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Introduction1.

The  main  problem  is  to  determine  whether  the  following  Turing
machine is universal:

-0- -0- -1- -1- -2- -2-

A B A B A B

-1- -2- -2- -2- -1- -0-

B A A B A A

(This is known as “system 0” in the proof below.) The proof I intend
to  give  demonstrates  that  this  Turing  machine  can  emulate  any  two-
color cyclic tag system for an infinite number of steps; in order to do
this, I first show that this Turing machine can emulate any two-color
cyclic tag system for an arbitrary finite number of steps (with the num-
ber  of  steps  encoded  in  the  initial  condition),  and  then  use  this  result
as  a  basis  for  proving  the  more  general  result  that  this  Turing
machine can carry on such an emulation indefinitely. 

One  main  problem  is  to  ensure  that  it  is  the  system  itself  that  is
doing  the  calculation,  and  not  the  case  that  the  universal  part  of  the
calculation  is  complete  before  the  initial  condition  is  even  con-
structed. The construction I will give to show that system 0 can emu-
late  any  two-color  cyclic  tag  system  for  an  arbitrary  number  of  steps
is  quite  complex,  and  it  is  not  immediately  obvious  that  it  does  not
itself do the calculation rather than leaving system 0 to do the calcula-
tion.  However,  the  proofs  below  leave  many  options  open  in  the  ini-
tial  conditions  (there  is  more  than  one  initial  condition  that  emulates
a cyclic tag system), and after the rest of the proof I show that at least
one  of  these  initial  conditions  can  be  constructed  by  a  process  that  is
clearly not universal itself. 
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The  main  part  of  the  proof  proceeds  by  showing  that  the  initial
conjecture (Conjecture 0, that system 0 can emulate any cyclic tag sys-
tem  for  an  arbitrary  number  of  steps  (and  a  few  extra  conditions))  is
either  equivalent  to  or  implied  by  a  sequence  of  other  conjectures,
each of which concerns a different system more complex than the con-
jecture  preceding  it,  by  showing  that  each  system  is  either  equivalent
to the preceding system, or can be emulated by it at least for an arbi-
trary number of steps. Eventually, it is proved that system 5 can emu-
late any two-color cyclic tag system for an arbitrary number of steps,
thus implying that any of the preceding systems, and in particular sys-
tem  0,  can  do  the  same.  After  this,  it  is  shown  how  Conjecture  0
implies that emulation for an infinite number of steps is possible. 

Notation1.1

Turing  machines  and  Turing-machine-like  systems  will  be  written
with four rows.

The  top  two  rows  are  the  state  before  each  step,  and  the  bottom
two rows are the state after each step; the top row of each pair shows
a  portion  of  the  tape  (with  a  number  representing  a  particular  color,
or  a  dash  representing  “does  not  matter”  in  the  top  pair  of  rows  or
“no change to this tape element” in the bottom pair of rows), and the
bottom row of each pair shows the position of the active element and
which state the Turing machine is in (states are represented by�letters). 

All  Turing  machines  can  be  represented  in  this  format;  it  allows,
however,  for  generalized  systems  in  which  more  than  one  tape  ele-
ment  is  changed  at  a  step,  or  elements  other  than  the  active  element
are  taken  into  account  at  a  step.  (For  instance,  mobile  automata  can
also be represented in this format using a single state.) 

When  showing  the  history  of  execution  of  such  a  system,  more
than  two  pairs  of  rows  may  be  given;  each  pair  shows  the  tape,  state
and  active  element  after  one  more  step  of  execution.  (Dashes  mean
“does  not  matter”  in  the  first  pair  of  rows  or  “same  as  this  element
was in the last pair of rows” in such a case.) 

Conjecture 01.2

The Turing machine

-0- -0- -1- -1- -2- -2-

A B A B A B

-1- -2- -2- -2- -1- -0-

B A A B A A

(“system 0”) can emulate any two-color cyclic tag system for an arbi-
trary  number  of  steps,  using  a  finite-length  initial  condition  in  which
the  leftmost  cell  is  a  0  and  starts  active  in  state  A  and  in  which  the
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first cell to become active after the emulation has finished is the cell to
the  right  of  the  initial  condition,  and  if  that  cell  is  a  0  it  becomes
active  in  state  A.  (To  be  precise,  “finite-length  initial  condition,”
given  in  this  and  future  conjectures,  refers  to  an  initial  condition  in
which  only  finitely  many  of  the  cells  are  relevant,  and  no  other  cells
are visited during the evolution of that initial condition.) 

Conjecture 11.3

The system

-0- -0- -1- -1- -2- -20 -21 -22

A B A B A B B B

-1- -2- -2- -2- -1- -00 -12 -11

B A A B A A B B

(“system 1”) can emulate any two-color cyclic tag system for an arbi-
trary  number  of  steps,  using  a  finite-length  initial  condition  in  which
the  leftmost  cell  is  a  0  and  starts  active  in  state  A  and  in  which  the
first cell to become active after the emulation has finished is the cell to
the  right  of  the  initial  condition,  and  if  that  cell  is  a  0  it  becomes
active in state A. 

Conjectures 0 and 1 Are Equivalent1.3.1

To prove that Conjectures 0 and 1 are equivalent, it only needs to be
shown that the systems described in them are equivalent, as the conjec-
tures are otherwise identical.

