
Universality of Wolfram’s 2, 3 Turing

Machine

Alex Smith

School of Electronic, Electrical and Computer Engineering
University of Birmingham
Edgbaston, Birmingham B15 2TT
United Kingdom

Submitted for the Wolfram 2, 3 Turing Machine Research Prize:
https://www.wolframscience.com/prizes/tm23/solved.html.

Introduction1.

The main problem is to determine whether the following Turing
machine is universal:

-0- -0- -1- -1- -2- -2-

A B A B A B

-1- -2- -2- -2- -1- -0-

B A A B A A

(This is known as “system 0” in the proof below.) The proof I intend
to give demonstrates that this Turing machine can emulate any two-
color cyclic tag system for an infinite number of steps; in order to do
this, I first show that this Turing machine can emulate any two-color
cyclic tag system for an arbitrary finite number of steps (with the num-
ber of steps encoded in the initial condition), and then use this result
as a basis for proving the more general result that this Turing
machine can carry on such an emulation indefinitely.

One main problem is to ensure that it is the system itself that is
doing the calculation, and not the case that the universal part of the
calculation is complete before the initial condition is even con-
structed. The construction I will give to show that system 0 can emu-
late any two-color cyclic tag system for an arbitrary number of steps
is quite complex, and it is not immediately obvious that it does not
itself do the calculation rather than leaving system 0 to do the calcula-
tion. However, the proofs below leave many options open in the ini-
tial conditions (there is more than one initial condition that emulates
a cyclic tag system), and after the rest of the proof I show that at least
one of these initial conditions can be constructed by a process that is
clearly not universal itself.

https://doi.org/10.25088/ComplexSystems.29.1.1

https://www.wolframscience.com/prizes/tm23/solved.html
https://doi.org/10.25088/ComplexSystems.29.1.1

The main part of the proof proceeds by showing that the initial
conjecture (Conjecture 0, that system 0 can emulate any cyclic tag sys-
tem for an arbitrary number of steps (and a few extra conditions)) is
either equivalent to or implied by a sequence of other conjectures,
each of which concerns a different system more complex than the con-
jecture preceding it, by showing that each system is either equivalent
to the preceding system, or can be emulated by it at least for an arbi-
trary number of steps. Eventually, it is proved that system 5 can emu-
late any two-color cyclic tag system for an arbitrary number of steps,
thus implying that any of the preceding systems, and in particular sys-
tem 0, can do the same. After this, it is shown how Conjecture 0
implies that emulation for an infinite number of steps is possible.

Notation1.1

Turing machines and Turing-machine-like systems will be written
with four rows.

The top two rows are the state before each step, and the bottom
two rows are the state after each step; the top row of each pair shows
a portion of the tape (with a number representing a particular color,
or a dash representing “does not matter” in the top pair of rows or
“no change to this tape element” in the bottom pair of rows), and the
bottom row of each pair shows the position of the active element and
which state the Turing machine is in (states are represented by�letters).

All Turing machines can be represented in this format; it allows,
however, for generalized systems in which more than one tape ele-
ment is changed at a step, or elements other than the active element
are taken into account at a step. (For instance, mobile automata can
also be represented in this format using a single state.)

When showing the history of execution of such a system, more
than two pairs of rows may be given; each pair shows the tape, state
and active element after one more step of execution. (Dashes mean
“does not matter” in the first pair of rows or “same as this element
was in the last pair of rows” in such a case.)

Conjecture 01.2

The Turing machine

-0- -0- -1- -1- -2- -2-

A B A B A B

-1- -2- -2- -2- -1- -0-

B A A B A A

(“system 0”) can emulate any two-color cyclic tag system for an arbi-
trary number of steps, using a finite-length initial condition in which
the leftmost cell is a 0 and starts active in state A and in which the

2 A. Smith

Complex Systems, 29 © 2020

first cell to become active after the emulation has finished is the cell to
the right of the initial condition, and if that cell is a 0 it becomes
active in state A. (To be precise, “finite-length initial condition,”
given in this and future conjectures, refers to an initial condition in
which only finitely many of the cells are relevant, and no other cells
are visited during the evolution of that initial condition.)

Conjecture 11.3

The system

-0- -0- -1- -1- -2- -20 -21 -22

A B A B A B B B

-1- -2- -2- -2- -1- -00 -12 -11

B A A B A A B B

(“system 1”) can emulate any two-color cyclic tag system for an arbi-
trary number of steps, using a finite-length initial condition in which
the leftmost cell is a 0 and starts active in state A and in which the
first cell to become active after the emulation has finished is the cell to
the right of the initial condition, and if that cell is a 0 it becomes
active in state A.

Conjectures 0 and 1 Are Equivalent1.3.1

To prove that Conjectures 0 and 1 are equivalent, it only needs to be
shown that the systems described in them are equivalent, as the conjec-
tures are otherwise identical.

To see why the machines are identical, consider that the only
state/active element combination in which they differ is when the
active element is color 2 and the system is in state B. There are three
possibilities for the element to its right, and some of the evolution of
each for the system in Conjecture 0 is shown below.

-20 -21 -22

B B B

-00 -01 -02

A A A

-02 -01

A A

-12 -11

B B

The result is identical to that produced by system 1 in each case, so
the systems must be equivalent.

Universality of Wolfram's 2, 3 Turing Machine 3

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

Conjecture 21.4

The system

-0- -0- -0- -1- -1- -10 -11 -12 -2- -20 -21 -22 -2-

A B C A B C C C A B B B C

-1- -2- -2- -2- -2- -0- -1- -1- -1- -0- -1- -1- -2-

B A A A B A C C A A C C B

(“system 2”) can emulate any two-color cyclic tag system for an arbi-
trary number of steps, using a finite-length initial condition in which
the leftmost cell is a 0 and starts active in state A and in which the
first cell to become active after the emulation has finished is the cell to
the right of the initial condition, and that cell becomes active in
state�B.

Conjectures 1 and 2 Are Equivalent1.4.1

To prove that Conjectures 1 and 2 are equivalent, it only needs to be
shown that the systems described in them are equivalent, as the conjec-
tures are otherwise identical.

To see that the systems are identical, consider a system identical to
system 2, except that if a state/tape combination would change into
state C, it instead changes into state B with the new active element
changed to 2 if it was 1 or 1 if it was 2 (with 0 left unchanged). This
is identical to system 1. The behavior of system 2 when the system is
in state C is identical to the behavior in state B except that the states
for 1 in the active cell and 2 in the active cell have been switched;
therefore, system 1 can be emulated by system 2 by starting with the
same tape and in the same state, and system 2 can be emulated by sys-
tem 1 by starting with the same tape and in the same state if the sys-
tem starts in state A or B, or with the active element subtracted from

3 mod 3 and in state B if the system in Conjecture 2 starts in state C.

Conjecture 31.5

The system

-0- -0- -0- -1- -1- -10 -11 -12 -2- -20 -21 -22 -2-

A B C A B C C C A B B B C

-2- -2- -2- -1- -1- -0- -2- -2- -2- -0- -2- -2- -1-

B A A A B A C C A A C C B

(“system 3”) can emulate any two-color cyclic tag system for an arbi-
trary number of steps, using a finite-length initial condition in which
the leftmost cell is a 0 and starts active in state A and in which the
first cell to become active after the emulation has finished is the cell to
the right of the initial condition, and if that cell is a 0 it becomes
active in state A.

4 A. Smith

Complex Systems, 29 © 2020

Conjectures 2 and 3 Are Equivalent1.5.1

To prove that Conjectures 2 and 3 are equivalent, it only needs to be
shown that the systems described in them are equivalent, as the conjec-
tures are otherwise identical.

To transform an initial condition from one system to the other, sub-

tract all elements to the left of the active element from 3 mod 3, and

also the active element itself if the system starts in state A. Calculating
every possible case shows the equivalence (elements that must be sub-

tracted from 3 mod 3 for the equivalence to hold are shown in bold):

System 2
-0- -0- -0- -1- -1- -10 -11 -12 -2- -20 -21 -22 -2-

A B C A B C C C A B B B C

-1- -2- -2- -2- -2- -00 -1- -1- -1- -00 -1- -1- -2-

B A A A B A C C A A C C B
System 3

-0- -0- -0- -2- -1- -10 -11 -12 -1- -20 -21 -22 -2-

A B C A B C C C A B B B C

-2- -2- -2- -2- -1- -00 -2- -2- -1- -00 -2- -2- -1-

B A A A B A C C A A C C B

Because these are identical (the states have been reordered so corre-
sponding states align vertically) except that the bold elements are sub-

tracted from 3 mod 3, the systems are equivalent.

Lemma 02.

(From now on until further notice, “the system” refers to the system
in Conjecture 3.)

For any set of adjacent elements all of which are 1s and 2s, in an
initial condition in which the system starts in state A, and in which at
least one element of the set is active in state B or C at some point dur-
ing the execution of the system:

The leftmost element of the set will be the first one to be active in either
state B or C.

1.

Once the leftmost element of the set is active in either state B or C, each
element of the set will become active in either state B or C in order.

2.

If an element of the set is active in state B, it will either stay the same or
change from 2 to 0 at least until after the next time the system enters
state A, and only the rightmost element can change to a 0, and only if
the element to its right is a 0 (it will change to a 0 under these
conditions).

3.

Universality of Wolfram's 2, 3 Turing Machine 5

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

If an element of the set is active in state C, it will change from a 2 to a 1
or a 1 to a 2 or 0 on the next step, and stay as that color at least until
after the next time the system enters state A, and only the rightmost ele-
ment can change to a 0, and only if the element to its right is a 0 (it will
change to a 0 under these conditions).

4.

If an element of the set is a 1 active in state B or C, the element to its
right will either be active in the same state or possibly in state A if it
started in state C on the next step, and the active state can only be A if
the element that ends up active is outside the set and it is a 0 at that
time.

5.

If an element of the set is a 2 active in state B or C, the element to its
right will be active in the other state out of {B, C} (or possibly A if it
started in state B) on the next step, and the active state can only be A if
the element that ends up active is outside the set and it is a 0 at that
time.

6.

If the set contains an even number of 2s, the first time the element to
the right of the set is active in state B or C, it will be active in the same
state as the leftmost element of the set was active the first time it was
active in state B or C (or possibly in state A if it started in state C and
the element to the right of the set is a 0 by that time).

7.

If the set contains an odd number of 2s, the first time the element to the
right of the set is active in state B or C, it will be active in the other
state out of {B,C} as the leftmost element of the set was active the first
time it was active in state B or C (or possibly in state A if it started in
state B and the element to the right of the set is a 0 by that time).

8.

If the rightmost element of the set becomes a 0, it will become a 2 the
next time it becomes active, which will be before the leftmost element
of the set becomes active in state B or C, and it will stay as a 2 until
after the leftmost element becomes active in state B or C. Likewise, if it
becomes active but does not change to a 0, it will stay with that value
until after the leftmost element becomes active in state B or C.

9.

To prove sublemma 1, observe that if the active element in the ini-
tial condition is to the right of the set or within it, then the first time
an element in the state is active, it will be in state A (either because it
was in the initial condition, where state A is given, or because the
active element moved to the left to enter the set, and if the active ele-
ment moves to the left it must end up in state A). If any element in the
set is active in state A, the active element will move left as long as it is
within the set (because the set contains only 1s and 2s at that point).
Therefore, the first time an element within the set becomes active in
state B or C, it must be because the active element just moved to the
right from outside the set, proving sublemma 1.

Sublemma 2 is proven by induction on the number of elements in
the set (it is implied by sublemma 1 for a one-element set, showing

6 A. Smith

Complex Systems, 29 © 2020

the base case, and by sublemmas 3 and 4 for the induction step,
whose proofs do not depend on it).

Sublemmas 3, 4, 5 and 6 can all be proven simply by enumerating
all possible cases for the element and the element to its right in each
case. (“The next time the system enters state A” must happen before
the next time the active cell moves left, because the active cell can
only move left in state A, i.e., before that particular cell becomes
active again, and in this system only active cells can change.)

