
Information Processing Letters 112 (2012) 213–217
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Fast brief practical DFA minimization

Antti Valmari

Tampere University of Technology, Department of Software Systems, PO Box 553, FI-33101 Tampere, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2011
Received in revised form 2 December 2011
Accepted 5 December 2011
Available online 7 December 2011
Communicated by J. Torán

Keywords:
Algorithms
Formal languages
Data structures
Deterministic finite automata
Partition refinement

Minimization of deterministic finite automata has traditionally required complicated
programs and correctness proofs, and taken O (nk log n) time, where n is the number of
states and k the size of the alphabet. Here a short, memory-efficient program is presented
that runs in O (n + m log m), or even in O (n + m log n), time, where m is the number of
transitions. The program is complete with input, output, and the removal of irrelevant
parts of the automaton. Its invariant-style correctness proof is relatively short.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Minimization of a deterministic finite automaton (DFA)
is a famous problem in theoretical computer science. It
can be solved by successively refining a partition of the

states. Let Q be the set of states, Σ the alphabet, “
a→” the

(perhaps partial) transition function for each a ∈ Σ , q̂ the

initial state, and F the set of final states. By q
a→ B ′ where

B ′ ⊆ Q we mean that there is a q′ ∈ B ′ such that q
a→ q′ .

We say that B is compatible with B ′ if and only if for every

a ∈ Σ and q1 and q2 in B , if q1
a→ B ′ , then also q2

a→ B ′ .
Partitioning is started with {F , Q \ F }, or just {F } or {Q \ F }
if the other set is empty. It is continued until every B in
the partition is compatible with every B ′ in the partition.

It is relatively straightforward to design an algorithm
whose running time is O (kn2), where n = |Q | and k = |Σ |.
In 1971, John E. Hopcroft reduced the running time to
O (nk log n) [1]. His ideas were excellent but, as is often the
case with new results, not so easy to read. This led to pub-
lications that aimed at clarifying the ideas [2,3]. From the
practical point of view, also they left a lot to be desired.

E-mail address: Antti.Valmari@tut.fi.
URL: http://www.cs.tut.fi/~ava/.
0020-0190/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.12.004
The designs were complicated, with many data structures
and long correctness arguments. The memory usage was
Θ(nk).

Often in practice, DFAs are incomplete in the sense that
not every state has an outgoing transition for every la-
bel. The number of defined transitions, m, is often much
smaller than its theoretical maximum, nk.

In 2008 two independent pairs of researchers suc-
ceeded in reducing the running time to O (n + m logn),
either by employing a second refinable partition that stores
the transitions [4], or by computing the set of labels of
transitions that end in a block and splitting simultane-
ously with all these labels [5]. The memory consumption
of these approaches was Θ(m + n + k). The former tech-
nique was extended to a non-deterministic generalization
of the DFA minimization problem [6]. Then a way of omit-
ting some data structures was found, simplifying the algo-
rithm considerably [7,8].

There have been occasional earlier claims that O (n +
m log n) running time can be obtained by straightforward
application of Paige’s and Tarjan’s relational coarsest par-
tition algorithm [9]. In reality, the running time of the
suggested algorithms has been O (n + km log n) or some-
thing similar. The claims were either based on treating k
as a constant, so that it is not shown in the complexity
formula; or under-appreciating the difficulties involved in

http://dx.doi.org/10.1016/j.ipl.2011.12.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:Antti.Valmari@tut.fi
http://www.cs.tut.fi/~ava/
http://dx.doi.org/10.1016/j.ipl.2011.12.004

214 A. Valmari / Information Processing Letters 112 (2012) 213–217
skipping quickly enough those labels that do not label any
currently interesting transitions. Please see [8] for more
details on this issue.

With the above and some further simplifications, it is
possible to implement and prove correct a complete DFA
minimization program, including the removal of irrelevant
parts (states and transitions that are not reachable from
the initial state or from which no final states can be
reached), in about 130 non-empty non-comment lines of
C++ code. That is the goal of this article.