To  see  why  the  machines  are  identical,  consider  that  the  only
state/active  element  combination  in  which  they  differ  is  when  the
active  element  is  color  2  and  the  system  is  in  state  B.  There  are  three
possibilities  for  the  element  to  its  right,  and  some  of  the  evolution  of
each for the system in Conjecture 0 is shown below. 

-20 -21 -22

B B B

-00 -01 -02

A A A

-02 -01

A A

-12 -11

B B

The  result  is  identical  to  that  produced  by  system  1  in  each  case,  so
the systems must be equivalent. 
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Conjecture 21.4

The system

-0- -0- -0- -1- -1- -10 -11 -12 -2- -20 -21 -22 -2-

A B C A B C C C A B B B C

-1- -2- -2- -2- -2- -0- -1- -1- -1- -0- -1- -1- -2-

B A A A B A C C A A C C B

(“system 2”) can emulate any two-color cyclic tag system for an arbi-
trary  number  of  steps,  using  a  finite-length  initial  condition  in  which
the  leftmost  cell  is  a  0  and  starts  active  in  state  A  and  in  which  the
first cell to become active after the emulation has finished is the cell to
the  right  of  the  initial  condition,  and  that  cell  becomes  active  in
state�B. 

Conjectures 1 and 2 Are Equivalent1.4.1

To prove that Conjectures 1 and 2 are equivalent, it only needs to be
shown that the systems described in them are equivalent, as the conjec-
tures are otherwise identical.

To see that the systems are identical, consider a system identical to
system  2,  except  that  if  a  state/tape  combination  would  change  into
state  C,  it  instead  changes  into  state  B  with  the  new  active  element
changed to 2 if it was 1 or 1 if it was 2 (with 0 left unchanged). This
is identical to system 1. The behavior of system 2 when the system is
in state C is identical to the behavior in state B except that the states
for  1  in  the  active  cell  and  2  in  the  active  cell  have  been  switched;
therefore,  system  1  can  be  emulated  by  system  2  by  starting  with  the
same tape and in the same state, and system 2 can be emulated by sys-
tem 1 by starting with the same tape and in the same state if the sys-
tem starts in state A or B, or with the active element subtracted from

3 mod 3 and in state B if the system in Conjecture 2 starts in state C. 

Conjecture 31.5

The system

-0- -0- -0- -1- -1- -10 -11 -12 -2- -20 -21 -22 -2-

A B C A B C C C A B B B C

-2- -2- -2- -1- -1- -0- -2- -2- -2- -0- -2- -2- -1-

B A A A B A C C A A C C B

(“system 3”) can emulate any two-color cyclic tag system for an arbi-
trary  number  of  steps,  using  a  finite-length  initial  condition  in  which
the  leftmost  cell  is  a  0  and  starts  active  in  state  A  and  in  which  the
first cell to become active after the emulation has finished is the cell to
the  right  of  the  initial  condition,  and  if  that  cell  is  a  0  it  becomes
active in state A. 
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Conjectures 2 and 3 Are Equivalent1.5.1

To prove that Conjectures 2 and 3 are equivalent, it only needs to be
shown that the systems described in them are equivalent, as the conjec-
tures are otherwise identical.

To transform an initial condition from one system to the other, sub-

tract all elements to the left of the active element from 3 mod 3, and

also the active element itself if the system starts in state A. Calculating
every possible case shows the equivalence (elements that must be sub-

tracted from 3 mod 3 for the equivalence to hold are shown in bold): 

System 2
-0- -0- -0- -1- -1- -10 -11 -12 -2- -20 -21 -22 -2-

A B C A B C C C A B B B C

-1- -2- -2- -2- -2- -00 -1- -1- -1- -00 -1- -1- -2-

B A A A B A C C A A C C B
System 3

-0- -0- -0- -2- -1- -10 -11 -12 -1- -20 -21 -22 -2-

A B C A B C C C A B B B C

-2- -2- -2- -2- -1- -00 -2- -2- -1- -00 -2- -2- -1-

B A A A B A C C A A C C B

Because  these  are  identical  (the  states  have  been  reordered  so  corre-
sponding states align vertically) except that the bold elements are sub-

tracted from 3 mod 3, the systems are equivalent. 

Lemma 02.

(From  now  on  until  further  notice,  “the  system”  refers  to  the  system
in Conjecture 3.)

For  any  set  of  adjacent  elements  all  of  which  are  1s  and  2s,  in  an
initial condition in which the system starts in state A, and in which at
least one element of the set is active in state B or C at some point dur-
ing the execution of the system: 

The leftmost element of the set will be the first one to be active in either
state B or C.

1.

Once the leftmost element of the set is active in either state B or C, each
element of the set will become active in either state B or C in order.

2.

If an element of the set is active in state B, it will either stay the same or
change  from  2  to  0  at  least  until  after  the  next  time  the  system  enters
state  A,  and  only  the  rightmost  element  can  change  to  a  0,  and  only  if
the  element  to  its  right  is  a  0  (it  will  change  to  a  0  under  these
conditions).

3.
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If an element of the set is active in state C, it will change from a 2 to a 1
or a 1 to a 2 or 0 on the next step, and stay as that color at least until
after the next time the system enters state A, and only the rightmost ele-
ment can change to a 0, and only if the element to its right is a 0 (it will
change to a 0 under these conditions).

4.

If  an  element  of  the  set  is  a  1  active  in  state  B  or  C,  the  element  to  its
right  will  either  be  active  in  the  same  state  or  possibly  in  state  A  if  it
started in state C on the next step, and the active state can only be A if
the  element  that  ends  up  active  is  outside  the  set  and  it  is  a  0  at  that
time.