Sublemmas 7 and 8, when taken together, can be proven by induc-
tion, using sublemmas 5 and 6 for both the base case (a one-element
set) and the induction step (by considering the rightmost element in
the set).

To prove sublemma 9, observe that the only way that the element
can become a 0 causes the element to its right to become active on the
next step, so that it must become active before the leftmost element
becomes active in state B or C (if it is the leftmost element, the next
time it becomes active will be in state A, and due to the rule for a 0 in
state A it will become a 2 and the active element will move to the
right, so it must become active at least a second time (actually at least
a third time, but this is not relevant to the proof) before it is active in
state B or C). It must become a 2 the next time it becomes active,
because the rule for the system always changes an active 0 to a 2; and
it must stay that way (and stay that way even if it was a 1 or 2) until
the leftmost element becomes active, because state A never changes a
1 or 2, and sublemma 1 prevents any element from becoming active
before the leftmost (sublemma 1 applies, because sublemmas 3 and 4
show that none of the other elements of the set can become a 0, and
the system must reach state A at some point before it becomes active
again, if it becomes active again, because only in state A can the
active element move to the left).

Lemma 13.

For any set of 2w adjacent elements, each of which is either a 1 or a 2,
and an initial condition that starts in state A:

Define the nth scan of the set to be the nth time the leftmost ele-
ment of the set is active in either state B or C, and the parity of the set
to be the number of 0s and 2s in the set combined (mod 2); let p(n)

denote the parity at the nth scan. Even parity is parity 0 and odd par-

ity is parity 1. The state parity at the nth scan is 0 if the system was in
state B at that scan, or 1 if the system was in state C at that scan;
denote this by s(n). For all n > 2w:

Universality of Wolfram's 2, 3 Turing Machine 7

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

p(n)  pn - 2w + sn - 2w mod 2.1.

If at scan np(n) + s(n)  0 mod 2, then the next time the element to the

right of the set becomes active it will be active in state B; otherwise,
that element will be active in state A if it is a 0 or state C if it is not.

2.

At each scan, all elements of the set will be either a 1 or a 2. Proof is by
induction on w.

3.

Base Case3.1

The base case is with w  0. Sublemma 1 in that case simply makes
some statements about the set’s only element that are all implied by
Lemma 0 (sublemmas 3 and 4 between them show how it changes
according to the state of the step after any scan, and sublemma 9 says
that it stays with the same parity until the subsequent scan).

With w  0, sublemma 2 can simply be broken down into the 12
possible cases:

-10 -10 -11 -11 -12 -12 -20 -20 -21 -21 -22 -22

B C B C B C B C B C B C

-10 -00 -11 -21 -12 -22 -00 -10 -21 -11 -22 -12

B A B C B C A B C B C B

Sublemma 2 is here shown to hold in every possible case for the base
case, so it must be true in the base case.

As for sublemma 3, it is a special case of sublemma 9 in the base
case.

Induction Step3.2

Suppose that Lemma 1 is true for some value of w. To show that it is
true for w + 1 as well, consider the two subsets of adjacent elements,
one of which consists of the leftmost 2w elements of the set, the other
of which consists of the rightmost 2w elements of the set.

First observe that a scan for the left subset will always happen
exactly 2w steps before a scan for the right subset (this is sublem-
ma�2), and that scans for the subsets must alternate, with a scan for
the left subset happening first (by sublemma 1 and the fact that sub-
lemma 2 indicates that there must be more than 2w steps between con-

secutive scans for the left subset); therefore the nth scan for the left

subset always happens exactly 2w steps before the nth scan for the
right subset. Let sl(n) and pl(n) denote s(n) and p(n) for the left subset,
and likewise sr(n) and pr(n) denote s(n) and p(n) for the right subset.

By applying sublemma 1 several times (sublemma 3 indicates that
the conditions for sublemmas 1 and 2 are met at each scan for the left
subset, and sublemmas 3 and 4 indicate that if they are met at each
scan for the left subset, they are met at each scan for the right subset

8 A. Smith

Complex Systems, 29 © 2020

too) (all equations mod 2):

pln - 2w  pln - 22w  + sln - 22w 

pl(n)  pln - 2w + sln - 2w

 pln - 22w  + sln - 22w  + sln - 2w

prn - 2w  prn - 22w  + srn - 22w 

pr(n)  prn - 2w + srn - 2w

 prn - 22w  + srn - 22w  + srn - 2w.

Sublemma 2 states that sr(x)  pl(x) + sl(x)mod 2, so (all equa-

tions mod 2):

pl(n) + pr(n)  pln - 22w  + sln - 22w  + sln - 2w + prn - 22w 

+ srn - 22w  + srn - 2w

 pln - 22w  + sln - 22w  + sln - 2w + prn - 22w 

+ pln - 22w  + pln - 2w + sln - 22w  + sln - 2w

 prn - 22w  + pln - 2w

 prn - 22w  + pln - 22w  + sln - 22w .

Observing that the parity for the right subset on its nth scan is the

same as it was on the left subset’s nth scan (because in all the steps in
between an element of the left subset was active, and so the elements
of the right subset were inactive and did not change), that the parity

for the entire set on its nth scan (i.e., the left subset’s nth scan) is the
sum of the parities for the left and right subsets, and that s(x)  sl(x)
for all x, this becomes

p(n)  pn - 2w+1 + sn - 2w+1

which is sublemma 1, which is therefore true in the induction step.

To demonstrate that sublemma 2 is true in the induction step,
observe that p(n) + s(n)  pl(n) + pr(n) + sl(n)  sr(n) + pr(n) (by sub-
lemma 2), and by sublemma 2 for the right subset, the next time the
element to the right of the set becomes active it will be active in state
B if p(n) + s(n) (i.e., pr(n) + sr(n)) is 0, and otherwise that element will
be active in state A if it is a 0 or state C if it is not. This demonstrates
sublemma 2 in the induction step.

Sublemma 3 is still a special case of sublemma 9, and does not even
need the induction assumption to prove. As all the sublemmas are
true in both the base case and induction step, Lemma 1 must be true
in general.

Universality of Wolfram's 2, 3 Turing Machine 9

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

Corollary 04.

Given any set of adjacent elements all of whose elements are either 1
or 2, with 2w elements for some integer w, the parity of that set on
each of its first 2w scans is independent of the state parity on those
scans. (Therefore, if the system is only allowed to run for less than 2w

scans, the parity on every scan is independent of the state parity on
any scan.)

Corollary 15.

Given a wanted value for the parity of a set of adjacent elements on
each of its first n scans, there is a set of adjacent elements, all of
whose elements are either 1 or 2, that has the wanted parity on each
of those scans, regardless of whether the system was in state B or state
C in each of those scans. I give two methods to construct such a set;
both will be referenced later.

Method 15.1

Such a set can be constructed by starting with any set with 2w > n ele-
ments, placing it in a tape with a 1 or 2 after it and nothing else but
0s, and changing the state at each scan to either state B or state C
according to whether or not the set’s parity on that scan matches the
wanted parity on that scan, respectively; the resulting set has the cor-
rect value on each of its next 2w scans, so taking what the set has
become after 2w scans will produce a set that has the wanted value on
each of its first 2w scans. Therefore, if the system is only allowed to
run for less than 2w scans, it is possible to construct a set of adjacent
elements whose parity has a wanted value on every scan.

Method 25.2

The tricky bit about using the construction given in Method 1 is that
it, while valid, is somewhat cumbersome, and more seriously it might
be considered to be too complicated for the proof to demonstrate
universality. (This is because it uses system 3 itself to do the calcula-
tions.) A simpler construction, however, is possible (but although the
construction is simpler, the proof that it is correct is considerably
more complicated). Throughout the below demonstrations and proof,
let the parity set of a string of 1s and 2s of length 2w be the set of
scans (out of the first w scans) on which it has odd parity. As a
demonstration, look at the following strings:

10 A. Smith

Complex Systems, 29 © 2020

2111111111111111

2211111111111111

2121111111111111

2222111111111111

2111211111111111

2211221111111111

2121212111111111

2222222211111111

2111111121111111

2211111122111111

2121111121211111

2222111122221111

2111211121112111

2211221122112211

2121212121212121

2222222222222222

These are the strings with w  4 corresponding to the parity sets
{0}, {1}, {2}, and so on through to {15}. Due to the additive nature of
such sets and/or strings, it is actually possible to generate a more com-
plicated set by XORing together each of the strings corresponding to
the elements of the set (treating 2 as the true logic value, and 1 as
false); for instance, {6,8} would be 1121212121111111. It is also sim-
ple to generate such a table of strings in a mechanical manner; com-
paring the table above to some basic cellular automata would suggest
that the following cellular automaton generates it (the  refers to the
left-hand edge of the set):

 1  2 11 12 21 22

1 1 2 2 1

(The first of the cases given cannot be induced from the table, but
is what is required for the proof below to work.) Of course, none of
this has been proved yet; I will give the proof now. Proof is by
induction on the row in the table. (The proof below assumes that
w ≥ 1; w will of course always be higher, usually substantially higher,
than 1 in order to be able to simulate the system to the required num-
ber of steps.)

Base Case5.3

A string consisting of a 2 followed by 2w - 1 1s corresponds to the set
{0}. To show this, consider the string consisting of 2w 1s; if a scan of
that string starts in state B, the string remains unchanged (due to
Lemma 0), so it must correspond to the empty set. A scan of that set
starting in state C changes that string to the string consisting of 2w 2s;
likewise, if the string consisting of a 2 followed by 2w - 1 1s is

Universality of Wolfram's 2, 3 Turing Machine 11

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

encountered in state B, it changes to the string consisting of 2w 2s.
Therefore, the next 2w - 1 scans of each string must have an even par-
ity of the string each time (they do in one case, so they must in the
other), and the only element of the corresponding sets in which they
can differ is the first scan, or the 0 element. Because the parity of an
even-length string containing exactly one 2 must be odd, the element
0 must be in the set, so {0} is the only set it can correspond to.

Induction Step5.4

Lemma 0 implies that if a string of 1s and 2s has a scan in state B, the
resulting string at the next scan will contain 1s up to but not includ-
ing where the first 2 was originally, 2s up to but not including where
the next 2 was originally, 1s up to but not including where the next 2
was originally, and so on. This means that in order to produce a given
string on scan x + 1 when an unknown string has a scan in state B on
scan x, the unknown string must contain a 2 at every position that is
to the right of a boundary between consecutive 1s in the given string,
a 1 at all other locations except possibly the first element, and start
with the same element as the given string. This is exactly what the cel-
lular automaton does, so if any row of the table has a scan, then on
the next scan it will look like the row above. A string having a scan in
system 3 is equivalent to decrementing every element in a parity set
and discarding those scans that fall below 1 (because a scan has hap-
pened, the number of scans between now and each future scan on
which it has odd parity reduces by 1, effectively decrementing every
element in the set); therefore, each row, when decremented, must pro-
duce the row above. Also, each row other than the first must have
even parity; this is because each element is set to 2 if either the ele-
ment above it or the element above it and to its right is a 2, but not
both, and induction on the number of 2s in the previous row (base
case: no 2s produces a row of 1s that has even parity; induction step:
changing a 1 to a 2 changes the parity of two, i.e., an even number of
elements in the row below) shows that any row with a previous row
(i.e., any but the first) must have even parity. As it has already been
determined that the first row of the table corresponds to {0}, this
means that the second row must correspond to {1}, the third row to
{2}, and so on, proving that the cellular automaton does indeed work.

Making the Method Still Simpler5.5

Running a cellular automaton, while simpler than running system 3,
may still appear to be an excessively complicated method of obtaining
the system 3 string with a given parity set. Luckily, the cellular
automaton in question (two-color nearest-neighbor rule 60 with differ-
ent names for the “colors” of its cells) is one that has already been

12 A. Smith

Complex Systems, 29 © 2020

analyzed and has simple nested behavior, and in fact its behavior can
be predicted in advance without actually running the automaton.
(The rule for the automaton is identical for that for Pascal’s triangle
modulo 2; it is a well-established result that any given cell in Pascal’s
triangle can be calculated using the formula for binomial coefficients,
and that formula can therefore be used to predict the behavior of rule
60 and provide an even simpler way to create the relevant string.)

