
Complex Systems 3 (1989) 107- 115

A Note on Culik-Yu Classes

Klaus Sutner
St evens Institute of Technology, Hoboken , NJ 07030, USA

Abstract. Culik and Yu suggested a classification of cellular au­
tomata into four classes based on Wolfram's earlier heuristic classifi­
cation. The purpose of this note is to determine the position of these
classes within th e arithmetical hierarchy. We will show that CLASS

ONE and C LASS T wo are rrg-complete whereas C LASS THREE is ~g­

complete . C LASS FOUR is tri vial.

1. Introduction

In [6] Wolfram gave a heurist ic classification of cellular automata into four
types . His classification is based on the evolut ion of configurations and uses
easily observable characte rist ics of the behavior of the cellular automaton.
In a recent paper by Culik and Yu [1] the authors form alize Wolfram's clas­
sification. Again , four types of cellular automata are considered. The corre­
sponding class es will be denoted CLASS ONE, C LA SS T W o , CLASS T HREE,

and CLASS FOUR. Informally, they are defined as follows. Let p be the
transition rule of a cellular automaton.

1. Rule p is in CLASS ONE iff every finite configurat ion evolves to a stable
configuration in finitely many steps under rule p.

2. Rule p is in CLASS Two iff every finite configurat ion evolves to a
periodic configurat ion in finitely many st eps under rule p.

3. Rule p is in CLASS T HREE iff it is decidabl e whether a configuratio n
occurs in the orbit of another.

4. CLASS FOUR comprises all local rules.

Note that t he classes form a hierarchy. It is shown in [1] that it is un­
decidable to which class a given cellular automaton belongs . More precisely,
their arguments show that :

(a) C L A SS ONE and CLASS Two are m-hard .

(b) CLASS THREE is ~~-hard .

© 1989 Complex Syst ems Publications, Inc.

108 Klaus Sutner

By counting quantifiers, one can see from the defini tions that CLASS
ONE and CLASS T w o lie at level rrg and CLASS T HREE at level I;g in the
arithmetical hierarchy. Thus there is a significant gap between the lower
bounds established by Culik and Yu and the obvious upper bounds. We will
close this gap and show that in fact :

(a") CLASS ONE and CLASS T w o are rrg-complete.

(b') CLASS T HREE is I;g-complete.

Thus CLASS ONE and CLASS T w o are equidecidable with the problem
of deci ding whether a recursively enumerable set is infinite. Similarly CLASS
T HREE is equidecidable with the problem of deciding whether a recursively
enumerable set is rec ursive.

Our arg uments are based on a technical lemma which shows that the
Codel num bers of Tur ing machines that halt on all configurations is rrg­
complete. T his lemma also provides a proof for coroll ary 2 in [1] that does
not use cellular automata.

To keep this note reaso nably shor t we refrain from rep eating t he basic
definitions of recur sion theory. In particu lar we will not introduce the ari th­
metical hierarchy and refer the reader to [2] or [3] for definitions of the classes
rrg, I;g and so fort h. T he necessary definitions for cellular automata as well
as for Turing machines are presented br iefly in the next section. Section 3
contains proofs for the completeness results.

2. D efinitions

We will consider exclusively one-dimensional cellular automata. Every cell
can assume a finite number of possible states; the collection I; of possible
states is called the alphabet of the automaton. A map X : Z ~ I; from the
set of all cells to the alphabet is a con figuration of the cellular automaton.
C denotes the space of all configurations. A local rule is a map p : I;N ~ I;
where N e Z is a finite set, called the basic neighborhood of the ru le. The
rule p is extended to a globa l rule (also denoted by p) p : C ~ C as follows.
Given a configuration X define for any cell c the local configu ration at c,
Xc: N ~ I;, by X c(z) := X(c + z). Then p(X) (c):= p(Xc)'

For a st at e s in I; let Z, be the local configuration defined by Zs(c) = s
for all c in N . Similarly X s is the global configurat ion defined by Xs (c) = s
for all c in Z. State s in I; is stable iff p(Zs) = s . Suppose s is stable. The
s -support of a configuration X is the collection of cells {c I X (c) =I- s }. The
configuration X is s -finite iff it s s-support is finite. A configuration X is
periodic iff for some t < 0: pt(X) = X . T he orbit of X is the collection of
all configu rations pt(X), t ~ O.