5.

If  an  element  of  the  set  is  a  2  active  in  state  B  or  C,  the  element  to  its
right  will  be  active  in  the  other  state  out  of  {B,  C}  (or  possibly  A  if  it
started in state B) on the next step, and the active state can only be A if
the  element  that  ends  up  active  is  outside  the  set  and  it  is  a  0  at  that
time.

6.

If  the  set  contains  an  even  number  of  2s,  the  first  time  the  element  to
the right of the set is active in state B or C, it will be active in the same
state  as  the  leftmost  element  of  the  set  was  active  the  first  time  it  was
active in state B or C (or possibly in state A if it started in state C and
the element to the right of the set is a 0 by that time).

7.

If the set contains an odd number of 2s, the first time the element to the
right  of  the  set  is  active  in  state  B  or  C,  it  will  be  active  in  the  other
state  out  of  {B,C}  as  the  leftmost  element  of  the  set  was  active  the  first
time  it  was  active  in  state  B  or  C  (or  possibly  in  state  A  if  it  started  in
state B and the element to the right of the set is a 0 by that time).

8.

If  the  rightmost  element  of  the  set  becomes  a  0,  it  will  become  a  2  the
next  time  it  becomes  active,  which  will  be  before  the  leftmost  element
of  the  set  becomes  active  in  state  B  or  C,  and  it  will  stay  as  a  2  until
after the leftmost element becomes active in state B or C. Likewise, if it
becomes  active  but  does  not  change  to  a  0,  it  will  stay  with  that  value
until after the leftmost element becomes active in state B or C. 

9.

To prove sublemma 1, observe that if the active element in the ini-
tial condition is to the right of the set or within it, then the first time
an element in the state is active, it will be in state A (either because it
was  in  the  initial  condition,  where  state  A  is  given,  or  because  the
active element moved to the left to enter the set, and if the active ele-
ment moves to the left it must end up in state A). If any element in the
set is active in state A, the active element will move left as long as it is
within  the  set  (because  the  set  contains  only  1s  and  2s  at  that  point).
Therefore,  the  first  time  an  element  within  the  set  becomes  active  in
state  B  or  C,  it  must  be  because  the  active  element  just  moved  to  the
right from outside the set, proving sublemma 1. 

Sublemma  2  is  proven  by  induction  on  the  number  of  elements  in
the  set  (it  is  implied  by  sublemma  1  for  a  one-element  set,  showing
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the  base  case,  and  by  sublemmas  3  and  4  for  the  induction  step,
whose proofs do not depend on it). 

Sublemmas 3, 4, 5 and 6 can all be proven simply by enumerating
all  possible  cases  for  the  element  and  the  element  to  its  right  in  each
case.  (“The  next  time  the  system  enters  state  A”  must  happen  before
the  next  time  the  active  cell  moves  left,  because  the  active  cell  can
only  move  left  in  state  A,  i.e.,  before  that  particular  cell  becomes
active again, and in this system only active cells can change.) 

Sublemmas 7 and 8, when taken together, can be proven by induc-
tion,  using  sublemmas  5  and  6  for  both  the  base  case  (a  one-element
set)  and  the  induction  step  (by  considering  the  rightmost  element  in
the set). 

To  prove  sublemma  9,  observe  that  the  only  way  that  the  element
can become a 0 causes the element to its right to become active on the
next  step,  so  that  it  must  become  active  before  the  leftmost  element
becomes  active  in  state  B  or  C  (if  it  is  the  leftmost  element,  the  next
time it becomes active will be in state A, and due to the rule for a 0 in
state  A  it  will  become  a  2  and  the  active  element  will  move  to  the
right, so it must become active at least a second time (actually at least
a third time, but this is not relevant to the proof) before it is active in
state  B  or  C).  It  must  become  a  2  the  next  time  it  becomes  active,
because the rule for the system always changes an active 0 to a 2; and
it must stay that way (and stay that way even if it was a 1 or 2) until
the  leftmost  element  becomes  active,  because  state  A  never  changes  a
1  or  2,  and  sublemma  1  prevents  any  element  from  becoming  active
before  the  leftmost  (sublemma  1  applies,  because  sublemmas  3  and  4
show  that  none  of  the  other  elements  of  the  set  can  become  a  0,  and
the  system  must  reach  state  A  at  some  point  before  it  becomes  active
again,  if  it  becomes  active  again,  because  only  in  state  A  can  the
active element move to the left). 

Lemma 13.

For any set of 2w adjacent elements, each of which is either a 1 or a 2,
and an initial condition that starts in state A:

Define  the  nth  scan  of  the  set  to  be  the  nth  time  the  leftmost  ele-
ment of the set is active in either state B or C, and the parity of the set
to  be  the  number  of  0s  and  2s  in  the  set  combined  (mod 2);  let  p(n)

denote the parity at the nth  scan. Even parity is parity 0 and odd par-

ity is parity 1. The state parity at the nth  scan is 0 if the system was in
state  B  at  that  scan,  or  1  if  the  system  was  in  state  C  at  that  scan;
denote this by s(n). For all n > 2w: 
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p(n)  pn - 2w + sn - 2w mod 2.1.

If at scan np(n) + s(n)  0 mod 2, then the next time the element to the

right  of  the  set  becomes  active  it  will  be  active  in  state  B;  otherwise,
that element will be active in state A if it is a 0 or state C if it is not. 