Conjecture 46.

The following system (“the system” in this section, and “system 4”
elsewhere) can emulate any two-color cyclic tag system for an arbi-
trary number of steps (it is sort of an infinite-color Turing machine),
using a finite-length initial condition in which the first element of the
tape starts active in state A, and in which the first time the active ele-
ment leaves the defined portion of the initial condition, the system is
in state C.

There is a right-infinite tape, each of whose elements is either a
finite (and possibly empty) set of non-negative integers or a star.
There cannot be two consecutive stars on the tape, and the tape can-
not start with a star, but any number of consecutive sets are allowed.
There is one active element at a time, and the system can be in one of
three states, A, B or C. (For example (and as an example of the nota-
tion I use):

{0,6,8}{}*{3,4}*{8}{11,20}…

B

Each step of the system obeys the following rules:

If a set is active and the system is in state A, there is no change to the
set and the element to its left becomes active (the system remains in
state A). If there is no element to the left (i.e., the set is the first ele-
ment), instead the same set remains active and the system changes to
state B.

1.

If a star is active and the system is in state A, the star is deleted from
the tape (causing the elements to each side of it to become adjacent),
the element that was to its right becomes active, and the system changes
to state B.

2.

If a set is active and the system is in state B or C, every element in the
set is decremented. If this would decrement a 0, the 0 is removed from
the set and the system changes to the other state out of {B,C}; whether a
0 is decremented or not, the element to the right of the active element
becomes active.

3.

Universality of Wolfram's 2, 3 Turing Machine 13

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

If a star is active and the system is in state B, the star is deleted from the
tape (causing the elements to each side of it to become adjacent), the ele-
ment that was to its left becomes active, and the system changes to
state A.

4.

If a star is active and the system is in state C, the element to its right
becomes active and the system remains in state C. A 1 is added to that
set, or if there is a 1 in the set already, instead a 1 is removed from
that�set.

5.

Conjecture 4 Implies Conjecture 3 (and Therefore Conjecture 0)6.1

To prove that Conjecture 4 implies Conjecture 3, it is enough to show
that with the right initial condition, system 3 can emulate a finite sys-
tem 4 initial condition obeying the constraints set out there for an
arbitrary number of steps, with the system 3 initial condition and
“final” condition obeying the constraints set out in Conjecture 3. This
is done by stating what the initial condition is, and then proving that
it emulates system 4. (The description below also explains what the
condition of the system can be like during execution, because the
proof works by showing that the system 3 program changes from one
condition to another the same way the system 4 program does.)

Initial Condition / Condition during Execution6.1.1

◼ The start of system 4’s tape can translate to the string “0222...222”
repeated 2w+1 - 4 times (where there are 2w+1 - 1 2s in the string, and
the ... is made up entirely of 2s), followed by a 0, 2w+1 - 2 2s, and a 1
(but only if the leftmost system 4 element is an active set, and then only
if it is active in state A; this form is provided solely to meet the condi-
tion that the initial condition that “fulfills” Conjecture 3 starts with a 0
active in state A). Another possible translation is the string
“221212...21210” (where the ... is made up of 1s and 2s alternating,
and the string has a length of 2w+1) repeated a sufficient number of
times (at least 2w+1 - 4 times minus (at later times in the evolution of
the system) one repetition for each time that region of the tape has been
encountered during the evolution of the system 3 system so far), except
without the 0 at the end of the last repetition, and followed by any
block of 1s and 2s that has even parity and would have even parity on
each of its next x scans if it such a scan happened in state B each time,
where x is the number of 0s in this region of the tape. (A zero-length
sequence of 1s and 2s is trivially sufficient to fulfill the “even parity on
its next x scans” condition; so is any string consisting only of 1s,
because a scan starting in state B on such a string leaves it unchanged,
and a string consisting only of 1s always has even parity, and so are
any number of strings with that property concatenated with each other,
because a scan on a string with even parity starting in state B leads to
the element to the right of that string becoming active in state B.)

14 A. Smith

Complex Systems, 29 © 2020

◼ A set of numbers translates to a set of consecutive 1s and 2s that has

odd parity on the n + 1th scan if and only if n is in the set (for

instance, it has odd parity on the first scan if it contains a 0, and even
parity otherwise) during all the time that the emulation is run (i.e., for
all the arbitrary number of steps of system 5 required), and that starts
with a 2 and ends with a 2. (At this point in the proof, I simply assume
there is a simple procedure for finding such a set; an explicit construc-
tion will be given later, completing this part of the proof.)

◼ A star to the left of the active element, or at the active element if sys-
tem�4 is in state A or C, translates to a 0 that replaces the rightmost 2
of the set to its left.

◼ A star to the right of the active element, or at the active element if sys-
tem 4 is in state B or C, translates to a 0 that replaces the leftmost 2 of
the set to its right. (At the active element in state C, the star translates
to two 0s, between them replacing the right end of the set to their left
and the left end of the set to their right.)

◼ After the end of the system 3 initial condition corresponding to the
system 4 initial condition given is a single 1.

◼ The states in the two systems correspond to each other; the left-hand
end of the string of 1s and 2s that represents a set is active when the set
is active, or the 0 that represents a star is active when the star is active.
In the case that the 0 that represents a star is active in system 4’s state
C, the rightmost of the two 0s representing the star in system 3 is
active, but in state A (the only time in constructing the initial condi-
tions that the systems are in different states). Note that the left-hand-
end of a set can never be a 0 while the set is active, because any star to
the set’s left would be replacing a 0 in the set to its left. In the special
case when the start of the tape is made out of repetitions of
“0222… 222” rather than the more complicated alternative representa-
tion of the start of the tape, the start of the tape being active in state A
is instead represented by the initial 0 being active in state A. Note also
that this means that the condition on the system 4 initial condition leav-
ing the right-hand end of the program means that once this happens,
the lone 1 will become active in state C; if there is a 0 to its right, that 0
will then become active in state A (due to the rules of system 3), which
is just what Conjecture 3 requires.

Corollary 1 proves that it is possible to find a set of consecutive 1s
and 2s in system 3 with any desired parity at any finite number of
scans, and gives a construction, but it needs to be proved that it is pos-
sible to construct such a set that starts and ends with a 2. To show
this, two more lemmas are needed: (the rest of this section refers to
system�3)

◼ In system 3, changing every element of a set of adjacent 1s and 2s with
2w elements from a 1 to a 2 or vice versa does not affect its parity on
any of the first 2w - 1 scans.

Universality of Wolfram's 2, 3 Turing Machine 15

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

◼ In system 3, changing the first, third, fifth and in general 2n + 1th ele-

ments of a set of adjacent 1s and 2s with 2w elements from a 1 to a 2 or
vice versa does not affect its parity on any of the first 2w - 2 scans or

on the 2wth
 scan.

The truth of these lemmas is sufficient to create a set of adjacent 1s
and 2s of width 2w that has a desired parity at each of the first 2w - 2
scans (and it is always possible to pick w high enough that it is cor-
rect on any given finite number of scans) and starts and ends with a 2;
first create a set of adjacent 1s and 2s, not necessarily starting and
ending with a 2, that has the desired parity on the first 2w - 2 scans
(using Method 2 given in the proof of Corollary 1). Then, if it starts
and ends with a 2, it is a correct set; if it starts and ends with a 2,
change every element from a 1 to a 2 or vice versa; if it starts but does
not end with a 2, change every odd-indexed element (with the left-
most element being indexed “1”) from a 1 to a 2 or vice versa; and if
it ends but does not start with a 2, change every even-indexed element
from a 1 to a 2 or vice versa.

To prove these lemmas, consider Method 1 given in Corollary 1,
and imagine changing what happens in the last two scans before scan
2w + 1 (i.e., the first scan for which the desired parity is fixed) would
be reached:

◼ A change in the state parity at the last scan will cause each element to
change from a 1 to a 2 or vice versa at scan 2w + 1 (proof is by induc-
tion on the number of elements (not the log2 of the number of ele-

ments!); given Lemma 1.3, the base case is sublemmas 3 and 4, and the
induction step is given by sublemmas 5 and 6 to determine what state
the rightmost element will be in and sublemmas 3 and 4 to determine
the effect it has on that element).

◼ A change in the state parity at the penultimate scan will cause each ele-
ment to change from a 1 to a 2 or vice versa at scan 2w, for the same
reasons as in the previous bullet point. After the next scan, the first ele-
ment will be changed from a 1 to a 2 or vice versa from what it would
have been if the state parity had not been changed at the penultimate
scan (changing the parity of elements is additive, i.e., changing the par-
ity of an element causes the state the element to its right is in when it
becomes active compared to what it would have been earlier to change
regardless of which state the system was in when it was active a step
earlier), which will cause the element to its right to be active in the
opposite state to what it would have been active in. That element has
however already had its parity changed, and the two changes cancel out
(a consequence of additivity) and leave it with the value it would have
had anyway. The third element will be active in the state it would have
been active in anyway, and so ends up with the opposite parity to if the
state parity had not changed last step (because its own parity ended up
opposite to what it would have been anyway last step), and so on (that

16 A. Smith

Complex Systems, 29 © 2020

this pattern continues can be proven using the same argument so far
and inducting on half the number of elements in the set).

Now because there are 2w possible choices for desired parity when
using the Corollary 1 method, there are 2w different sets that might
be the outcome of the method, and each choice for desired parity
must produce a different set as its outcome (because if two sets were
the same, their pattern of parities would be the same), so the mapping
from parity at each of the first 2n steps to each of the possible sets is a
bijection.

Therefore, because changing the state parity at the last scan always

subtracts all the set’s elements from 3 mod 3, subtracting all the set’s

elements from 3 mod 3 must change the state parity at the last scan,

and nothing else; likewise for changing the parity at every second ele-
ment. So the lemmas in this section are true, and the initial condition
always exists.

Why the Initial Condition Works 6.1.2

To show that the initial condition works, it is enough to show that
each of the possible steps for system 4 leads to the same result (taking
the correspondence between the systems demonstrated in the initial
condition section, except that ends of a set not currently replaced by a
star need not be 2s) as running section 3 does. Taking each of the 5
rules for system 4 in turn:

When system 3 is in state A and a 1 or 2 is active (corresponding to
state A and a set active in system 4), the active element keeps moving
left until a 0 is active. So either there is another set to the left of the
active set (in which case it will become active and the system will
remain in state A), or there is a star to the left of the active set (in which
case it will become active and the system will remain in state A), or
there is the left end of system 4’s tape to the left of the active set. There
are two cases here:

1.

One case is that the string representing the left-hand end of the
system is made out of repetitions of “0222…222”; in this case, the
initial 0 changes to a 2, then alternate 2s in each repetition change
to 2 and 1 (starting with a 2) as the system changes backward and
forward between states B and C. Because the number of 2s in each
batch is 2w - 1 and therefore odd (because w must be at least 1), the
last 2 in each repetition is active in state B, and so changes to a 0
(by the rules of system 3, as it is followed by a 0 itself), making the
0 at the start of the next repetition active in state A. This process
repeats through all the repetitions, changing them all to the
“221212…21210” form. On the last repetition, the final element is
a 1 not a 2, and it is not followed by a 0; so when it becomes active
in state B it stays as a 1 and the next element becomes active in state
B. This therefore changes the initial sequence of the string to the

(a)

Universality of Wolfram's 2, 3 Turing Machine 17

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

other form described in the section on the initial condition above
(the repetitions of the “0222…222” form have all changed to the
“221212…21210” form, and a single 1 meets the condition about
having even parity for the next x steps if encountered in state B each
time). The only difference it makes in terms of the system 4
equivalence of the condition, in fact, is that the system’s state has
changed from state A to state B, which is exactly what the rules of
system 4 require, even though a lot has changed in terms of internal
representation.