We can now give a precise definition of the Culik-Yu classes.

A Note on Culik-Yu Classes 109

T h e Classification

1. p is in CLASS ONE iff there exists a stable state s in I; such that every
s-fin ite configuration evolves to X s in finitely many steps un der rule p.

2. p is in CLASS Two iff there exists a stable state s in I; such that every
s-finite configuration evolves to a periodic configurat ion in finitely m any
steps under rule p.

3. p is in CLASS T HREE iff it is decidable whether a configuration occurs
in the orbit of another.

C odin g

We briefly indicate how to code rul es, configurations, and so forth as non­
negati ve integers . It is convenient to assume that I; = {O, 1, .. . , k - 1} for
some k ~ 2. Let p be an arbitrary local rule. To code p, we order the local
configurations lexicographically as Zl, .., Zkn where n := INI. Then we code
p by

Here (..) is any standard cod ing function, see e.g. [3]. Let I;o be the set
of stable states and s a symbol in I;o. For a s-finite configuration X let
C(X) denote its code number. Also let Cons,e be the codes of all s-finite
configurations for rule Pe' Cons,e is primitive recursive uniform ly in e and
s . It is straightforward to show tha t there is a pr imitive recursi ve pred icate
Succ such that for all s-finite configurations X and Y we have

/(X) = Y iff Succ(t, C(X), C(Y), C(p)).

Thus a configuration Y occurs in the orbit of another configuration X un der
ru le p iff 3tSucc(t , C(X), C(Y), C(p)). T his shows that orb its are r.e . One
can easi ly construct rules with non-recursive orb its .

Turing Machines

Our completeness proofs be low are all based on simulations of Turi ng ma­
chines on cellu lar automata. It will be convenient for our pur pose s to define
a Turing machine as a quintuple M = (Q, r, 8, qo, qH). Here Q is a finite set
of states, qo E Q is the initial state and qH E Q is the ha lting state. r is the
t ap e alphabet of the m achine. The par ti al m ap 8 : Q x r --4 Q x r x {- 1, +1}
is the t ransition funct ion of M. We assu me tha t 8 is defined everywhere ex­
cept on arguments (qH' c), a E r. Thus M halts if and only if state qH is
reached at some point during the computation. We will always requi re M to
erase its tape before it halts. As is customary an instan taneous description
(ID) of M is a word in r *Qr * (where we assume that rand Q are disjoint).
We may assign a Godel number e to every Turing machine. T his provides
a standard enu meration (Mek:~o of all Turing machines. Not ice that there

no Klaus Sutner

are primitive recursive predicates IDe and f-~ (uniformly in e and 0") such
that I is in I De iff I codes an ID of Me and x f- ~ y iff x, y E I De and Turing
machine e moves from the ID coded by x to t he ID coded by y in 0" steps.

For any number x 2:. 0 we write Ix for the initial ID on machine Me
corresponding to inpu t x. Me(x) ! denotes the fact that Me on Ix halts after
finitely many steps:

30"(Ix f-~ qH) .

Simi larly, we write Me(x) i if Me fails to halt on x. For I in IDe we write
Me[I] ! (respectively, Me[I] j) iff Me started on ID I halts after finitely many
steps (respectively, fails to do so). In the fut ure, we will not distinguish
between IDs and their codes and write, for examp le, UqV f-; U'q'V' to
indicat e that Tur ing machine number e moves from UqV to U'q'V' in one
ste p.

As usual, let We := {x I Me(x) !} be the eth r.e. set . For our comp leteness
arguments we will need the set of (Codel numbers of) all Turing machines
that halt on all inputs and that halt on a decidable set of inputs, respe ct ively.
More precisely define

TOT: = {e IWe = N}

and

REG := {e IWe is recur sive }.

It is well known that TO T is rrg-complete and REC is 2:g-complete, see,
e.g., [2].