2.

At each scan, all elements of the set will be either a 1 or a 2. Proof is by
induction on w. 

3.

Base Case3.1

The  base  case  is  with  w  0.  Sublemma  1  in  that  case  simply  makes
some  statements  about  the  set’s  only  element  that  are  all  implied  by
Lemma  0  (sublemmas  3  and  4  between  them  show  how  it  changes
according to the state of the step after any scan, and sublemma 9 says
that it stays with the same parity until the subsequent scan).

With  w  0,  sublemma  2  can  simply  be  broken  down  into  the  12
possible cases: 

-10 -10 -11 -11 -12 -12 -20 -20 -21 -21 -22 -22

B C B C B C B C B C B C

-10 -00 -11 -21 -12 -22 -00 -10 -21 -11 -22 -12

B A B C B C A B C B C B

Sublemma 2 is here shown to hold in every possible case for the base
case, so it must be true in the base case. 

As  for  sublemma  3,  it  is  a  special  case  of  sublemma  9  in  the  base
case. 

Induction Step3.2

Suppose that Lemma 1 is true for some value of w. To show that it is
true  for  w + 1  as  well,  consider  the  two  subsets  of  adjacent  elements,
one of which consists of the leftmost 2w  elements of the set, the other
of which consists of the rightmost 2w elements of the set. 

First  observe  that  a  scan  for  the  left  subset  will  always  happen
exactly  2w  steps  before  a  scan  for  the  right  subset  (this  is  sublem-
ma�2),  and  that  scans  for  the  subsets  must  alternate,  with  a  scan  for
the  left  subset  happening  first  (by  sublemma  1  and  the  fact  that  sub-
lemma 2 indicates that there must be more than 2w steps between con-

secutive  scans  for  the  left  subset);  therefore  the  nth  scan  for  the  left

subset  always  happens  exactly  2w  steps  before  the  nth  scan  for  the
right subset. Let sl(n) and pl(n) denote s(n) and p(n) for the left subset,
and likewise sr(n) and pr(n) denote s(n) and p(n) for the right subset. 

By  applying  sublemma  1  several  times  (sublemma  3  indicates  that
the conditions for sublemmas 1 and 2 are met at each scan for the left
subset,  and  sublemmas  3  and  4  indicate  that  if  they  are  met  at  each
scan for the left subset, they are met at each scan for the right subset
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too) (all equations mod 2): 

pln - 2w  pln - 22w  + sln - 22w 

pl(n)  pln - 2w + sln - 2w

 pln - 22w  + sln - 22w  + sln - 2w

prn - 2w  prn - 22w  + srn - 22w 

pr(n)  prn - 2w + srn - 2w

 prn - 22w  + srn - 22w  + srn - 2w.

Sublemma  2  states  that sr(x)  pl(x) + sl(x)mod 2,  so  (all  equa-

tions mod 2):

pl(n) + pr(n)  pln - 22w  + sln - 22w  + sln - 2w + prn - 22w 

+ srn - 22w  + srn - 2w

 pln - 22w  + sln - 22w  + sln - 2w + prn - 22w 

+ pln - 22w  + pln - 2w + sln - 22w  + sln - 2w

 prn - 22w  + pln - 2w

 prn - 22w  + pln - 22w  + sln - 22w .

Observing  that  the  parity  for  the  right  subset  on  its  nth  scan  is  the

same as it was on the left subset’s nth  scan (because in all the steps in
between an element of the left subset was active, and so the elements
of  the  right  subset  were  inactive  and  did  not  change),  that  the  parity

for  the  entire  set  on  its  nth  scan  (i.e.,  the  left  subset’s  nth  scan)  is  the
sum of the parities for the left and right subsets, and that s(x)  sl(x)
for all x, this becomes 

p(n)  pn - 2w+1 + sn - 2w+1

which is sublemma 1, which is therefore true in the induction step.

To  demonstrate  that  sublemma  2  is  true  in  the  induction  step,
observe  that  p(n) + s(n)  pl(n) + pr(n) + sl(n)  sr(n) + pr(n)  (by  sub-
lemma  2),  and  by  sublemma  2  for  the  right  subset,  the  next  time  the
element to the right of the set becomes active it will be active in state
B if p(n) + s(n) (i.e., pr(n) + sr(n)) is 0, and otherwise that element will
be active in state A if it is a 0 or state C if it is not. This demonstrates
sublemma 2 in the induction step. 

Sublemma 3 is still a special case of sublemma 9, and does not even
need  the  induction  assumption  to  prove.  As  all  the  sublemmas  are
true  in  both  the  base  case  and  induction  step,  Lemma  1  must  be  true
in general. 
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Corollary 04.

Given  any  set  of  adjacent  elements  all  of  whose  elements  are  either  1
or  2,  with  2w  elements  for  some  integer  w,  the  parity  of  that  set  on
each  of  its  first  2w  scans  is  independent  of  the  state  parity  on  those
scans. (Therefore, if the system is only allowed to run for less than 2w

scans,  the  parity  on  every  scan  is  independent  of  the  state  parity  on
any scan.)

Corollary 15.

Given  a  wanted  value  for  the  parity  of  a  set  of  adjacent  elements  on
each  of  its  first  n  scans,  there  is  a  set  of  adjacent  elements,  all  of
whose  elements  are  either  1  or  2,  that  has  the  wanted  parity  on  each
of those scans, regardless of whether the system was in state B or state
C  in  each  of  those  scans.  I  give  two  methods  to  construct  such  a  set;
both will be referenced later.