The other case is that the string representing the left-hand end of the
system is made out of repetitions of “221212…21210”; in this case,
the system 3 active element will move left until a 0 is active without
any change to the tape (because that is how system 3 behaves in
state A). Once the 0 is active, it will change into a 2, and the
element to its right (a 2) will become active in state B; that 2 will
remain a 2, and the element to its right (the second 2 of the
repetition that is missing its final 0) will become active in state C;
the element to its right (the first 1) will become active in state B, and
then the system will follow a cycle where 1212 (with the first 1
active in state B) will change to 1221 (with the element to its right
active in state B) as long as the alternating 1s and 2s continue. (This
assumes that w is at least 2, so that the string missing its final 0 is
made of 22, followed by a whole number of repetitions of 1212,
followed by a 1). When the final 1 is active, this will be in state B,
so it will remain a 1 and whatever was to its right will become
active in state B. The number of 0s in the area to the left has been
reduced by 1, so the number of steps that the remainder of the
system 3 string representing the left-hand end of the system 4 tape
has to remain with an even parity is reduced by 1, so that portion of
the string will retain the property that was required in the initial
condition, and because it is defined to have even parity, the element
to its right (which corresponds to the start of the first element of the
system 4 tape) will become active in state B. This has achieved the
desired result of changing from state A to state B while leaving the
active element in the same place, so all that has to be shown is that
the cells that became active during this have the required property
of having an even parity for the next x scans if encountered in state
B each time. It has been established above that the
“022121…… 21” that is the final 0 of the repetition beforehand,
followed by the repetition missing its final 0, changes into “2211”
repeated 2w-1

 times; because everything to the right of this region
has the required property, and the concatenation of two regions has
the required property, all that is left to show is that that region has
the required property. To see this, observe that the parity set

corresponding to this region is 2w+1 - 3 (because two steps of

recolored rule 60 evolution from this pattern lead to a pattern

consisting of 2w+1
 2s, which has the parity set 2w+1 - 1), and

(b)

18 A. Smith

Complex Systems, 29 © 2020

therefore it must have an even parity for the next x zeros as x
cannot be more than 2w+1 - 4.

Showing this graphically may be easier to visualize than a text descrip-
tion (the bold shows where the repetition missing its final 0 was before
this happened; this example uses a single 1 as the string to the right of
the repetition missing its final 0):

022121211

A

022121211

A

222121211

B

222121211

C

221121211

B

221121211

B

221121211

C

221122211

C

221122111

B

221122111

B

The argument above requires that there is always at least one 0 in the
system 3 region representing the left-hand end of the system 4 tape;
this, however, is guaranteed, because at most one zero net is removed
from that region whenever the leftmost element of the system 4 tape
becomes active in state A, and immediately afterward the string repre-
senting the leftmost element of the system 4 tape becomes active in
state B, and therefore has a scan, and w has already been assumed to
be sufficiently high that no string has more than 2w scans (and 2w+1 - 4
is more than 2w for w at least 2). This implies that the active element
will never go off the left-hand end of the initial condition, and there-
fore when the active element does leave the initial condition, it must be
to go off the right-hand end, fulfilling that condition in Conjecture 3.

A star active in state A must be a 0 replacing the 2 at the rightmost end
of a set. So this happens:

2.

{ set *{ set }

------0------

A

------2------

B

Universality of Wolfram's 2, 3 Turing Machine 19

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

So as required, the star has been deleted, the set previously to its right
has become active, and the 2 that was replaced in the element to the
left is back as a 2 again. (In this case, one step in system 4 corresponds
to one step in system 3.)

Although this looks complicated, this is actually just a description of
what happens after a scan. The condition described in the system 4
rules corresponds to a scan in system 3; a 0 in system 4’s set corre-
sponds to odd parity in system 3 (which by sublemmas 7 and 8 causes
the system to change to the other state out of B and C, as desired, but
the “0 to the right” possibility could apply here and will be discussed
later), and the fact that the scan has happened means that the length of
time until the next, next-but-one, next-but-two, and in fact all remain-
ing instances of odd parity at a scan has been reduced by one scan
(which emulates the decrementing of the set). So if there is not a 0 to
the right of the set (i.e., there is another set to the right, not a star), that
set will correctly become active, and the emulation works correctly. If
there is a 0 to the right of the set, then there are two possibilities. One
possibility is that all the 1s and 2s are replaced by other 1s and 2s, and
the system ends up with the 0 to the right of the set active, and in
state�B; this is consistent with the definition of an active star in state B,
meaning that the element to the right has been activated as desired. The
other possibility is that the scan would have ended up in state C, were
it not for the 0 to the right, but instead ended up in state A, with the
rightmost element of the set replaced with a 0 and the rightmost of the
two adjacent 0s thus produced being active; this is the definition of an
active star in system 4’s state C. The remaining thing to check is that it
must have been a 2 that was replaced by a 0, but sublemmas 3 and 4
show that only an element that would otherwise have changed to 2 can
change to 0 this way, so the set that was previously active has had its
equivalent altered appropriately. That covers all the cases, so this rule
in system 4 is accurately simulated in system 3.

3.

A star active in state B must be a 0 replacing the 2 at the leftmost end
of a set. So this happens:

4.

{ set }* set }

------0------

B

------2------

A

So as required, the star has been deleted, the set previously to its left
has become active (or to be precise will become active when the active
element reaches its leftmost element due to the system being in state A
and the set to its left consisting only of 1s and 2s), and the 2 that was
replaced in the element to the right is back as a 2 again.

This is the most complicated of the equivalences between the rules. On
the left is what happens; compare it with the example on the right.

5.

20 A. Smith

Complex Systems, 29 © 2020

{ set ** set } { set *{ set }

------00------ ------02------

A B

------02------ ------02------

B C

After this rule has happened in system 4, rule 3 is always the next rule
to apply (because it leaves the active element as a set (there must be a
set to the right of a star) and in state C). The top two rows in the exam-
ple on the right show the state that would result according to the initial
conditions if rule 5 changed the active state to state B and did not
add/remove the 1; the two rows below show the step after it. The final
results are very similar, except that in the example on the left, the sys-
tem has finished in state B but not state C. So the result is the same as
in the example on the right, except that all but the first element of the
set to the right of the star are negated, and (due to additivity) the state
that will be active when the element to the right of the set to the right
of the star becomes active will be B instead of A or C, or A or C
instead of B; in other words, apart from the set to the right of the star,
the result is the same as if system 4’s rule 5 had been “If a star is active
and the system is in state C, the element to its right becomes active and
the system remains in state C.” As for the changes to the set itself, the
state after the active element is outside this set after this pseudo-scan
will be the same as the example on the right (with a proper scan)
except that all the elements but the first will be changed from a 1 to a 2
or vice versa, so it is left to show that doing this in system 3 is equiva-
lent to adding/removing a 1 from the set to the right before rule 3 is
applied (equivalent to adding/removing a 0 after rule 3 is applied, or to
changing the parity ready for the next scan but leaving the original par-
ity in subsequent scans in the system 3 equivalent). To show that this is
the case, consider what happens when just the first element of a set of
adjacent 1s and 2s of width 2w is changed from a 1 to a 2 or vice versa
in system 3. It will change the parity of the set at the next scan (because
exactly one element has changed), and all of the elements of the set will
end up with the opposite parity to what they would have had if the
first element had not been changed (the first element because it had its
parity changed, and subsequent elements because the change in the first
element’s parity causes them to change to the opposite parity to the
parity they would have had otherwise). But as has already been estab-
lished above, the change in every element’s parity has no effect for the
next 2w - 1 steps, and so with a sufficiently high value of w will never
have any effect at all. Therefore, system 3 is capable of simulating a
rule�5/rule 3 pair in system 4, and so can simulate every rule in
system�4.

Because system 3 can simulate all details of system 4 for an arbi-
trary number of steps (with the right initial condition), it follows that
if system 4 can emulate any two-color cyclic tag system for an arbi-
trary number of steps, so can system 3 and therefore system 0.

Universality of Wolfram's 2, 3 Turing Machine 21

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

Conjecture 5 7.

The following system (“system 5”) can emulate any two-color cyclic
tag system for an arbitrary number of steps, using a finite-size initial
condition and finite-length list of rules in which at some point, the
program attempts to add the rule after the finite number of rules
given.

A program consists of an initial condition (a “bag” of non-negative
integers; that is, a set that allows multiple copies of an element to be
contained), and a list of rules (a list of sets of positive integers). The
initial condition cannot contain any 0s to start with. The following
steps are followed in order:

If there are any duplicates in the bag of integers, they are removed in
pairs until either 1 or 0 of each integer remains.

1.

Each integer in the bag of integers is decremented, and every integer in
each of the rules is incremented.

2.

If there is a 0 in the bag of integers, it is removed and replaced by the
entire contents of the first rule, which is then deleted. (Subsequent
replacements use the rules that were originally second, third, fourth,
and so on.)

3.

Go back to step 1 and repeat forever. 4.

An example, to demonstrate the notation I use:

3,4,6 1,2 5,8 "" 9,10,14

It is a list of space-separated comma-separated lists; the first list is the
initial bag, and the subsequent lists are the rules that the system uses.
"" represents a rule with no integers.

Conjecture 5 Implies Conjecture 4 (and Therefore Conjecture 0) 7.1

Again, this implication is shown by constructing an initial condition
that allows system 4 to emulate system 5 for an arbitrary number of
steps, in such a way that the condition on the system 5 initial condi-
tion in Conjecture 5 turns out to imply the condition on the system 4
initial condition in Conjecture 4.

Initial Condition 7.1.1

The initial condition consists of the following sets in order. All sets
are separated by stars in this particular initial condition (although this
is not a requirement of system 4, and many of the stars will be deleted
during execution). The number f is a large positive integer; the larger
the value of f, the more steps that can be simulated and the higher the
numbers that can be involved in the calculation (to simulate for an
arbitrary number of steps, it is a matter of selecting a sufficiently large
value of f).

22 A. Smith

Complex Systems, 29 © 2020

At the start:

◼ A set containing all integers that are twice a member of the initial bag
after duplicates are removed in pairs, minus 2. (This set is the active ele-
ment in the initial condition, in state A, fulfilling the condition in Con-
jecture 4 that states just that.)

◼ f empty sets.

Repeated for each rule R:

◼ A set containing all integers from 0 to f3, except those that are equal to

f + 3 plus twice an element of R, after duplicates have been removed
from R in pairs, and possibly containing other integers higher than f3
(it does not matter whether it does or not).

◼ f2 empty sets.

◼ A set containing all integers from 0 to f3, and possibly containing other

integers higher than f3 (it does not matter whether it does or not).

◼ f2 - 2 empty sets.

Why the Initial Condition Works 7.1.2

First, consider how consecutive sets in system 4 behave when not sepa-
rated by a star (starting in state A in the initial condition). When the
rightmost set is active in state A, all the sets going leftward in turn
will become active in state A until either a star or the left end of the
tape is reached. The leftmost set must be the first to become active in
state B or C (following the same reasoning as in the proof for Lem-
ma�0), and then all the consecutive sets will become active in state B
or C, going to the right. The state will change between state B and C
a number of times equal to the number of 0s combined in the sets, so
it only matters whether an odd or even number of 0s exist in the sets
combined; and because all the sets are decremented simultaneously
during this process, and nothing else can cause the sets to decrement,
it only matters whether an odd or even number of any other integer
exist in the sets combined. In fact, the sets can be treated as one big
set that contains all elements that the consecutive sets have an odd
number of times between them; for instance,

{1,2,3,4,5}{1,3,5}{3,4,6}

is equivalent to

{2,3,6}

The conglomeration of sets formed at the start of the tape using
this method in system 4 represents the bag of system 5, and it
removes duplicates automatically for the reasons explained above,

Universality of Wolfram's 2, 3 Turing Machine 23

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

emulating step 1 of the process; to add a rule to the bag, all that is
needed is to remove all stars between the bag and the rule. (For rea-
sons explained later, the elements of this conglomeration of sets in sys-
tem 4 are each twice the relevant element in system 5.)