The major technical obstacle in the simulation of a Turing machine on a
cellular automaton is t he following : in recursion theory one is only interested
in computations of Turing machines, i.e., sequences of IDs that start with an
initi al ID Ix for some x. In the context of cellular automata, however, one has
to contend with the orbits of arbitrary configurations . Due to the fact that
as a set of words I De is regular , it is not difficult to eliminate configurations
that do not correspond to any ID whatsoever. In fact, given the proper
coding, a cellu lar automaton can detect non-IDs in one step. A more serious
problem is caused by IDs that do not occur duri ng any computation of 1v[e '
We call such IDs inaccessible. Thus I in I De is inaccessible iff

-,3x , O"(Ix f- ~ 1).

The set of inaccessible IDs of machine Me is t herefore co-r.e. (or rr~ in the
arithmet ical hierarchy). In fact, it is not hard to see that this set is in general
m-complete.

It may well happen t ha t for some index e in TOT th e machine M; fails
to converge on some inaccessible ID I . Define ALL to be the set of Godel
numbers of Turing machin es t hat halt on all IDs. Observe that ALL, unlike
T OT, fails to be an ind ex set. In a lemma below we will show t hat there is a
pr imitive recursive function p such th at for all e 2: 0, machines Ale and A1p (e)

accept the same inpu ts and Mp(e) halt s on all its inaccessible IDs.

A Note on Culik -Yu Classes 111

Upper Bounds

As is customary with decision problems, CLASS O NE may be const rued as a
set of natural numbers: ru le p is in CLASS O NE iff C(e) E CLASS O NE. It
follows that CLASS O NE is II~:

r E CLASS ONE iff 3s E EoVx E Cons,r 3t(Succ(t ,x,X.,r)).

Similarly CLASS Two is in II~: r E CLASS T wo iff

3s E EoVx E Con.,r30 :::; t < t' , y E Con. ,r
(t < t' ASucc(t,x,y,r)ASucc(t ' , x ,y,r)).

For CLASS T HREE we have r E CLASS T HREE iff

3e E RECVx, y E Conr(3tSucc(t, x, y, r) ¢} (x ,y) EWe)'

Since REC is II~ , CLASS THREE is E~ .

3. Completeness Results

Throughout this section we will assume that stat e 0 is st able. The O-finit e
configur ations are referr ed to simply as finit e configur at ions. Our first step is
to show t hat TOT and ALL are recur sively isomorphic. By Myhill's theorem
we only have to show that TOT is one-one redu cible to ALL and vice versa.
The next proposition contains the easy direction ALL :::;1TOT.

Proposition 3.1. A LL is one-one reducible to TOT.

P roof. There is a pr imitive recursive fun ct ion f such that

Vz E I De' Z < x(Me[z]!),
ot herw ise.

Hence f(e) E TO T iff Me converges on all its configurations iff e E ALL.
One can easily make sure that f is injective. •

Lemma 3.1. There is an inj ective primitive recursive function p such that
for all e ~ 0:

1. We = Wp(e)'

2. M p(e) halts on all its inaccessible IDs.

Proof. We will show t hat for any Turing machine 1II1e there exists a
mo dified machin e 1II1e, such that

for any x ~ 0 : Me(x) ! {=:} Me,(x)!, and

for any inaccessible ID I of Me' : Me' [I]!.

112 Klaus Sutner

Moreover, it will be clear from the construction that the index e' can be
computed primitive recursively from e. As pointed out in the introduction,
the class of inaccessible IDs is in general II~-complete. Thus we cannot effec­
tively eliminate these IDs. We consider instead IDs of Me with an additional
tag: the tag contains two numbers x and a such that - supposedly - the ID in
question occurs after a steps in the computation of Me on inp ut x . A tagged
ID (x, a, 1) is correct iff indeed Ix I- ~ I . Unlike accessibility correc tness of
tagged IDs is a primitive recursive property and can th us be verified by the
Turing machine Me'. If the tag is correct, machine Me' will generate the next
ID of Me. Also, the counter on the tag will be changed changed to a + 1
to preserve correctness. Otherwise the machine Me' halts . The process then
starts anew.