Method 15.1

Such a set can be constructed by starting with any set with 2w > n ele-
ments,  placing  it  in  a  tape  with  a  1  or  2  after  it  and  nothing  else  but
0s,  and  changing  the  state  at  each  scan  to  either  state  B  or  state  C
according to whether or not the set’s parity on that scan matches the
wanted parity on that scan, respectively; the resulting set has the cor-
rect  value  on  each  of  its  next  2w  scans,  so  taking  what  the  set  has
become after 2w scans will produce a set that has the wanted value on
each  of  its  first  2w  scans.  Therefore,  if  the  system  is  only  allowed  to
run for less than 2w  scans, it is possible to construct a set of adjacent
elements whose parity has a wanted value on every scan.

Method 25.2

The tricky bit about using the construction given in Method 1 is that
it, while valid, is somewhat cumbersome, and more seriously it might
be  considered  to  be  too  complicated  for  the  proof  to  demonstrate
universality.  (This  is  because  it  uses  system  3  itself  to  do  the  calcula-
tions.)  A  simpler  construction,  however,  is  possible  (but  although  the
construction  is  simpler,  the  proof  that  it  is  correct  is  considerably
more complicated). Throughout the below demonstrations and proof,
let  the  parity  set  of  a  string  of  1s  and  2s  of  length  2w  be  the  set  of
scans  (out  of  the  first  w  scans)  on  which  it  has  odd  parity.  As  a
demonstration, look at the following strings:

10 A. Smith

Complex Systems, 29 © 2020



2111111111111111

2211111111111111

2121111111111111

2222111111111111

2111211111111111

2211221111111111

2121212111111111

2222222211111111

2111111121111111

2211111122111111

2121111121211111

2222111122221111

2111211121112111

2211221122112211

2121212121212121

2222222222222222 

These  are  the  strings  with  w  4  corresponding  to  the  parity  sets
{0}, {1}, {2}, and so on through to {15}. Due to the additive nature of
such sets and/or strings, it is actually possible to generate a more com-
plicated  set  by  XORing  together  each  of  the  strings  corresponding  to
the  elements  of  the  set  (treating  2  as  the  true  logic  value,  and  1  as
false); for instance, {6,8} would be 1121212121111111. It is also sim-
ple  to  generate  such  a  table  of  strings  in  a  mechanical  manner;  com-
paring the table above to some basic cellular automata would suggest
that  the  following  cellular  automaton  generates  it  (the    refers  to  the
left-hand edge of the set): 

 1  2 11 12 21 22

1 1 2 2 1

(The  first  of  the  cases  given  cannot  be  induced  from  the  table,  but
is  what  is  required  for  the  proof  below  to  work.)  Of  course,  none  of
this  has  been  proved  yet;  I  will  give  the  proof  now.  Proof  is  by
induction  on  the  row  in  the  table.  (The  proof  below  assumes  that
w ≥ 1; w will of course always be higher, usually substantially higher,
than 1 in order to be able to simulate the system to the required num-
ber of steps.) 

Base Case5.3

A string consisting of a 2 followed by 2w - 1 1s corresponds to the set
{0}. To show this, consider the string consisting of 2w  1s; if a scan of
that  string  starts  in  state  B,  the  string  remains  unchanged  (due  to
Lemma 0), so it must correspond to the empty set. A scan of that set
starting in state C changes that string to the string consisting of 2w 2s;
likewise,  if  the  string  consisting  of  a  2  followed  by  2w - 1  1s  is
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encountered  in  state  B,  it  changes  to  the  string  consisting  of  2w  2s.
Therefore, the next 2w - 1 scans of each string must have an even par-
ity  of  the  string  each  time  (they  do  in  one  case,  so  they  must  in  the
other),  and  the  only  element  of  the  corresponding  sets  in  which  they
can  differ  is  the  first  scan,  or  the  0  element.  Because  the  parity  of  an
even-length  string  containing  exactly  one  2  must  be  odd,  the  element
0 must be in the set, so {0} is the only set it can correspond to.

Induction Step5.4

Lemma 0 implies that if a string of 1s and 2s has a scan in state B, the
resulting  string  at  the  next  scan  will  contain  1s  up  to  but  not  includ-
ing where the first 2 was originally, 2s up to but not including where
the next 2 was originally, 1s up to but not including where the next 2
was originally, and so on. This means that in order to produce a given
string on scan x + 1 when an unknown string has a scan in state B on
scan x, the unknown string must contain a 2 at every position that is
to the right of a boundary between consecutive 1s in the given string,
a  1  at  all  other  locations  except  possibly  the  first  element,  and  start
with the same element as the given string. This is exactly what the cel-
lular  automaton  does,  so  if  any  row  of  the  table  has  a  scan,  then  on
the next scan it will look like the row above. A string having a scan in
system  3  is  equivalent  to  decrementing  every  element  in  a  parity  set
and discarding those scans that fall below 1 (because a scan has hap-
pened,  the  number  of  scans  between  now  and  each  future  scan  on
which  it  has  odd  parity  reduces  by  1,  effectively  decrementing  every
element in the set); therefore, each row, when decremented, must pro-
duce  the  row  above.  Also,  each  row  other  than  the  first  must  have
even  parity;  this  is  because  each  element  is  set  to  2  if  either  the  ele-
ment  above  it  or  the  element  above  it  and  to  its  right  is  a  2,  but  not
both,  and  induction  on  the  number  of  2s  in  the  previous  row  (base
case: no 2s produces a row of 1s that has even parity; induction step:
changing a 1 to a 2 changes the parity of two, i.e., an even number of
elements  in  the  row  below)  shows  that  any  row  with  a  previous  row
(i.e.,  any  but  the  first)  must  have  even  parity.  As  it  has  already  been
determined  that  the  first  row  of  the  table  corresponds  to  {0},  this
means  that  the  second  row  must  correspond  to  {1},  the  third  row  to
{2}, and so on, proving that the cellular automaton does indeed work. 