To see how steps 2 and 3 work, consider what happens starting
from the initial condition until the first star is reached. The leftmost
conglomeration of sets (the bag) will be active in state A and then in
state B; all its elements will be decremented (so that they become odd
numbers), and then the first star will become active. There are two
possibilities from here.

The first is that the bag did not contain a 0 (containing a

0  21 - 2 is equivalent to containing a 1 before step 2, i.e., a 0 after

step 2); in this case, the star will be reached in state B. The star will be
removed, merging an empty set with the bag (which has no effect; f is
assumed to be sufficiently large that it is an empty set that is reached
and not a set containing elements) and the bag will become active in
state A again. It will then become active in state B, all its elements will
be decremented, and because it did not contain a 0 (because all its ele-
ments were odd) the next star will also be removed, merging another
empty set with the bag, and the bag will become active again in
state�A. 2 has been subtracted from every element of the leftmost con-
glomeration of sets, which corresponds to decrementing every element
of the bag in system 5. Note also that the number of empty sets to the
left of the first non-empty set that is to the right of a star has been
decreased by 2; define t to be f minus this value (so t starts at 0 and
increases by 2 every time this possibility happens). The elements in
the rules have not been increased yet, as step 2 would suggest; the
value of t “remembers” that the elements must be increased sometime
in the future. I show below that when a rule is added to the bag, the

elements added to the bag are t  2 higher than the corresponding ele-

ments were in that rule in the initial condition, so that this increase in
t really does have the effect of incrementing each rule. There was not
a 0 in the bag, so step 3 should (and does) do nothing in this case;
therefore, steps 2, 3 and 4 (because it returns to an initial-condition-
like state from which the same behavior happens) in system 5 are cor-
rectly emulated by system 4 in this case.

The other possibility is that there is a 0 in the bag. (During this
description, the value of t remains fixed until the end of the emulation
of steps 2, 3 and 4.) In this case, the star will be reached in state C.
Therefore, the set to its right (an empty set) becomes active in state C
and a 1 is added to it; then the 1 will be decremented to a 0, and the
star to its right will become active in state C. This is repeated until the
first non-empty set to the right of a star (i.e., the set representing
the�next rule to be added) is reached, at which point all f - t previ-

24 A. Smith

Complex Systems, 29 © 2020

ously empty sets to its left will have been replaced with 0 (and all

f - t + 1 stars to its left will still exist). This non-empty set contains a
0 (in fact, it has been defined to contain all integers strictly less than f,
and several others too), so as it becomes active in state C (after a 1
has been removed from it, as it contains a 1 for f > 1), it will be decre-
mented and the star to its right will become active in state B. That
star is removed (merging an empty set with the non-empty set), the
non-empty set and the star to its left become active, the star to its left
is removed, and the non-empty set becomes active in state B. It now
does not contain a 0, as its 1 was removed on the previous step, so it
will be decremented and the next star to its right will become active in
state B, and will be removed, merging another empty set to the non-

empty set. (The merge of a 0 to the left of the non-empty set will

remove its 0 for the next step too, so at this point the non-empty set
has been decremented twice, and what would be its 0 “removed”

(in�fact, canceled out); at this point, f - t stars and f - t - 1 0s exist

to its left, and f2 - 2 empty sets exist to its right before the next non-

empty set.)
Now, the following happens f - t - 1 times: the system changes to

state A and moves left until it encounters a star, it removes that star

(causing a 0 to merge with the set the next time the system is in state

A again), the non-empty set is decremented (it did not contain a 0,
because it did not at the start of this loop and does not after each iter-

ation, as a 0 will merge with it at the end of the loop, removing its

own 0), a star becomes active to its right in state B, the star is
removed (merging an empty set with the non-empty set) and the
system changes back to state A. At the end of this loop, there is one

star and no 0s to the left of the non-empty set, and

f2 - 2 - f - t - 1  f + t - 1 empty sets to its right; the non-empty set

itself has been decremented f - t + 1 times.
After the loop, the last star is going to be removed to its left, caus-

ing the non-empty set to merge with the bag the next time the system
is in state A; it will be decremented (it did not contain a 0 before this
because it did not after the last iteration of the loop) and one more
star will be removed to its right and the empty set merged, and the sys-
tem changes to state A. This leaves the bag containing every integer

from 0 to f3 - f - t + 2  f2 + t - 2 (which is assumed to be suffi-

ciently large that the bag now contains every integer that ever
becomes relevant during the simulation), except elements that were in
the bag when the star was encountered in state C (these are all odd
numbers from system 4’s point of view and not a legal initial condi-
tion from system 5’s), and elements that were not in the non-empty

Universality of Wolfram's 2, 3 Turing Machine 25

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

set after it had been decremented f - t + 2 times total (each such ele-
ment was of the form f + 3 + 2x for x in the rule that the non-empty
set represents in the initial condition, and so is now of the form
t + 2x + 1), and f + t - 2 empty sets to the right of the bag before the
next non-empty�set.

The bag now becomes active in state A, so it immediately becomes
active in state B (being the leftmost set); it contains a 0 (all the inte-
gers it does not contain that ever become relevant during the simula-
tion are odd), so it is decremented and the star to its right becomes
active in state C. This causes all f + t - 2 empty sets to its right, up to
the next non-empty set (which can be assumed to contain every inte-
ger that becomes relevant, as a sufficiently large value for f can be

chosen), to become 0, and the non-empty set itself to become active

in state C, with its 1 removed (just as when the 0 in the bag was
encountered originally). This non-empty set contains a 0, so as it
becomes active in state C, it will be decremented and the star to its
right will become active in state B. That star is removed (merging an
empty set with the non-empty set), the non-empty set and the star to
its left become active, the star to its left is removed, and the non-
empty set becomes active in state B. It now does not contain a 0, as its
1 was removed on the previous step, so it will be decremented and the
next star to its right will become active in state B, and will be
removed, merging another empty set to the non-empty set. (The
merge of a {0} to the left of the non-empty set will remove its 0 for
the�next step too, so at this point the non-empty set has been decre-
mented twice, and what would be its 0 “removed” (in fact, canceled

out); at this point, f + t - 2 stars and f + t - 3 0s exist to its left, and

f2 - 4 empty sets exist to its right before the next non-empty set.)

There will now be a loop, identical to the previous one except with
f + t - 3 iterations, which does the same thing for the same reasons.

At the end of this loop, there is one star and no 0s to the left of the

non-empty set, and f2 - 4 - f + t - 3  f - t - 1 empty sets to its right

before the next non-empty set (that represents the next rule).
After the loop, the last star is going to be removed to the left of the

non-empty set, causing it to merge with the bag the next time the sys-
tem is in state A. The non-empty set does not contain a 0 but contains
every other integer that becomes relevant during the course of the sim-
ulation, so after it is decremented in state B, it contains every relevant
integer and the star to its right becomes active in state B, causing it to
be removed and the system to change to state A (merging an empty
set with the bag and non-empty set that contains an integer), and the
bag to become active in state A. The bag now contains a decremented
version of every integer it did not contain last time it was active; that

26 A. Smith

Complex Systems, 29 © 2020

is, 2 less than all the integers it contained the last-but-one time it was
active, and all integers t + 2x where x was an element of the rule to be
added; this is equivalent to the combined behavior of steps 2 and 3 in
system 5. (An integer 2x - 2 in the bag in system 4 corresponds to an
integer x in the bag in system 5; so t + 2x in system 4 corresponds to

x + t  2 + 1 in system 5, that is, an element of the rule, incremented

once on each previous step and once more on this step. To see why
the rules other than the rule being added have been incremented, sim-

ply observe that the new t is f - f - old t - 2 , that is, old t - 2.)

Therefore, the initial condition given for system 4 accurately emu-
lates all steps of the corresponding system 5 initial condition, and so
system 4 can emulate system 5. In order to show that Conjecture 5
implies Conjecture 4 (which is already known to imply Conjecture 0),
it only remains to show that when the evolution of the system 4 initial
condition leaves the defined portion, it is in state C. This is implied by
the condition that at some point, the system 5 system must try to add
a nonexistent rule, because doing this will follow all the steps in the
description above up to the point where the set corresponding to that
rule would be (but is not), at which point the system 4 system is in
state C.

Proof of Conjecture 5 (and Therefore of Conjecture 0) 7.2

First, observe that any cyclic tag system can be emulated by a cyclic
tag system in which elements of the strings to be added always occur
in pairs, simply by doubling each element of each string to be added,
doubling each element of the initial condition, and introducing a
blank string to be added between each of the original strings to be
added, including between the last and first (thus causing every second
element to always be ignored).

Here is the definition and notation I will use for a two-color cyclic
tag system:

A two-color cyclic tag system consists of an initial condition (a
finite string of 1s and 0s, containing at least one element) (the initial
working string), and a positive number of finite strings of 1s and 0s to
be added, which have a set order. Repeatedly, the first element from
the working string is removed, and the current first string to be added
is moved to the end of the list; if a 1 was removed, a copy of that
string is also concatenated to the end of the working string.

The notation shows the initial working string, followed by each
string to be added in order (with substituting for an empty string to
be added):

110 11 0 01 ""

Universality of Wolfram's 2, 3 Turing Machine 27

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

As before, the proof is shown by stating an initial condition for sys-
tem 5 that emulates any given cyclic tag system in which the elements
of the strings to be added always occur in pairs, and proving that that
initial condition works and obeys the constraint set out in Conjec-
ture�5.

Initial Condition 7.2.1

Each element in the working string corresponds to two integers in the
bag; for a 0 in the working string, there is a difference of 1 between
the integers, and for a 1 in the working string, there is a difference of
2 between the integers. Each integer representing a bit nearer the start
of the working string must be lower than each integer representing a
bit nearer the end of the working string (i.e., the integers that repre-
sent each bit in the working string going from the start to the end
must increase in order). For instance, with the working string of 110
given as an example above, the elements of the initial bag correspond-
ing to elements in the working string could be 1,3,4,6,7,8. The bag
also contains some very large integers (it does not matter what they
are, so long as they are sufficiently large and distinct, and a construc-
tion for the exact size they need to be is given in “How Many Steps?”
below); one for each integer anywhere in the generated system 5 sys-
tem, and one for each rule in the generated system 5 initial condition,
plus one extra; how many of these integers are needed (and how high
they have to be) depends on other details of the generated system 5
initial condition, but the other details of that initial condition do not
depend on those integers, so they can simply be calculated and added
in at the end.

As the cyclic tag system need be emulated only for a finite number
of steps to prove Conjecture 5, repeat the strings to be added suffi-
ciently many times that the end of the repetition is never reached dur-
ing the number of steps the system is to be emulated for; then, there is
no need to emulate wrapping back to the first string. Each string to be
added is represented by two rules. Each pair of identical elements of
the string to be added corresponds to two integers in the second rule
of each pair; for a 0 in the string to be added, there is a difference of
one between the integers, and for a 1 in the string to be added, there
is a difference of three between the integers. Each pair of integers in
the second rule of each pair must have its lower integer higher by at
least three than any integer in the initial bag, or in any previous rule
(except the first rule of the pair), or that is part of the representation
of any bit in that string to be added that comes before the bit in the
string to be added that this pair of integers represents. The first rule in
each pair consists of the second rule with two added to each integer.
So for instance, the example cyclic tag system above

28 A. Smith

Complex Systems, 29 © 2020

110 11 0 01 ""

is equivalent to the cyclic tag system

111100 1111 "" 00 "" 0011 "" "" ""

and using the construction above, one way to emulate this in system 5
for eight steps (not counting the very large integers in the initial bag)
(more steps could be obtained by repeating the strings to be added) is:

1,3,4,6,7,9,10,12,13,14,15,16 21,24,27,30 19,22,25,28 "" "" 35,36
33,34 "" "" 41,42,45,48,39,40,43,46 "" "" "" "" "" ""

Why the Initial Condition Works 7.2.2

To prove that the initial condition works, it is only necessary to show
that starting in an initial condition corresponding to one state of the
cyclic tag system and running system 5 for some length of time, the
system reaches an initial condition corresponding to the next state of
the cyclic tag system. It also needs to be noted that the system will
finally end by trying to add a rule that was not in the initial condi-
tion; this is because the very large integers in the initial bag cannot be
removed due to being equal to each other as they are decremented at
the same rate, so each must either remove another integer (as it hap-
pens, this case cannot happen, but it is easier to prove that it works
even if it could happen than to prove that it cannot happen), or
remove a rule, and even then there will be at least one left over, so at
some point a nonexistent rule must be added. There are two cases.