More precisely, the Turing machine Me' functions as follows. Starting at
an initial ID Ix = qo1x, machine Me' first changes the tape inscription to

where qb is the initial state of lYle. This new configura tion of Me' represents
the tagged ID (x, 0, Ix) of Me. Machine Me' then cycles through th e following
three phases.

Tape Verification

During this phase Me' tests whether its tape contains a tagged ID of Me' i.e.,
an inscription of the form

(3.1)

where x, a:::: 0, U, V E I" and q E Q. If the verification fails Me' halt s.

Accessibility T es t

In this phase Me' will check whether the tagged ID on its tape is correct.
The portion of the tape used during the test are subsequently erased, so the
tape inscription will be back to (3.1) after successful completion of the test.
Failure will cause Me' to halt .

N ex t ID

We may now assu me that the tape contains a correctly tagged ID (x, a, 1).
The machine now determines whether I is the halti ng configurat ion of Me.
If so, Me' also halt s. Otherwise Ale, computes the next ID and rep laces the
old ID on its tape by the new one. Furthermore it increments the counter a
to a + l.

This completes the definition of Me'.
Since on any input x :::: °machine Me' simply simulates machine Me' al­

beit in a very circuitous fashion, we have that Me' halts on x iff Me halts on x.
Hence "\IVe, = We and it remains to show that Me' halts on all its inaccessible

A Note on Culik-Yu Classes 113

configurations. So suppose Me' is started on an arbitrary ID and performs an
infin ite computation. T he crucial observatio n is that that Me' can perform
only finitely many moves before it must enter a tape ver ification phase (re­
call that IDs are finitary objects). As Me' never halts the verification mus t
be successful, hence the tape inscription must have the form #1x# 1"#1#
and represents a tagged ID (x, (7, I) of Me. Next Me' tests accessibility of I
(for machine Me)' Since no failure occurs we must have Ix f- ~ I. But t hen
}x#1"#I# is also accessible for Me':

for some number T ~ (7 . Hence machine Me' cannot perform an infinite
computation on an inaccessible ID and we are done. 0

Corollary 3 .1. ALL, the set of Godel numbers of Turing machines that halt
on all con figurations, is rrg-com plete.

P roof. W it h the preceding definit ions we have

Hence ALL is rrg. By the lemm a e E TOT iff p(e) E ALL. Hence TOT ::::1
ALL which shows that ALL is IIg-comp lete.•

With proposition 3.1 we can conclude that TOT and ALL have the same
one-one degree and are therefore recur sively isom orphic. We can now local­
ize C LA SS ONE, CLASS Two and CLASS T HREE within the arithmetical
hi erarchy.

Theorem 3. 1. CLASS O NE is rrg -complete.

P roof. By corollary 3.1 we only have to show that ALL, the set of Godel
numbers of Turi ng machines that halt on all configurations, is reducible to
C L A SS ONE. To this end we will construct a rule Pe for every e such that e is
in ALL iff Pe is in CLASS O NE . The construct ion of rule Pe is rather st an dard,
we therefore will omit any details and only give a brief description. Pe first
tests whether configuration X corresponds to an ID of Me (m ore precisely,
whether every isolated non-quiescent part of X corresponds to an ID; there
may several such parts) . T his is possi ble in one step if one augme nts the
tape alphabet of Me by indicator bits that determine the pos ition of the
head relative to the symbol. If the test fails the quiescent configuration is
generated in O(n) steps where n is the nu mber of cells in the sup port of X.
Otherwise Pe simulates the computation of Me on this ID. If Me ever halts
the quies cent configuration is generated, otherwise no stable configuration
occurs. Again the map e 1-+ e' is clearly primitive recursive and also inject ive.
Hence ALL ::::1 C LASS ONE and we are through.•

Combining the lemma and the technique of the last theorem we obtain a
lower bound for CLASS T wo and CLASS T HREE as follows.

114

T heorem 3.2. CLASS Two is rrg-complete.