To do certain subtasks in the promised time, both of
[4,5] used a data structure using Θ(k) memory. It may be
big, and when it is not, it is of little benefit. In this publi-
cation we leave it out in favor of a more pragmatic solu-
tion. This makes the running time O (n +m log m), which is
slightly worse than O (n + m logn). If one may assume that
the transitions are sorted in the input according to their
labels, then O (n + m log n) is obtained by leaving out one
line of code.

Section 2 presents the program. The hard part of its cor-
rectness proof is given in Section 3.

2. The program

This section presents and discusses the program. To
fully understand its main loop, it is necessary to know
many details of the low-level operations. Therefore, the
section proceeds in the order of the program code.

Fast execution, small memory consumption, and short
enough lines to fit in the columns of this publication
were favored over programming style recommendations.
The version in this publication has been checked by copy-
ing its parts from the PDF reader screen, dropping them
into a .cc file, compiling, and testing. Before compilation,
an apostrophe ’ was replaced for each right single quota-
tion mark ’, to cancel the accidental replacements in the
opposite direction that took place in the process.

The first two lines of Fig. 1 employ the input/output op-
erations of the C++ language and a sorting algorithm. The
rest of the figure shows a refinable partition data struc-
ture. The program uses two instances of it, one for states
and another for transitions.

The variable z stores the number of sets in the par-
tition. The sets are numbered from 0 to z − 1. The el-
ements of a set s are stored in an unspecified order in
E[f],E[f + 1], . . . ,E[p − 1], where f = F[s] and p =
P[s]. The array names “F” and “P” stand for “first” and
“past”. The location of element e in E is stored in L[e].
So E[L[e]]= e and L[E[i]]= i. The number of the set
that e belongs to is in S[e].

The procedure init(n) initializes the data struc-
ture to the coarsest partition whose sets together contain
0,1, . . . ,n − 1. This partition is either empty or consists of
one set. The operation bool(0) returns 0 and bool(n)
returns 1, if n > 0. init(n) obviously runs in linear time.

Refinement of the partition consists of marking some
elements by calling mark(e) for each of them, and then
calling split(). The number of marked elements of the
set s is indicated by M[s], and W keeps track of touched
sets, that is, the sets with marked elements. To save mem-
#include <iostream>
#include <algorithm>

/* Refinable partition */
int *M, *W, w = 0; // temporary worksets

struct partition{
int z, *E, *L, *S, *F, *P;

void init(int n){
z = bool(n); E = new int[n];
L = new int[n]; S = new int[n];
F = new int[n]; P = new int[n];
for(int i = 0; i < n; ++i){

E[i] = L[i] = i; S[i] = 0; }
if(z){ F[0] = 0; P[0] = n; }

}

void mark(int e){
int s = S[e], i = L[e], j = F[s]+M[s];
E[i] = E[j]; L[E[i]] = i;
E[j] = e; L[e] = j;
if(!M[s]++){ W[w++] = s; }

}

void split(){
while(w){

int s = W[--w], j = F[s]+M[s];
if(j == P[s]){M[s] = 0; continue;}
if(M[s] <= P[s]-j){
F[z] = F[s]; P[z] = F[s] = j; }

else{
P[z] = P[s]; F[z] = P[s] = j; }

for(int i = F[z]; i < P[z]; ++i){
S[E[i]] = z; }

M[s] = M[z++] = 0;
}

}

};

Fig. 1. Refinable partition data structure.

ory, M and W are shared by both instances of the structure.
This is why they are defined outside the structure.

The segment in E of the set s lists first its marked
and then unmarked elements. mark(e) moves an element
from the unmarked part to the marked part, by swap-
ping it with the first unmarked element and incrementing
M[s]. If the set did not contain marked elements before
the operation, its number is pushed to W so that the set
will be split later. mark(e) runs in constant time.

The procedure split() exhausts W and splits the sets
listed in it. If all elements of the set s are marked, then
split() unmarks them and skips the rest of the body
of the while-loop with continue. Otherwise split()
chooses the smaller of the marked and unmarked part, and
makes it a new set with a new number z. The old set (i.e.,
the set number s) continues existence, but now it only
consists of the bigger part. The running time of split()
is at most proportional to the total number of elements
that were marked since the previous call of split(). Be-
cause the marking operations also took that much time,
split() runs in amortized constant time.