If the first element of the working string is a 0 (i.e., the two lowest
integers in the bag differ by one), then the next two occasions on
which a rule is added to the bag will be one iteration of system 5’s
steps apart. Between the additions, the elements added from the first
rule of the pair are decremented by one, and those in the second rule
of the pair are incremented by one. As a result, when the second rule
of the pair is added, each of its elements will correspond to an ele-
ment added by the first rule. This will form a duplicate for each ele-
ment, and as a result all the elements thus added will be removed.
(The addition of the first rule of the pair could not itself have caused
any elements to be removed, as each element in it is higher than any
other element in the bag at the time, having started higher than any
element that could have been added previously in the program and
only been incremented since.) The system ends up with the first pair
of rules (i.e., the first string to be added) having been removed
(moving it to the end of the list of strings to be added is not necessary
as the end of that list is never reached), and the 0 at the start of the
string removed; as all the other rules have incremented at the same

Universality of Wolfram's 2, 3 Turing Machine 29

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

rate, and every integer in the bag has decremented by the same
amount, the resulting string is an acceptable “initial condition” for
the situation after the 0 and rule have been removed, and this case is
accurately emulated.

If the first element of the working string is a 1 (i.e., the two lowest
integers in the bag differ by two), then the next two occasions on
which a rule is added to the bag will be two iterations of system 5’s
steps apart. Between the additions, the elements added from the first
rule of the pair are decremented by two, and those in the second rule
of the pair are incremented by two. As a result, when the second rule
of the pair is added, each integer added will be two higher than the
corresponding integer added by the first rule of the pair. All such inte-
gers added will be higher than any other integer in the bag at that
time, as each element in the pair of rules is higher than any other ele-
ment in the bag at the time, having started higher than any element
that could have been added previously in the program and only been
incremented since. So each pair of elements in the second rule of the
pair, which corresponds to a pair of identical elements of the string to
be added, converts into four integers in the bag; a 00 in the string to
be added will cause integers x, x + 1, x + 2, x + 3 to be added to the
bag, and a 11 in the string to be added will cause integers x, x + 2,
x + 3, x + 5 to be added to the bag. Each of these patterns corre-
sponds to a 00 or 11 respectively in the bag (two pairs of integers dif-
fering by 1 and by 2, respectively), and because a gap of three is left
between pairs of integers within the same rule, they will be added so
that their ascending order corresponds to adding the integers in the
right order at the end of the bag. So in other words, the 1 at the start
of the working string has been removed, and the contents of the first
string to be added has been added at the end of the rule, and that
string has been removed (moving it to the end of the list of strings to
be added is not necessary, because the end of that list is never
reached).

As both cases have been covered, it has been shown that system 5
can emulate any two-color cyclic tag system for an arbitrary number
of steps; it has already been shown that for an arbitrary number of
steps, system 4 can emulate system 5, system 3 can emulate system 4,
and system 3 is equivalent to system 2, which is equivalent to sys-
tem�1, which is equivalent to system 0. Therefore, system 0 can emu-
late any two-color cyclic tag system for an arbitrary number of steps,
and the extra condition that Conjecture 0 requests also follows
through each of the conjectures, and so Conjecture 0 is true.

30 A. Smith

Complex Systems, 29 © 2020

How Many Steps? 8.

A concern left over from the introduction is calculating the values of
w and f that are needed to emulate a cyclic tag system to the desired
number of steps. Here are algorithms to calculate the required value,
and proofs that the value works.

Calculating f8.1

f affects two things, the spacing between non-empty sets in the result-
ing system 4 system (and therefore the maximum possible value of t)
and how high the numbers in those sets go. First, it is easy to show
that it is the maximum possible value of t that is the limiting factor;
when a set becomes “merged” to the leftmost set (i.e., all stars
between it and the leftmost set are removed), it has been decremented
f - t + 2 times (i.e., at most f + 2 times), and from then on it is decre-
mented once every time t is increased; that is, the set can be decre-
mented at most f + 2 + t* times, where t is the maximum value of t
required; assuming that f is at least three (as we are choosing the
value of f, we can simply choose it to be at least three), the set will be
decremented at most f2 + 2 times, so the elements in the set above f3
will never become relevant. Therefore, it is f as a determiner of t* that
is more important; so far it is been determined that any value of f
such that f ≥ 3 and f ≥ t* will do, so that all that is needed is to deter-
mine t* (the maximum possible value of t that might be involved).

Every time t increases by two, the elements in the leftmost conglom-
eration of sets in system 4 decrease by two, corresponding to the ele-
ments in the bag in system 5 being decremented, that is one step of
system 5. So t* is simply twice the maximum possible number of sys-
tem 5 steps that need to be run before the system “finishes” (either by
running out of rules or by running out of elements in the bag). To
determine this value, consider a system 5 system in which the maxi-
mum integer in the bag or any rule in the initial condition is M - 1,
and induct on the number of rules in the system.

The Base Case 8.1.1

For a system with one rule, either the bag must be empty (no steps
needed), or its minimum element must be less than or equal to M - 1;
so the rule will be added and the system will be out of rules after at
most M steps, and 2t*  M  M30 . (Likewise, if the system has more

than one rule, the first rule must be added after at least M steps.)

Induction Step 8.1.2

Suppose a system with maximum value in the initial condition M - 1
is run until a rule is added, which happens after at most s steps. Once

Universality of Wolfram's 2, 3 Turing Machine 31

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

the rule has been added, the maximum value in the initial condition is
M + s - 1 (because the highest integer possible in the bag just before
the rule is added is M - s - 1 and in a rule just before the rule is added
is M + s - 1). The reasoning in the base case shows that s  M; so
assuming for induction that a system with n rules finishes in at most

3(n-1)M steps, a system with n + 1 rules must finish in 3(n-1)2M

steps (for it to finish after the first rule is added) plus 3(n-1)M steps
(for it to reach the point where the first rule is added), that is 3nM
steps.

Therefore, by induction, a system 5 system in which the maximum
integer in the bag or any rule in the initial condition is M - 1, and

with n rules, must finish executing after at most 3(n-1)M steps, and

therefore t* and therefore f is twice this value, 2⨯3n - 1M (or three

times the value if this value is less than three).

The Extra Added Large Integers in the System 5 Initial
Condition

8.2

All that is needed with these integers is that they are so large they do
not interfere while the cyclic tag system is still running (they come
into play later, once the required number of steps has been run and/or
the working string ends up empty). Therefore, they simply have to be
higher than the maximum number of steps that the evolution of the
rest of the system 5 system could take; this value has already been cal-
culated in the section above (“a system 5 system in which the maxi-
mum integer in the bag or any rule in the initial condition is M - 1,

and with n rules, must finish executing after at most 3(n-1)M steps”),
and adding 1 to this number gives the minimum possible value of the
extra added large integers.

Calculating w8.3

Given that a system 4 program has been compiled from a system 5
program, choosing a value of w so that the system 3 program can
emulate the system 4 program is actually quite easy; simply choose it
so that 2w is at least f3. To see why this works, consider what the

value of w actually does; its only effect on the program is that if the
section of the system 3 program that corresponds to a set in system 4
is decremented more than 2w times, it starts getting “corrupted” and
having the wrong parity. But it is already been determined in the pre-
vious section that sets will be decremented fewer than f3 times (when

determining that this was not the limiting factor), so as long as 2w is
at least f3 it will not be the limiting factor either, f will be (if compiled

from system 5) or the number of steps chosen to emulate when com-
piling from a cyclic tag system will be.

32 A. Smith

Complex Systems, 29 © 2020

These calculations for f and w are clearly sufficiently simple not to
be universal themselves, so the problem brought up in the introduc-
tion has now been solved.

From Arbitrary to Infinite 8.4

For convenience, Conjecture 0 (which has now been proved) is
restated below:

The Turing machine

-0- -0- -1- -1- -2- -2-

A B A B A B

-1- -2- -2- -2- -1- -0-

B A A B A A

(“system 0”) can emulate any two-color cyclic tag system for an arbi-
trary number of steps, using a finite-length initial condition in which
the leftmost cell starts active in state A and in which the first cell to
become active after the emulation has finished is the cell to the right
of the initial condition, and that cell becomes active in state A. (To be
precise, “finite-length initial condition,” given in this and future con-
jectures, refers to an initial condition in which only finitely many of
the cells are relevant, and no other cells are visited during the evolu-
tion of that initial condition.)

Given that this is true, it is possible to construct an initial condition
for system 0 that emulates a two-color cyclic tag system for an infinite
number of steps. A preliminary result needs to be proved; that a finite
region of system 0 cannot get into a loop (i.e., given any finite region
of a system 0 tape, if the active element starts in that region it must
leave it eventually). This is more easily seen in the equivalent sys-
tem�1; counting from the left-hand end of a region of the tape, it is
possible to add together the positions of all 0s in that region of the
tape, and by considering every rule in system 1 it can be shown if this
value ever increases, it decreases to a lower value than the value it
increased from on the previous step; in order for the system to change
from state A to state B or vice versa, this value must decrease; and the
system cannot get into a loop without changing from state A to
state�B or vice versa, because in all rules in which the system stays in
state A the active element must move left and in all rules in which the
system stays in state B the active element must move right. If a loop
therefore could exist inside a finite region of system 1, charting the
progress of the value obtained by adding together the positions of all
0s in that region of the tape whenever that value decreased would
lead to an infinite strictly decreasing sequence of non-negative inte-
gers, which is mathematically impossible.

Therefore, it is now known that any cyclic tag system can be emu-
lated for a finite number of steps, in a finite region of a system 0 tape

Universality of Wolfram's 2, 3 Turing Machine 33

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

(starting with the leftmost element, a 0, active in state A), and some
time after the emulation finishes (which it must do), eventually if the
element to its right is a 0 it will become active in state A. To emulate
a two-color cyclic tag system for an infinite number of steps, all that
is needed is to concatenate the system 0 initial condition to emulate it
for 1 step with the system 0 initial condition to emulate it for 2 steps,
for 3 steps, for 4 steps and so on up to infinity, and start the entire sys-
tem with the leftmost 0 of the first initial condition active in state A;
in fact, any increasing sequence of integer numbers of steps will work.
(What is in the initial tape to the left of that does not matter, as it
never becomes active.) Each of these emulations will run one after the
other, in sequence; for any given number of steps, the infinite concate-
nated initial condition will therefore emulate that program for that
number of steps, and the number chosen does not have to be input
beforehand or encoded in any way in the program itself; in other
words, system 0 is now emulating the cyclic tag system for an infinite
number of steps.

An Initial Condition Obtainable in a Non-universal Way 9.

The above proof leaves many options open in the initial condition
that is used; in this section, I aim to show that at least one initial con-
dition exists that is sufficiently simple to calculate that the calculation
can be done by an obviously non-universal algorithm.

The way in which this is achieved is to create an initial condition
that represents an emulation of the cyclic tag system for one cycle (in
a way that can be shown to always terminate, and therefore definitely
not be universal), which can be transformed using a simple and obvi-
ously non-universal rule into an initial condition that represents an
emulation for two cycles, four cycles and in general 2n cycles. (Here a
cycle refers to every rule in the cyclic tag system being applied exactly
once, so that the rules end up back in their original order.) Note that
the translation given from system 3 to system 0 cannot possibly be
universal (one simple way to prove this is by observing that each ele-
ment of the system 0 tape depends only on the corresponding element
on the system 3 tape, whether that element is active, which side of the
active element that element is if it is not active, and what state the
system starts in, which is a finite amount of data for each element), so
it is sufficient to show that an initial condition for system 3 that
emulates the cyclic tag system exists that can be calculated in a non-
universal manner.