Klaus Sutner

Proof. We claim that e E TOT iff Pp(e) I S III CLASS T w o . Here p is
the primitive recursive function of the lemma and Pi is the rule const ructed
in theorem 3.1. To see this first suppose e is in TOT. Then Mp(e) halts an
all its IDs, whence every configuration evolves to the stable configuration X o
under rule Pp(e). On the other hand assume e is not in TOT and pick some
x such t hat Me(x) j. Cons ider the orbit of configuration

x = #x#O#Ix#

under rul e Pp(e). It clearly contains configurations of the form #x#~#I#
for all a ~ O. Hence the orbit of X fails to be pe riodic and ru le Pp(e) is not
in CLASS THREE.•

Theorem 3.3. CLASS THREE is E~-complete.

Proof. Again let p be the pr imitive recursive function of the lemma and
Pi the rul e constructed in theorem 3.1. Reca ll that REG is the collection of
ind ices of recursive r.e . sets. We claim that e E REG iff Pp(e) is in CLASS
THREE.

To see this first suppose We is recursive and let X and Y be two arbi­
trary finite configurations of rule Pp(e) . Note that it is decidable whether X
corresponds to an accessible ID of Mp(e)' If not, the orbit of X must be finite
and we can test whether Y occurs in the orbit by enumerating it . If X is
accessible, say, from init ial ID Ix, we first te st whether x is in We' This can
be done effectively since We is recursive. If indeed x lies in We the orbit of X

must again be finite and we can test whether Y occurs in it by enumerating
it. Otherwise the orbit of X is infinite but the configurations that occur in
it are essentially all of the form # lX#l7"#I# . Hence it is easily decidable
whether Y lies in the orbit of X: we have to execute at most T cycles in the
computation of Mp(e)'

For the opposite direction note tha t

Thus x is in We iff the orbit of Ix contains configuration X o. Hence We

is decidable whenever Pp(e) is in CLASS T HREE.•

4. Con cl usion

We have shown that the natural hierarchy of cellular automat a proposed
by Culik and Yu is computationally highly unfeasible. Not only are the
classes undecidable (i.e., they are not located at level t,,~ in the arit hmetical
hierarchy), they are in fact recursively isomorphic to the index sets TOT
(CLASS ONE and CLASS Two) and REC (CLASS T HREE) respect ively. TO T
is comp lete for level rrg and REG is complete for level E~ of the arithmetical
hierarchy. Hence a powerful ad hoc argument is required to determine the

A Note on Culik-Yu Classes 115

class of any specific local rule. It is hardly surprising that even for some
total istic rules of width 3 their classification is not known, see e.g. [5J .

It is interesting to note that a class ification of finite cellular automata sim­
ilar to the Culik-Yu hierarchy meets with certain difficulties at level three .
The problem to det ermine whether a configurat ion occurs in the orb it of
another is in general PSPACE-complete even for one-dimensional finit e cel­
lular automata. In an alogy to CLASS THREE call a rul e predictable iff one
can solve this problem in pol ynomial t im e. The existence of a ru le that fails
to be pr edict able is then equivalent to the assertio n that Pi PSPACE, one
of the more notorious open problems of complexity theory. Hence one might
expect it to be rather difficult to characterize the class of all predictab le ru les .
See [4J for a number of results on the complexity of various decision problems
associ at ed wit h the evolut ion of configurations on finite cellular automata.

A cknowledgments

It is a pleasure to acknowled ge many helpful discussions with my colleague
S.L. Bloom.

R efe r en ces

[1] K. Culik II and Sheng Yu, "Undecidability of CA classification schemes,"
Complex Systems, 2 (1988) 177-1 90.

[2] H. Rogers, Theory of Recursive Functions and Effective Computability (Me-
Graw Hill, 1967).

[3] J .R. Shoenfield, Mathema tical Logic (Addison Wesley, 1967).

[4] K. Sutner, "The complexity of finite cellular automata," submitted.

[5] S. Wolfram, "Computer software in science and mathematics," Scientific
A merican , 251(3) (1984) 188-203.

[6] S. Wolfram, "Universality and complexity in cellular automata," Piiysice
lOD (1984) 1-35.