To the best of our knowledge, all publications before
[7,8] always made the new set from the marked part. As
will be mentioned in Section 4, our solution makes it pos-
sible to avoid a significant complication later in the pro-
gram.

A. Valmari / Information Processing Letters 112 (2012) 213–217 215
partition
B, // blocks (consist of states)
C; // cords (consist of transitions)

int
nn, // number of states
mm, // number of transitions
ff, // number of final states
q0, // initial state
*T, // tails of transitions
*L, // labels of transitions
*H; // heads of transitions

bool cmp(int i, int j){
return L[i] < L[j]; }

Fig. 2. General data structures.

/* Adjacent transitions */
int *A, *F;
void make_adjacent(int K[]){
int q, t;
for(q = 0; q <= nn; ++q){ F[q] = 0; }
for(t = 0; t < mm; ++t){ ++F[K[t]]; }
for(q = 0; q < nn; ++q)F[q+1] += F[q];
for(t = mm; t--;){ A[--F[K[t]]] = t; }

}

Fig. 3. Adjacent transition data structure.

Fig. 2 declares the general data structures of the pro-
gram, plus one auxiliary operation. The sets of the partition
of states are traditionally called blocks. The partition of
transitions is not traditional. We call its sets cords. Tran-
sitions are numbered starting from 0. We have q

a→ q′ if
and only if there is t such that T[t] = q, L[t] = a, and
H[t] = q′ . The function cmp specifies a partial order on
transitions that only compares the labels.

Fig. 3 presents a data structure that is sometimes used
to store the outgoing transitions of states and sometimes
the incoming transitions. The adjacent transitions of state
q are A[F[q]],A[F[q]+ 1], . . . ,A[F[q + 1]− 1]. The
procedure make_adjacent(T) initializes the data struc-
ture to contain the outgoing transitions. It is an immediate
application of counting sort, and thus runs in O (n + m)

time [10, Section 8.2].
Fig. 4 shows the routines used in the removal of the

irrelevant parts of the DFA. It uses set 0 of B. First
reach(q) is called for the start states of the search,
and then rem_unreachable is called. rem_unreach-
able(T,H) traverses transitions forwards and rem_un-
reachable(H,T) backwards.

The procedure reach works otherwise like mark, but
does not store the number of the set to the workset, and
has an extra test to protect against reaching the same
state twice. rem_unreachable performs breadth-first
search [10, Section 22.2]. (In C++, the for-loop test i <
rr uses the current value of rr.) Then it compresses the
transition data structure, leaving out those whose tail state
is not reachable. The ordering of those transitions that re-
main is preserved. The running time is O (n + m).

The value of mm may be reduced by the operation, but
nn stays the same. This is because B uses original state
numbers, but C has not yet been initialized and will be
initialized to use the new transition numbers.

The first half of the main program is shown in Fig. 5.
When reading and reaching final states, the program skips
/* Removal of irrelevant parts */
int rr = 0; // number of reached states

inline void reach(int q){
int i = B.L[q];
if(i >= rr){
B.E[i] = B.E[rr]; B.L[B.E[i]] = i;
B.E[rr] = q; B.L[q] = rr++; }

}

void rem_unreachable(int T[], int H[]){
make_adjacent(T); int i, j;
for(i = 0; i < rr; ++i){
for(j = F[B.E[i]];

j < F[B.E[i] + 1]; ++j){
reach(H[A[j]]); } }

j = 0;
for(int t = 0; t < mm; ++t){
if(B.L[T[t]] < rr){
H[j] = H[t]; L[j] = L[t];
T[j] = T[t]; ++j; } }

mm = j; B.P[0] = rr; rr = 0;
}

Fig. 4. Removal of irrelevant parts of the DFA.