Before this is done, though, I will prove a lemma, which proves the
validity of some of the constructions I will use below.

34 A. Smith

Complex Systems, 29 © 2020

Lemma 2 9.1

If a string S of 1s and 2s of length 2w in system 3 has a 1 in all posi-
tions but the leftmost 2v (and possibly has 1s within those 2v as well),
and v is less than w, then

Its parity set contains no integers equal to or greater than 2v, and 1.

A string of 1s and 2s of length 2w in system 3 consisting of 2v 1s, then
the first 2v elements of S, and then 1s for the rest of the string has a par-
ity set consisting of the union of the parity set of S and the same set
with 2v added to each element, and a string consisting of the first 2v ele-
ments of S, then the same elements again, and padded to width 2w with
1s has a parity set consisting of the parity set of S with 2v added to each
element, and

2.

A string of 1s and 2s of length 2y (for integer y > v) in system 3 that
has its first 2v elements the same as S, and 1s everywhere else, has the
same parity set as S.

3.

Proof of Lemma 2 9.1.1

In the description below, XORing two strings together considers 2 to
be the “true” value and 1 to be the “false” value, therefore obeying
the truth table:

 1 2

 1 1 2

 2 2 1

To see why part 1 of Lemma 2 is correct, consider the cellular
automaton given in Method 2 of Corollary 1. On the step that gives

the string corresponding to parity set 0 (call it step 0), the rightmost

2 is the leftmost element (call it element 0), and if on a step the right-
most 2 is element n, and that element is not the rightmost element,
then on the next step the rightmost element will be element n + 1
(because if an element was a 1 on the previous step and had nothing
but 1s to its right (i.e., it was to the right of element n), then it will
become a 2 if and only if it had a 2 to its immediate left (i.e., it�was
element n + 1)); by induction, the rightmost 2 on step n is element n.
Therefore, if the highest integer h in S is greater than or equal to 2v,
then on step h of the evolution of the cellular automaton the right-
most 2 will be element h (and therefore element h, outside the
leftmost 2v, will be a 2 on that step); also, no other steps of that cellu-
lar automaton that are XORed together to give S had element h as a 2
(because h was the highest element in the parity set, all previous steps
had the rightmost 2 somewhere to the left of element h), contradicting
the condition of the lemma, so part 1 of Lemma 2 must be correct.

To see why part 2 of Lemma 2 is correct, consider that the string
given is equivalent to string S XORed with a string R that consists of
the leftmost 2v elements of S written twice and then filled to the same

Universality of Wolfram's 2, 3 Turing Machine 35

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

width as S with 1s, so all that is needed to show is that R’s parity set
is equivalent to S’s with 2v added to each element; this is equivalent to
saying that running the Method 2 cellular automaton for 2v steps on
S will give R. There are several ways to prove this (one is to use the
binomial formula for Pascal’s triangle; if an expression E that is the
sum of xn for all n where element n of s is a 2 is constructed, then a
step of the cellular automaton corresponds to multiplying E by

x + 1mod 2, and 2v steps correspond to multiplying E by x + 12
v

,

which is x2
v
+ 1 (mod 2) because all intermediate terms are even

(because the exponentiation corresponds to squaring v times, and

squaring a + b (mod 2) gives a2 + 2ab + b2, which is just a2 + b2),

which duplicates the terms of the first 2v powers of x, corresponding
to a duplication of the first 2v elements of S and therefore to R).

To see why part 3 of Lemma 2 is correct, simply observe that only
the first 2v steps of the cellular automaton are relevant in calculating
S, and so elements to the right of element 2v - 1 never change from a
1, and so regardless of the value of w, the system 3 string with a given
parity set will be the same, except for 1s padding the right-hand side.

The One-Cycle Initial Condition 9.2

These are the choices made when calculating the one-cycle initial con-
dition. The algorithms given for calculating the initial condition in the
main proof above always terminate, therefore this step cannot be uni-
versal (or it could not have been proven to always terminate).

Choices Made in the System 5 Initial Condition 9.2.1

The choices to be made here are which integers are used in the rules
and initial bag, and which extra high integers are added to the initial
bag (the number of cyclic tag rules being emulated has already been
chosen, as one cycle). As it happens, it is irrelevant to this argument
what choices are made for any of these but the extra high integers,
but for the sake of definiteness take the minimum possible integer for
each of these values. The algorithm for choosing the extra high inte-
gers is somewhat unusual, however; it consists of choosing an integer
e, and causing the extra high integers to be the other integers in the
bag with 2e added (if this is not enough, as it may well not be, the
other extra high integers used are the original integers in the bag and

the duplicates just added with 2e+1 added, then if that is not enough
all the integers in the bag (the originals and all the duplicates added

so far) with 2e+2 added, and so on until there are enough); e is simply
chosen so that 2e is sufficiently high (and what is sufficiently high has
been defined above).

36 A. Smith

Complex Systems, 29 © 2020

Choices Made in the System 4 Initial Condition 9.2.2

The choices made here are the value of f, and which elements above
3f are in the “large sets” that have the elements from 0 to 3f speci-
fied. In this case, f is chosen to be any power of 2 that is sufficiently
large (again, what is sufficiently large for this has been defined
above), and the large sets contain, apart from the elements that are
fixed by the definition of the system 4 initial condition, all integers
from 3f + 1 to 4f - 1 inclusive (but no other elements).

Choices Made in the System 3 Initial Condition 9.2.3

The only choices here are the value of w (it takes its minimum allow-
able value, 2 + log2 f, which is an integer because f has been defined

to be a power of 2), and the representation used for the left end of the
system 4 tape (obviously the “02222…” form, because this is
required for infinite emulation of a cyclic tag system).

When constructing the system 3 initial condition that corresponds
to the cyclic tag system for one cycle, though, one extra piece of infor-
mation has to be remembered; what the system 3 string corre-
sponding to the system 5 initial bag would have been if no extra high
integers have been added (this becomes relevant later).

Transforming the Initial Condition for n Cycles into a Condition

for 2n Cycles

9.3

This is a matter of working out what changes are needed to convert
the n-cycle initial condition into a 2n-cycle initial condition; the origi-
nal change (in the cyclic tag system) is simply to double the number of
cycles of the cyclic tag system that are emulated.

Changes in the System 5 Initial Condition 9.3.1

The two things that have to change here are the list of rules and the
extra high integers added to the bag.

◼ The list of rules needs to double in length, with the new rules having
their lowest elements three higher than the highest elements of the old
rules, and the old rules untouched. The specific method to do this that I
will use here is to add 2w to each element of the old rules, where the
value of w from the previous initial condition is used; 2w is at least 3f ,
which is at least 6M, where M is the highest element in the old rules, so
this is guaranteed to be high enough.

◼ More extra high integers are needed, and they need to be higher. Dou-
bling their number will ensure that there are enough, because the num-
ber of elements in the rules has doubled and the number of elements in
the initial bag has remained the same. Instead of transforming the extra
high integers, the old extra high integers are discarded, and new ones
created using the same method as in the initial condition; that is, the

Universality of Wolfram's 2, 3 Turing Machine 37

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

initial bag is duplicated with 2e added to each element, with 2e+1 added
to each element in the new bag, and so on, until there are enough; the
number of duplicates needed cannot be more than twice the number of
duplicates as was needed in the one-cycle initial condition for each time
the number of cycles has doubled (because twice the number of dupli-
cates would double the number even if the duplicates added when 2e

was added were not duplicated again when the duplicates for 2e+1 were
added). Calculating the value of e is nontrivial; 2e must be at least
3(r-1)M for the new value of M, where r is the new number of rules.
The highest element in the new rules is the highest element in the old
rules, plus 2 to the power of the old w; this means that with the old w
and new r, it is sufficient to make 2e at least 32w

r
 (because this is higher

than 32
(r-1), and the old 2w has to be higher than the old M); one value

that accomplishes this is 42w
r , which gives a value of 2r +w for e (with

the new r and old w).

Changes in the System 4 Initial Condition 9.3.2

To change the system 4 initial condition to accommodate more cycles,
the value of f needs to increase, which affects the number of duplica-
tions of empty sets and the value up to which the sets go; also the
number of groups of sets that represent system 5 sets needs to
increase to allow for the new rules added to the system 5 initial condi-
tion, and the first set needs to change due to the changes in the sys-
tem�5 bag.

◼ The value of f needs to be at least 2⨯3(r-1)M, where r is the new num-
ber of rules in the system 5 initial condition and M is its new maximum
value. The extra high integers are by definition the highest integers any-
where in the system 5 initial condition. Suppose d is the number of
duplications used to add the extra high integers in the system 5 initial

condition; M will therefore be less than 2e+d, because 2e is obviously
higher than any elements in the initial bag, and they will have had at

most 2e+d-1 added to them to create the extra high integers. So log2 M

is at most 2r +w + d. 23(r-1) is less than 4r, so a valid value for log2 f is

4r +w + d (with the new r and d, and old w).

◼ As in the one-cycle initial condition, each set where the rules for con-
structing a system 4 initial condition specify integers up to 3f also con-
tains integers from 3f + 1 to 4f - 1 inclusive, and no other integers. The
difference between the old and new values of f has to be added to each
“gap” where those sets do not contain a particular element.

◼ The padding of null sets and stars between sets containing lots of inte-
gers needs to change according to the new value of f ; it is easiest just to
recalculate it once the new value of f is known.

◼ The new sets and stars to be added are the same as the old ones (not
counting the first set and its associated padding), just with 2w+1 (using
the old w) added to the “gaps” in each of the non-null sets.

38 A. Smith

Complex Systems, 29 © 2020

◼ The first set (corresponding to the system 5 bag) will be the same as
before, except that the extra copies of it that are added will use the new
values of e and d.

Changes in the System 3 Initial Condition 9.3.3

The new value of w is easy to calculate; it is just 2 + log2 f (taking the

new value of f). This has a knock-on effect on the translation of every
set and the region representing the left end of the system 4 tape, and
of course the changes in the system 4 initial condition also have to be
mirrored by changes to the system 3 initial condition.

◼ The number of repetitions of “0222…2222” increases by the ratio
between the old and new 2w, as does the length of each repeated ele-
ment (totaling the 0 and all the 2s).

◼ The “gaps” in parity sets in the system 3 strings corresponding to non-
null system 4 sets need to be increased by the difference in the old and
new values of f , and their maximum value needs to increase. An obvi-
ously non-universal algorithm to do this (Lemma 2 explains why this
set of steps has the desired effect):

◼ Change the 0 in the set that represents the star at the end to a 2, if there
is one;

◼ Undo the operation used to cause the set to start and end with a 2 (all
the possibilities for this are self-inverse, so they are easy to undo, and
examining the last two elements of the string will reveal which one was
used, as they come out different depending on which method was used,
and must have been “12” beforehand because 2w - 1 and 2w - 2 with
the old w were both in its parity set, due to the definition of the old w,
and no other elements of the parity set can affect what those two ele-
ments have to be);

◼ Replace the 2 at the end of each such set with a 1, which complements
its parity set;

◼ Remove the duplication of the sequence where the repeated section
starts at the old element f (which is always possible because that is how
this set was constructed in the first place), which has the effect of sub-
tracting the old f from each element of the new parity set (i.e., each gap
in the original parity set);

◼ Increase the length of the sequence to the new 2w by padding with 1s;

◼ Add a new duplication of the left end of the sequence at the new ele-
ment f (so now the elements in the parity set have increased by the
right amount net);

◼ Replace the 1 at the end of the subset with a 2, turning the elements in
the parity set back into gaps, and also causing the set to go up to 4f - 1
with the new f rather than 4f - 1 with the old f ;

Universality of Wolfram's 2, 3 Turing Machine 39

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

◼ Cause the set to start and end with 2, using the method detailed in
Conjecture 4’s proof;

◼ Change the relevant 2 in the set back into a 0, if a star was removed to
start with.

