induction hypothesis,
then since m 4+ e + 1 < m’, it must necessarily have even valuation; hence by Corollary
E.y = N'(E.) is no((m+e) + 1) + 1 = l-rooted embanked, and moreover by Lemma
we have h(N~Y(E.;1)) = h(N"YE.)[1]) = (2% —m —1,2** +m+e+1). This completes the
induction. In addition, we also learn that from E to E,,_,,_1, the quantity a; increments
by 2(m' —m —1).

When we apply N’ to E,_,,_1, we obtain a state E’ such that h(N~1(E")) = (2% —m —
1,2% +m’'). Since vo((m' — 1) + 1) = vy(m’) is odd, it follows by Corollary that £/ =
N'(Epy—m-1) is vo((m’ — 1) + 1) + 1 = 0-rooted. We claim that for each e € [0,m' —m — 1],
E! := (N")¢(E') is O-rooted embanked with A(N"Y(E’)) = (2% —m — 1 —¢,2?* +m/). This,
again, follows by induction on e: the base case e = 0 is given, while for the induction step, if
e < m’'—m—1 satisfies the induction hypothesis, then since m+e+1 < m/, it must necessarily
have even valuation; hence by Corollary . e+1 = N'(E!) is 1n(22* —m —1—¢€) = 0-
rooted embanked, and moreover by Lemma [3.5] we have h(N~Y(E.,,)) = h(N~Y(E.)[0]) =
(228 —m — 2 — e,2%% + m/). This completes the induction. In addition, we also learn that
from E, -1 to E/, ., the quantity ay decrements by 2(m’ — m)

Finally, applying N’ to E!, ., yields a state E” such that h(N~*(E")) = (2% —m/ —
1,2%* + m/), and E” is 15(2% —m’) = l-rooted embanked, which proves (1). This extra
application of N’ also increments a; by 2, so in total, a; has 1ncremented by 2(m'—m—1)+2 =
2d, while ag has decremented by 2(m’ —m) = 2d; this proves (2). O

Starting with S, = (0,2,22,...,2% 0), a brief computation yields h(S;) = (2% — 1, 2%)
and N(Sk) = Si[2k + 1]. Thus, applying N’ to Sy five times yields a 1-rooted embanked



8 CHRIS XU

state E := (N')(Sg) such that h(N~Y(E)) = (22 — 3,2%" + 2). Hence, by inducting on m
to reach m = 2% — 2, Proposition and Proposition imply the following corollary:
Corollary 4.2. There exists a rooted embanked state E such that h(N~1(E)) = (1,2%+1 —
2).

4.1. Counting increments. For rooted embanked states F +— E’, let kg, g/(j) denote the
number of N: S +— N(S) in T}, , 5 such that N(S) = S[j].

Proposition 4.3. Suppose we are in the setting of Proposition [4.1] with E, E', m and
m’ defined as before. Then, for all j € [0,2k + 1], we have kg, w(j) = #{e € [m +
1,m']: max(1,2971) | e}.

Proof. For a statement X, define 6(X) to be 1 if X is true, and 0 if X is false. Fix a
j € [0,2k + 1]. By Corollary [3.8 we have
. () = S(a((m' —=1)+ 1) +1>j)+#{ecm+1,m —1]: n(e) > j} 7=0mod?2
Boprld #{e e [m,m —2]: e+ 1)+1>j} 4 0(va(m) > j) j =1mod 2
Je@t m)+#{eem+1,m —1]: 27 | e} j=0mod?2
S #{eem+1,m —1]: 27 e} 4+6(27 | m!) j=1mod?2

ot m)y+#{eem+1,m' —1]: 271 e} j=0mod 2
) #eem+1,m —1): 27 el +6(27 | m!) j=1mod?2

=#{ecm+1,m]: 277" | e},

where the third equality is using the fact that m and m’ have odd 2-adic valuations, but
every number in between has even 2-adic valuation. 0

4.2. Endgame. Our setup for the end of the proof is the sequence of state transitions
Sy - E — E' — E" where E, E' and E” are all rooted embanked states satisfying
h(N"YE)) = (2% —3,2% +2), h(N~YE")) = (1,22%*1 —2) and h(N"L(E")) = (1, 2%+ -1).
In particular, we have E’ — E” since Proposition [4.1[2) guarantees that E’ will satisfy the
bounds in Proposition so that E’ is weakly embanked, and then Corollary implies
that £’ is embanked. Also, we have £ = (N’)*(Sk). An explicit computation yields

(

2 53=0
. 3 j5=1
K‘Sk‘)E(]): 1 j=2

J 3<j<2k+1,
kpow(j) = #{e € (3,22 = 2]: 271 | e}
(22F 4 j=0,1
221 _9 5 =2
2%k—itt _ 1 j € [3,2k]
0 j =2k +1,

\
KRE'—E" (]) = {

1 j=
0 j#1.
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It follows that

Rs,—E" (]) = /fsk—uz(j) + KESE (]) + Kpr—pr (])

2%k _ 2 j=0
o j=1
) 2% 14§ € [2,2K]
1 j=2k+1.

Since moving from S to S[j] increments a; by 2, we obtain
a;(E") = a;(Sk) + 2k5,-p(j)

92k+1 4 i=0
N ERPL j=1
) 3-2%0t 9497 j e [2, 2]
2 j=2k+1.

Observe that E” fails the conditions of Proposition [3.4] and so it will not make sense to
apply N anymore. We resort to an explicit analysis from here. From the state E”, applying
Zero yields

(0,0,3,3-2' —2,3.223.2% —2 ... 3.2%"1 2 3.2% 2%+l _5)(n o) = (2% —1,-1)
after which applying 221 — 4 Increment rules yields
(0,0,22,2% — 2,21 25 —2 . 221 _9 9% 92+l _3 92%+2_9 _1) (n,0)=(3,—1),

and now we Halve to obtain

(0,0,22,2% —2,24 25 — 2 2271 _9 9% 92+l _3 922 _9)  (n,0) = (1,+1).
Applying 222 — 2 Increment rules yields

(1,2,2%,2% —2,25 20 —2 22k 2 92l 92k+2 4 0)  (n,0) = (2272 —1,+1)
after which we are forced to apply an Overflow rule to get

B final = (0,2,2,2% 24 — 2, 2%k 9 92+l 922 4 () (n,o) = (0,-1).

By Proposition , E) fina 1s weakly embanked, and one may compute that h(FEgfna) =
(22642 — 1 2%+2 _ 9). Further computing the state formed after the second Halve rule of
TE, g Shows that Ej gna is in fact embanked with N(Ejfna) = 2k + 1. By (1), applying
N/() to Ekz,ﬁnal yields

Ellc,ﬁnal = (O’ 27 227 23) 247 ey 22k7 22k+17 22k+2 - 2, O)

By Lemma , we have h(Ej g,.) = (2°¥7 — 1,2%%%2 — 1); therefore, Proposition tells
us that N(El,v,ﬁnal) - Ellﬁ,ﬁnal[y2<22k+2 - 1) + 1] - El,c,ﬁnal[l]‘ Hence,

N(Ej, gna) = (0,2, 22,23 21 9%k 2kFL 92kF2 )

which is just Ski1.
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