/* Main program */
int main(){

/* Read sizes and reserve most memory */
std::cin >> nn >> mm >> q0 >> ff;
T = new int[mm]; L = new int[mm];
H = new int[mm]; B.init(nn);
A = new int[mm]; F = new int[nn+1];

/* Read transitions */
for(int t = 0; t < mm; ++t){
std::cin >> T[t] >> L[t] >> H[t]; }

/* Remove states that cannot be reached
from the initial state, and from which
final states cannot be reached */

reach(q0); rem_unreachable(T, H);
for(int i = 0; i < ff; ++i){
int q; std::cin >> q;
if(B.L[q] < B.P[0]){ reach(q); } }

ff = rr; rem_unreachable(H, T);

/* Make initial partition */
W = new int[mm+1]; M = new int[mm+1];
M[0] = ff;
if(ff){ W[w++] = 0; B.split(); }

/* Make transition partition */
C.init(mm);
if(mm){
std::sort(C.E, C.E+mm, cmp);
C.z = M[0] = 0; int a = L[C.E[0]];
for(int i = 0; i < mm; ++i){
int t = C.E[i];
if(L[t] != a){

a = L[t]; C.P[C.z++] = i;
C.F[C.z] = i; M[C.z] = 0; }

C.S[t] = C.z; C.L[t] = i; }
C.P[C.z++] = mm;

}

Fig. 5. Main program, part 1.

those that are not reachable from the initial state. The
reachable final states enter locations 0,1, . . . ,rr − 1 of
B.E, and their number rr is assigned to ff.

If the language is empty, the removal of irrelevant parts
makes set 0 empty, while it should be {q0}. This is not

216 A. Valmari / Information Processing Letters 112 (2012) 213–217
/* Split blocks and cords */
make_adjacent(H);
int b = 1, c = 0, i, j;
while(c < C.z){
for(i = C.F[c]; i < C.P[c]; ++i){
B.mark(T[C.E[i]]); }

B.split(); ++c;
while(b < B.z){
for(i = B.F[b]; i < B.P[b]; ++i){

for(
j = F[B.E[i]];
j < F[B.E[i]+1]; ++j

){
C.mark(A[j]); } }

C.split(); ++b; }
}

/* Count the numbers of transitions
and final states in the result */

int mo = 0, fo = 0;
for(int t = 0; t < mm; ++t){
if(B.L[T[t]] == B.F[B.S[T[t]]]){
++mo; } }

for(int b = 0; b < B.z; ++b){
if(B.F[b] < ff){ ++fo; } }

/* Print the result */
std::cout << B.z <<’ ’<< mo
<<’ ’<< B.S[q0] <<’ ’<< fo <<’\n’;

for(int t = 0; t < mm; ++t){
if(B.L[T[t]] == B.F[B.S[T[t]]]){
std::cout << B.S[T[t]] <<’ ’<< L[t]

<<’ ’<< B.S[H[t]] <<’\n’; } }
for(int b = 0; b < B.z; ++b){
if(B.F[b] < ff){
std::cout << b <<’\n’; } }

}

Fig. 6. Main program, part 2.

fixed, because then ff= mm= 0 and the further execution
skips all statements where the difference matters.

Next the program reserves memory for the temporary
worksets. Because unreachable states have been removed,
n � m + 1. Clearly m � m + 1. Thus m + 1 words suffice.
If there are final states, the program calls split to make
the partition {F , Q \ F }, if F �= Q . Up to this point, the time
consumption is O (n + m).

Then the program initializes the transition partition and
sorts its elements according to the labels of the transitions.
The ordering of the labels is not important, but it is impor-
tant that transitions with the same label are put next to
each other. Sorting takes O (m log m) time and uses O (1)

additional memory, if done with heapsort. If the transi-
tions are given one label at a time in the input, then the
sorting could be left out, yielding a program that runs in

O (m logn) time. The program makes each “
a→” a set in

the partition and updates the locations that became out of
date in the sorting.

The rest of the program is shown in Fig. 6. We say that
a block is ready if its number is less than b, and unready
otherwise. Similarly cord c is ready or unready depending
on whether c < c.

If C.z= 0, then there are no transitions and there is at
most one state. The splitting stage does nothing, which is
correct, because the DFA is already minimal or we have the
special case mentioned above. Otherwise the stage contin-
ues until all blocks and cords are ready.

Cord c is processed by scanning through its elements
and marking their tail states. Then B.split() is called,
resulting in the splitting of all touched blocks so that they
become compatible with cord c, that is, either all or none
of the states in the block has an outgoing transition in the
cord. Next each block that exists and is unready at the
time, is processed. Its states are scanned, their incoming
transitions are scanned and marked, and the cords that
were touched are split. So all cords become compatible
with the block. A cord is compatible with a block if ei-
ther all or no transitions in it end in the block. Why and
in what time this yields the correct result is discussed in
the next section.