◼ The strings corresponding to what in system 4 are the null sets and
stars that correspond to padding need to be widened for the new value
of w (the null set is, however, just 2w 1s by Corollary 1’s Method 2, or
that many 2s when changed to start and end with 2, and so widening it
is easy), and more repetitions are needed (the number of repetitions
needed is multiplied by the ratio of the old and new values of f).

◼ The strings corresponding to the new sets that are added in system 4
are obtainable by shifting the gaps in the existing parity sets. The
amount by which the gaps have to be shifted is a power of 2 (2w+1

using the old w, in fact); the gaps can be shifted using basically the
same algorithm as detailed in the combined gap-shift-and-lengthen algo-
rithm shown two bullet points above (the only difference is that the
fourth and fifth steps in the given sequence are left out, and the old
2w+1

 rather than the new values of f is used in the sixth step).

◼ The string corresponding to the system 5 bag (i.e., the first system 4 set)
needs be widened, and to have its parity set changed to change what
the extra large integers are. To do this, the without-extra-large-integers
string that was remembered when constructing the one-cycle initial con-
dition is used; it is widened to the new 2w by right-padding it with 1s
(Lemma 2 says that this does not change its parity set), and then its par-
ity set is duplicate with 2e+1, with 2e+2, and so on added (the new d
times in total) by using the algorithm given in Lemma 2 (i.e., move its
elements 2e+1, then 2e+2, etc. to the left).

d, e, r, w and f 9.4

The only place now that universality could exist in the algorithm used
to find the initial condition is in d, e, r, w and f, as they have all been
defined in terms of each other’s previous values, and as they are
unbounded integers, they could in some problem potentially store
enough information that they could between them in principle form a
universal system. However, that is not the case in this system; the easi-
est way to demonstrate this is by deducing a formula for each of
them. In what is written below, dn refers to the value of d in the

22-cycle initial condition, and likewise for the other variables.
d doubles with each doubling of the number of cycles, so

dn  2nd0.

Likewise, r doubles with each doubling of the number of cycles; so
rn  2nr0.

log2 f n is 4rn +wn-1 + dn, and as wn-1 is 2 + log2 fn-1, log2 fn is

2n+2r0 + 2 + log2 fn-1 + 2nd0. This is log2 fn-1 + 2 + 2n4r0 + d0, so

40 A. Smith

Complex Systems, 29 © 2020

log2 fn is log2 f0 plus the sum with i from 1 to n of 2 + 2i4r0 + d0 or

log2 f0 + 2n + 2n+1 - 14r0 + d0, and fn is 2 to the power of that

expression.

wn is therefore log2 f0 + 2n + 2n+1 - 14r0 + d0 + 2.

Finally, e n is 2n+1r0 + log2 f0 + 2n + 2n - 14r0 + d0 (which can

be obtained simply by substituting the other formulas obtained into
its own formula).

Therefore, this algorithm for determining an initial condition,
while somewhat complicated, is definitely not itself universal, and so
the universality discovered above is a property of system 0, and not of
the algorithm used to find its initial condition.

Bibliography

The following lists some general and specific works relevant to the
prize. For a more complete list of references, see the references con-
tained in these works.

There is a large amount of relevant material in A New Kind of
Science.

The papers below by Delvenne, Kurka, Blondel and Sutner contain
recent attempts to formalize the concept of universality for ongoing
computational systems.

[1] L. Blum, F. Cucker, M. Shub and S. Smale, Complexity and Real
Computation, New York: Springer, 1998.

[2] G. J. Chaitin, “Foundations of Mathematics.”
arxiv.org/abs/math/0203002v2.

[3] G. J. Chaitin, Meta Math!: The Quest for Omega, New York: Pantheon
Books, 2005.

[4] M. Davis, Computability and Unsolvability, New York: Dover Publica-
tions, 1982.

[5] M. Davis, ed., The Undecidable: Basic Papers on Undecidable Proposi-
tions, Unsolvable Problems and Computable Functions, New York:
Dover Publications, 2004.

[6] M. Davis, The Universal Computer: The Road from Leibniz to Turing,
New York: Norton, 2000.

[7] J.-C. Delvenne, P. Kurka and V. Blondel, “Computational Universality
in Symbolic Dynamical Systems,” in Machines, Computations, and
Universality (MCU 2004) (M. Margenstern, ed.), Berlin, Heidelberg:
Springer, 2005 pp. 104–115. doi:10.1007/978-3-540-31834-7_8.

[8] R. Herken, ed., The Universal Turing Machine: A Half-Century Survey,
2nd ed., New York: Springer Verlag, 1995.

Universality of Wolfram's 2, 3 Turing Machine 41

https://doi.org/10.25088/ComplexSystems.29.1.1

https://arxiv.org/abs/math/0203002v2
https://doi.org/10.1007/978-3-540-31834-7_8
https://doi.org/10.25088/ComplexSystems.29.1.1

[9] S. C. Kleene, Introduction to Metamathematics, Amsterdam: North-
Holland Publishing Company, 1952.

[10] M. Margenstern, “Frontier between Decidability and Undecidability:
A Survey,” Theoretical Computer Science, 231(2), 2000 pp. 217–251.
doi:10.1016/S0304-3975(99)00102-4.

[11] Y. V. Matiyasevich, Hilbert’s Tenth Problem, Cambridge, MA: MIT
Press, 1993.

[12] M. L. Minsky, Computation: Finite and Infinite Machines, Englewood
Cliffs, NJ: Prentice-Hall, 1967.

[13] M. L. Minsky, “Recursive Unsolvability of Post’s Problem of ‘Tag’ and
Other Topics in Theory of Turing Machines,” Annals of Mathematics,
Second Series, 74(3), 1961 pp. 437–453. doi:10.2307/1970290.
www.wolframscience.com/prizes/tm23/images/Minsky.pdf.

[14] E. L. Post, “Finite Combinatory Processes—Formulation,” The Journal
of Symbolic Logic, 1(3), 1936 pp. 103–105. doi:10.2307/2269031.
www.wolframscience.com/prizes/tm23/images/Post.pdf.

[15] E. L. Post, “Recursive Unsolvability of a Problem of Thue,” The Journal
of Symbolic Logic, 12(1), 1947 pp. 1–11. doi:10.2307/2267170.
www.wolframscience.com/prizes/tm23/images/Post2.pdf.

[16] Y. Rogozhin, “Small Universal Turing Machines,” Theoretical Com-
puter Science, 168(2), 1996 pp. 215–240.
doi:10.1016/S0304-3975(96)00077-1.

[17] C. E. Shannon, “A Universal Turing Machine with Two Internal
States,” The Journal of Symbolic Logic, 36(3), 1971 p. 532.
doi:10.2307/2269988.
www.wolframscience.com/prizes/tm23/images/Shannon.pdf.

[18] K. Sutner. “Cellular Automata and Intermediate Degrees.” Poster pre-
sented at NKS 2004. www.wolframscience.com/conference/2004/
presentations/HTMLLinks/index_67.html.

[19] K. Sutner, “Universality and Cellular Automata,” in Machines, Compu-
tations, and Universality (MCU 2004) (M. Margenstern, ed.) Berlin, Hei-
delberg: Springer, 2005 pp. 50–59. doi:10.1007/978-3-540-31834-7_4.

[20] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical Soci-
ety Series 2, 42, 1937 pp. 230–265.
www.wolframscience.com/prizes/tm23/images/Turing.pdf.

[21] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction,” Proceedings of the London
Mathematical Society Series 2, 43, 1938 pp. 544–546.
www.wolframscience.com/prizes/tm23/images/Turing2.pdf.

[22] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
2002. www.wolframscience.com/thebook.html.

42 A. Smith

Complex Systems, 29 © 2020

https://doi.org/10.1016/S0304-3975(99)00102-4
https://doi.org/10.2307/1970290
https://www.wolframscience.com/prizes/tm23/images/Minsky.pdf
https://doi.org/10.2307/2269031
https://www.wolframscience.com/prizes/tm23/images/Post.pdf
https://doi.org/10.2307/2267170
https://www.wolframscience.com/prizes/tm23/images/Post2.pdf
https://doi.org/10.1016/S0304-3975(96)00077-1
https://doi.org/10.2307/2269988
https://www.wolframscience.com/prizes/tm23/images/Shannon.pdf
http://www.wolframscience.com/conference/2004/presentations/HTMLLinks/index_67.html
http://www.wolframscience.com/conference/2004/presentations/HTMLLinks/index_67.html
https://doi.org/10.1007/978-3-540-31834-7_4
https://www.wolframscience.com/prizes/tm23/images/Turing.pdf
https://www.wolframscience.com/prizes/tm23/images/Turing2.pdf
http://www.wolframscience.com/thebook.html

Epilogue

How I Constructed This Proof

Upon seeing the problem, the first step was to figure out what the Tur-
ing machine was actually doing. Checking the typical behavior of the
Turing machine led me to come up with system 2 as describing its
behavior more clearly than the system 0 description; I worked with
system 2 as the base Turing-machine-like system throughout most of
the construction of the proof. (I discovered system 3 later when I
started writing the proof up rigorously; it makes the proof consider-
ably simpler than trying to prove things directly from system 2
because the tape is not modified when “going left,” as it were. I
thought of system 1 just before writing up the proof rigorously, as an
intermediate step to showing the equivalence of systems 0 and 2.) I
then explored possible assumptions that would make the proof possi-
ble if true. The first assumption was that a string of 1s and 2s could
be constructed to simulate any finite-state machine whose input was
the state in which it was encountered and whose output was its par-
ity; this assumption makes the proof almost trivial, but as Lemma 1
shows, is not true. The second assumption I explored was what is
given above as Corollary 1; this did turn out to be true, and suggested
trying to prove the emulation for an arbitrary rather than infinite
number of steps. Around this time, I had a vague idea of what sys-
tem�4 was like floating around my head, but nothing formal in this
regard. Something similar to system 5 (although the exact details
changed) is what I decided would be “the system to aim for,” after
thinking about how to exploit the behavior of a 0 in system 2 to do
what in the terminology I use above I would describe as merging sys-
tem 4 sets into the leftmost conglomeration at the right time; I quickly
decided that system 5 was universal, and in fact Conjecture 5 was the
first part of the above I proved, which spurred on my attempts to
prove or disprove Corollary 1.

After that, it was a case of trying to link the parts of the proof
together. I developed a not-quite-rigorous proof of Lemma 1 (and
therefore its corollary), then expressed in terms of system 2, and made
an attempt at emulating system 5 directly with system 2, but this last
step was too complicated to do all in one go. (I had a system 5 to
system 0 compiler at that point, some of which was constructed by
tinkering with the values until they worked, so I was pretty sure the
emulation was possible; I just had to prove my program worked. I did
not have any explicit cyclic tag to system 5 compiler until after I had
written the proof, though, just thought experiments.) At that point, I
started writing up this document, discovering systems 1 and 3, and
started running experiments and thinking of proofs to work out the
exact details of system 4. After the proof had been written (although I

Universality of Wolfram's 2, 3 Turing Machine 43

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1

made a few corrections and tweaks to it later), I worked out the pro-
grams in this document to be more-or-less direct translations of the
constructions and definitions given in the proof itself, both to find
errors in the proof and to give demonstrations of its ideas. I used the
programs and proofs as examples to test each other (so it is possible
that bugs remain in the programs, but I suspect if there are bugs they
will turn out not to happen in the cases that can come from construc-
tions in the proof).

Appendix

Wolfram Language CodeA.

A Mathematica notebook with Wolfram Language code developed
during work on the proof is available at:
https://content.wolfram.com/uploads/sites/13/2020/03/
jcs-29-1-Appendix.nb.

44 A. Smith

Complex Systems, 29 © 2020

https://content.wolfram.com/uploads/sites/13/2020/03/jcs-29-1-Appendix.nb
https://content.wolfram.com/uploads/sites/13/2020/03/jcs-29-1-Appendix.nb