Making the Method Still Simpler5.5

Running  a  cellular  automaton,  while  simpler  than  running  system  3,
may still appear to be an excessively complicated method of obtaining
the  system  3  string  with  a  given  parity  set.  Luckily,  the  cellular
automaton in question (two-color nearest-neighbor rule 60 with differ-
ent  names  for  the  “colors”  of  its  cells)  is  one  that  has  already  been
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analyzed and has simple nested behavior, and in fact its behavior can
be  predicted  in  advance  without  actually  running  the  automaton.
(The  rule  for  the  automaton  is  identical  for  that  for  Pascal’s  triangle
modulo 2; it is a well-established result that any given cell in Pascal’s
triangle can be calculated using the formula for binomial coefficients,
and that formula can therefore be used to predict the behavior of rule
60 and provide an even simpler way to create the relevant string.) 

Conjecture 46.

The  following  system  (“the  system”  in  this  section,  and  “system  4”
elsewhere)  can  emulate  any  two-color  cyclic  tag  system  for  an  arbi-
trary  number  of  steps  (it  is  sort  of  an  infinite-color  Turing  machine),
using a finite-length initial condition in which the first element of the
tape starts active in state A, and in which the first time the active ele-
ment  leaves  the  defined  portion  of  the  initial  condition,  the  system  is
in state C.

There  is  a  right-infinite  tape,  each  of  whose  elements  is  either  a
finite  (and  possibly  empty)  set  of  non-negative  integers  or  a  star.
There  cannot  be  two  consecutive  stars  on  the  tape,  and  the  tape  can-
not start with a star, but any number of consecutive sets are allowed.
There is one active element at a time, and the system can be in one of
three states, A, B or C. (For example (and as an example of the nota-
tion I use): 

{0,6,8}{}*{3,4}*{8}{11,20}…

B

Each step of the system obeys the following rules: 

If  a  set  is  active  and  the  system  is  in  state  A,  there  is  no  change  to  the
set  and  the  element  to  its  left  becomes  active  (the  system  remains  in
state  A).  If  there  is  no  element  to  the  left  (i.e.,  the  set  is  the  first  ele-
ment),  instead  the  same  set  remains  active  and  the  system  changes  to
state B. 

1.

If  a  star  is  active  and  the  system  is  in  state  A,  the  star  is  deleted  from
the  tape  (causing  the  elements  to  each  side  of  it  to  become  adjacent),
the element that was to its right becomes active, and the system changes
to state B. 

2.

If  a  set  is  active  and  the  system  is  in  state  B  or  C,  every  element  in  the
set is decremented. If this would decrement a 0, the 0 is removed from
the set and the system changes to the other state out of {B,C}; whether a
0  is  decremented  or  not,  the  element  to  the  right  of  the  active  element
becomes active. 

3.
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If a star is active and the system is in state B, the star is deleted from the
tape (causing the elements to each side of it to become adjacent), the ele-
ment  that  was  to  its  left  becomes  active,  and  the  system  changes  to
state A.

4.

If  a  star  is  active  and  the  system  is  in  state  C,  the  element  to  its  right
becomes active and the system remains in state C. A 1 is added to that
set,  or  if  there  is  a  1  in  the  set  already,  instead  a  1  is  removed  from
that�set. 

5.

Conjecture 4 Implies Conjecture 3 (and Therefore Conjecture 0)6.1

To prove that Conjecture 4 implies Conjecture 3, it is enough to show
that with the right initial condition, system 3 can emulate a finite sys-
tem  4  initial  condition  obeying  the  constraints  set  out  there  for  an
arbitrary  number  of  steps,  with  the  system  3  initial  condition  and
“final” condition obeying the constraints set out in Conjecture 3. This
is done by stating what the initial condition is, and then proving that
it  emulates  system  4.  (The  description  below  also  explains  what  the
condition  of  the  system  can  be  like  during  execution,  because  the
proof works by showing that the system 3 program changes from one
condition to another the same way the system 4 program does.)