The rest of the program prints the result in O (m + n)

time. Transitions between blocks are printed by scan-
ning the (remaining) original transitions, recognizing those
whose tail state is the first state in its block, and printing
the number of the block, the label, and the number of the
block of the head state. The transitions are thus printed
one label at a time, if they came one label at a time in the
input. Blocks that consist of final states are recognized by
the location of their first state. The block that contains the
initial state is B.S[q0].

3. Correctness and speed of the splitting stage

The correctness of the splitting stage is proven via a
series of lemmas. We assume that every state has a path
to a final state, because the opposite case is the empty
language case, where splitting is correctly skipped.

Lemma 1. If the program puts two states in different blocks,
then they accept different languages. If it puts two transitions in
different cords, then they have different labels or their tail states
accept different languages.

Proof. The situation immediately before the splitting stage
clearly satisfies the claim. It remains to be proven that the
claim is an invariant of the splitting stage.

If the splitting stage separates two states, then one of

them, say q1, has an outgoing transition q1
a→ q′

1 that be-
longs to a cord that contains no outgoing transitions of the
other state q2. If q2 has no outgoing a-transitions, then q1
accepts some word aσ that q2 rejects. Otherwise q2 has an
outgoing a-transition in a different cord. The induction as-
sumption yields that q1 and q2 accept different languages.

If the splitting stage separates two transitions, then
they have the same label a and their head states q′

1 and
q′

2 belong to different blocks. By the induction assumption,
either q′

1 accepts some word σ that q′
2 rejects, or the other

way round. As a consequence, the tail state of one of the
transitions accepts aσ but the tail state of the other rejects
it. �
Lemma 2. Let q1 and q2 be states in the same block, t1 and t2
transitions in the same cord, and a ∈ Σ . If the head states of t1
and t2 are in different blocks B1 and B2 , then at least one of
B1 and B2 is unready. If q1 and q2 both have an outgoing a-
transition, but the transitions are in different cords C1 and C2 ,

A. Valmari / Information Processing Letters 112 (2012) 213–217 217
then at least one of C1 and C2 is unready. If q1 has an outgoing
a-transition but q2 does not, then the cord of the transition is
unready.

Proof. The claim holds initially, because then b = 1 and
c= 0, so all cords and all but one block are unready. When
the splitting of a block separates the head states of t1 and
t2 to different blocks, split gives the new half-block the
number B.z, so the new half-block becomes unready. Sim-
ilarly, when the splitting of a cord separates the outgoing
a-transitions of q1 and q2, the new half-cord becomes un-
ready. The third situation (i.e., q1 has but q2 does not have
an outgoing a-transition) cannot become valid inside the
loops.

A block or cord becomes ready when b or c is incre-
mented. Then the block or cord has just been used for
splitting, so that t1 and t2 are no longer in the same cord
or q1 and q2 are no longer in the same block. �
Lemma 3. Let n′ and m′ be the numbers of states and transitions
after the removal of irrelevant parts. After make_adjacent,
the splitting stage runs in O (m′ logn′) time.

Proof. We have n′ � m′ + 1. The basic operations run in
amortized constant time.

If a transition is used anew in B.mark(T[C.E[i]]),
then it belongs to a cord whose number is greater than
the previous time. When splitting a set, split gives the
new number to the smaller half. Together these imply that
the same transition can be used at most �log2 h�+1 times,
where h is the size of the original cord. Because all tran-
sitions in the same cord have the same label, we have
h � n′ . Therefore, each transition is used O (log n′) times,
contributing O (m′ logn′).

A similar argument shows that each state is used
O (log n′) times for splitting cords. This implies that C.
mark(A[j]) marks each transition O (log n′) times. To-
gether these contribute O ((n′ + m′) log n′). �
Theorem 1. The program outputs the minimal DFA that accepts
the same language as the input DFA. It runs in O (n + m logm)

time and uses at most 6n + 11m + O (1) words of memory, if
the sorting algorithm is heapsort.