Initial Condition / Condition during Execution6.1.1

◼ The  start  of  system  4’s  tape  can  translate  to  the  string  “0222...222”
repeated  2w+1 - 4  times  (where  there  are  2w+1 - 1  2s  in  the  string,  and
the ... is made up entirely of 2s), followed by a 0, 2w+1 - 2 2s, and a 1
(but only if the leftmost system 4 element is an active set, and then only
if  it  is  active  in  state  A;  this  form  is  provided  solely  to  meet  the  condi-
tion that the initial condition that “fulfills” Conjecture 3 starts with a 0
active  in  state  A).  Another  possible  translation  is  the  string
“221212...21210”  (where  the  ...  is  made  up  of  1s  and  2s  alternating,
and  the  string  has  a  length  of  2w+1)  repeated  a  sufficient  number  of
times  (at  least  2w+1 - 4  times  minus  (at  later  times  in  the  evolution  of
the system) one repetition for each time that region of the tape has been
encountered during the evolution of the system 3 system so far), except
without  the  0  at  the  end  of  the  last  repetition,  and  followed  by  any
block of 1s and 2s that has even parity and would have even parity on
each of its next x scans if it such a scan happened in state B each time,
where  x  is  the  number  of  0s  in  this  region  of  the  tape.  (A  zero-length
sequence of 1s and 2s is trivially sufficient to fulfill the “even parity on
its  next  x  scans”  condition;  so  is  any  string  consisting  only  of  1s,
because  a  scan  starting  in  state  B  on  such  a  string  leaves  it  unchanged,
and  a  string  consisting  only  of  1s  always  has  even  parity,  and  so  are
any number of strings with that property concatenated with each other,
because  a  scan  on  a  string  with  even  parity  starting  in  state  B  leads  to
the element to the right of that string becoming active in state B.) 
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◼ A  set  of  numbers  translates  to  a  set  of  consecutive  1s  and  2s  that  has

odd  parity  on  the  n + 1th  scan  if  and  only  if  n  is  in  the  set  (for

instance,  it  has  odd  parity  on  the  first  scan  if  it  contains  a  0,  and  even
parity  otherwise)  during  all  the  time  that  the  emulation  is  run  (i.e.,  for
all  the  arbitrary  number  of  steps  of  system  5  required),  and  that  starts
with a 2 and ends with a 2. (At this point in the proof, I simply assume
there  is  a  simple  procedure  for  finding  such  a  set;  an  explicit  construc-
tion will be given later, completing this part of the proof.) 

◼ A  star  to  the  left  of  the  active  element,  or  at  the  active  element  if  sys-
tem�4  is  in  state  A  or  C,  translates  to  a  0  that  replaces  the  rightmost  2
of the set to its left. 

◼ A star to the right of the active element, or at the active element if sys-
tem 4 is in state B or C, translates to a 0 that replaces the leftmost 2 of
the  set  to  its  right.  (At  the  active  element  in  state  C,  the  star  translates
to  two  0s,  between  them  replacing  the  right  end  of  the  set  to  their  left
and the left end of the set to their right.) 

◼ After  the  end  of  the  system  3  initial  condition  corresponding  to  the
system 4 initial condition given is a single 1. 

◼ The  states  in  the  two  systems  correspond  to  each  other;  the  left-hand
end of the string of 1s and 2s that represents a set is active when the set
is active, or the 0 that represents a star is active when the star is active.
In  the  case  that  the  0  that  represents  a  star  is  active  in  system  4’s  state
C,  the  rightmost  of  the  two  0s  representing  the  star  in  system  3  is
active,  but  in  state  A  (the  only  time  in  constructing  the  initial  condi-
tions  that  the  systems  are  in  different  states).  Note  that  the  left-hand-
end of a set can never be a 0 while the set is active, because any star to
the  set’s  left  would  be  replacing  a  0  in  the  set  to  its  left.  In  the  special
case  when  the  start  of  the  tape  is  made  out  of  repetitions  of
“0222… 222”  rather  than  the  more  complicated  alternative  representa-
tion of the start of the tape, the start of the tape being active in state A
is instead represented by the initial 0 being active in state A. Note also
that this means that the condition on the system 4 initial condition leav-
ing  the  right-hand  end  of  the  program  means  that  once  this  happens,
the lone 1 will become active in state C; if there is a 0 to its right, that 0
will then become active in state A (due to the rules of system 3), which
is just what Conjecture 3 requires. 

Corollary 1 proves that it is possible to find a set of consecutive 1s
and  2s  in  system  3  with  any  desired  parity  at  any  finite  number  of
scans, and gives a construction, but it needs to be proved that it is pos-
sible  to  construct  such  a  set  that  starts  and  ends  with  a  2.  To  show
this,  two  more  lemmas  are  needed:  (the  rest  of  this  section  refers  to
system�3) 

◼ In system 3, changing every element of a set of adjacent 1s and 2s with
2w  elements  from  a  1  to  a  2  or  vice  versa  does  not  affect  its  parity  on
any of the first 2w - 1 scans. 
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◼ In system 3, changing the first, third, fifth and in general 2n + 1th  ele-

ments of a set of adjacent 1s and 2s with 2w elements from a 1 to a 2 or
vice  versa  does  not  affect  its  parity  on  any  of  the  first  2w - 2  scans  or

on the 2wth
 scan. 

The truth of these lemmas is sufficient to create a set of adjacent 1s
and 2s of width 2w  that has a desired parity at each of the first 2w - 2
scans  (and  it  is  always  possible  to  pick  w  high  enough  that  it  is  cor-
rect on any given finite number of scans) and starts and ends with a 2;
first  create  a  set  of  adjacent  1s  and  2s,  not  necessarily  starting  and
ending  with  a  2,  that  has  the  desired  parity  on  the  first  2w - 2  scans
(using  Method  2  given  in  the  proof  of  Corollary  1).  Then,  if  it  starts
and  ends  with  a  2,  it  is  a  correct  set;  if  it  starts  and  ends  with  a  2,
change every element from a 1 to a 2 or vice versa; if it starts but does
not  end  with  a  2,  change  every  odd-indexed  element  (with  the  left-
most element being indexed “1”) from a 1 to a 2 or vice versa; and if
it ends but does not start with a 2, change every even-indexed element
from a 1 to a 2 or vice versa. 