Proof. We first prove by induction that if q1 and q2 are in
the same block after the splitting stage and q1 accepts the
word a1a2 · · ·ah , then also q2 accepts the word. If h = 0
then this holds, because final and other states were sepa-
rated after the removal of irrelevant parts. Otherwise there

is a q′
1 such that q1

a1→ q′
1. At the end of the splitting stage

all blocks and cords are ready. By Lemma 2, q2 has a tran-

sition q2
a1→ q′

2 in the same cord as q1
a1→ q′

1. Furthermore
by Lemma 2, q′

1 and q′
2 are in the same block. By induc-

tion, they both accept a2a3 · · ·ah . So q2 accepts a1a2 · · ·ah .
Thus every state in the same block accepts the same

language. From here on the proof follows known paths.
Also the quotient DFA D printed by the algorithm accepts
the same language. By Lemma 1, each state q of D accepts
a distinct language. Unreachable states were removed, so q
has a word σq that leads from the initial state of D to q.
If another DFA D ′ accepts the same language, it must have
a state f (q) for each σq , because it is a prefix of some
accepted word. The state f (q) accepts the same language
as q, implying that the f (q) are distinct. So D ′ has at least
the same number of states as D . Therefore, D is minimal.

The correctness and speed of other than the splitting
stages are based on well-known results and were briefly
discussed in Section 2. By these results and Lemma 3, the
running time of the program is O (n + m logm). The mem-
ory consumption of the program can be read directly from
the code. �
4. Conclusions

DFAs can be minimized efficiently with a rather short
program. Thanks to always giving the new block or cord
number to the smaller half, no data structure and com-
plicated tests are needed for keeping track of blocks and
cords that have to be used in the future for splitting.
This is a significant simplification compared to, as far as
we know, all publications prior to [7,8]. The present pro-
gram is much simpler than the pseudocode in [8], because
the latter solves a more general problem. Furthermore, the
present program has some small improvements over [7,8].

Because the program has been presented in full and
tested, the reader can check that there are no hidden is-
sues, and use it easily.

Acknowledgements

The author thanks Jaco Geldenhuys and the reviewers
for helpful comments.

References

[1] J.E. Hopcroft, An n log n algorithm for minimizing states in a finite
automaton, Technical Report STAN-CS-71-190, Stanford University,
1971.

[2] D. Gries, Describing an algorithm by Hopcroft, Acta Informatica 2
(1973) 97–109.

[3] T. Knuutila, Re-describing an algorithm by Hopcroft, Theoretical
Computer Science 250 (2001) 333–363.

[4] A. Valmari, P. Lehtinen, Efficient minimization of DFAs with par-
tial transition functions, in: STACS 2008, Symposium on Theoreti-
cal Aspects of Computer Science, 2008, pp. 645–656, http://drops.
dagstuhl.de/volltexte/2008/1328/.

[5] M.-P. Béal, M. Crochemore, Minimizing incomplete automata, in:
Finite-State Methods and Natural Language Processing, Seventh In-
ternational Workshop, 2008, pp. 9–16.

[6] A. Valmari, Bisimilarity minimization in O (m logn) time, in: Lecture
Notes in Computer Science, vol. 5606, Springer-Verlag, Berlin, 2009,
pp. 123–142.

[7] A. Valmari, Kuinka kiltti mutta tarpeeton pikku algoritmi sai tärkeän
tehtävän, Tietojenkäsittelytiede 20 (2010) 33–55.

[8] A. Valmari, Simple bisimilarity minimization in O (m logn) time, Fun-
damenta Informaticae 105 (3) (2010) 319–339.

[9] R. Paige, R. Tarjan, Three partition refinement algorithms, SIAM Jour-
nal on Computing 16 (6) (1987) 973–989.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algo-
rithms, 3rd ed., The MIT Press, London, 2009.

http://drops.dagstuhl.de/volltexte/2008/1328/
http://drops.dagstuhl.de/volltexte/2008/1328/

	Fast brief practical DFA minimization
	1 Introduction
	2 The program
	3 Correctness and speed of the splitting stage
	4 Conclusions
	Acknowledgements
	References