To  prove  these  lemmas,  consider  Method  1  given  in  Corollary  1,
and imagine changing what happens in the last two scans before scan
2w + 1 (i.e., the first scan for which the desired parity is fixed) would
be reached: 

◼ A  change  in  the  state  parity  at  the  last  scan  will  cause  each  element  to
change from a 1 to a 2 or vice versa at scan 2w + 1 (proof is by induc-
tion  on  the  number  of  elements  (not  the  log2  of  the  number  of  ele-

ments!); given Lemma 1.3, the base case is sublemmas 3 and 4, and the
induction  step  is  given  by  sublemmas  5  and  6  to  determine  what  state
the  rightmost  element  will  be  in  and  sublemmas  3  and  4  to  determine
the effect it has on that element). 

◼ A change in the state parity at the penultimate scan will cause each ele-
ment  to  change  from  a  1  to  a  2  or  vice  versa  at  scan  2w,  for  the  same
reasons as in the previous bullet point. After the next scan, the first ele-
ment will be changed from a 1 to a 2 or vice versa from what it would
have  been  if  the  state  parity  had  not  been  changed  at  the  penultimate
scan (changing the parity of elements is additive, i.e., changing the par-
ity  of  an  element  causes  the  state  the  element  to  its  right  is  in  when  it
becomes active compared to what it would have been earlier to change
regardless  of  which  state  the  system  was  in  when  it  was  active  a  step
earlier),  which  will  cause  the  element  to  its  right  to  be  active  in  the
opposite  state  to  what  it  would  have  been  active  in.  That  element  has
however already had its parity changed, and the two changes cancel out
(a  consequence  of  additivity)  and  leave  it  with  the  value  it  would  have
had anyway. The third element will be active in the state it would have
been active in anyway, and so ends up with the opposite parity to if the
state parity had not changed last step (because its own parity ended up
opposite to what it would have been anyway last step), and so on (that
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this  pattern  continues  can  be  proven  using  the  same  argument  so  far
and inducting on half the number of elements in the set). 

Now because there are 2w  possible choices for desired parity when
using  the  Corollary  1  method,  there  are  2w  different  sets  that  might
be  the  outcome  of  the  method,  and  each  choice  for  desired  parity
must  produce  a  different  set  as  its  outcome  (because  if  two  sets  were
the same, their pattern of parities would be the same), so the mapping
from parity at each of the first 2n steps to each of the possible sets is a
bijection. 

Therefore, because changing the state parity at the last scan always

subtracts all the set’s elements from 3 mod 3, subtracting all the set’s

elements from 3 mod 3 must change the state parity at the last scan,

and nothing else; likewise for changing the parity at every second ele-
ment. So the lemmas in this section are true, and the initial condition
always exists. 

Why the Initial Condition Works 6.1.2

To  show  that  the  initial  condition  works,  it  is  enough  to  show  that
each of the possible steps for system 4 leads to the same result (taking
the  correspondence  between  the  systems  demonstrated  in  the  initial
condition section, except that ends of a set not currently replaced by a
star  need  not  be  2s)  as  running  section  3  does.  Taking  each  of  the  5
rules for system 4 in turn: 

When  system  3  is  in  state  A  and  a  1  or  2  is  active  (corresponding  to
state  A  and  a  set  active  in  system  4),  the  active  element  keeps  moving
left  until  a  0  is  active.  So  either  there  is  another  set  to  the  left  of  the
active  set  (in  which  case  it  will  become  active  and  the  system  will
remain in state A), or there is a star to the left of the active set (in which
case  it  will  become  active  and  the  system  will  remain  in  state  A),  or
there is the left end of system 4’s tape to the left of the active set. There
are two cases here:

1.

One  case  is  that  the  string  representing  the  left-hand  end  of  the
system  is  made  out  of  repetitions  of  “0222…222”;  in  this  case,  the
initial  0  changes  to  a  2,  then  alternate  2s  in  each  repetition  change
to  2  and  1  (starting  with  a  2)  as  the  system  changes  backward  and
forward  between  states  B  and  C.  Because  the  number  of  2s  in  each
batch is 2w - 1 and therefore odd (because w must be at least 1), the
last  2  in  each  repetition  is  active  in  state  B,  and  so  changes  to  a  0
(by the rules of system 3, as it is followed by a 0 itself), making the
0  at  the  start  of  the  next  repetition  active  in  state  A.  This  process
repeats  through  all  the  repetitions,  changing  them  all  to  the
“221212…21210”  form.  On  the  last  repetition,  the  final  element  is
a 1 not a 2, and it is not followed by a 0; so when it becomes active
in state B it stays as a 1 and the next element becomes active in state
B.  This  therefore  changes  the  initial  sequence  of  the  string  to  the

(a)
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other  form  described  in  the  section  on  the  initial  condition  above
(the  repetitions  of  the  “0222…222”  form  have  all  changed  to  the
“221212…21210”  form,  and  a  single  1  meets  the  condition  about
having even parity for the next x steps if encountered in state B each
time).  The  only  difference  it  makes  in  terms  of  the  system  4
equivalence  of  the  condition,  in  fact,  is  that  the  system’s  state  has
changed  from  state  A  to  state  B,  which  is  exactly  what  the  rules  of
system 4 require, even though a lot has changed in terms of internal
representation. 

The other case is that the string representing the left-hand end of the
system is made out of repetitions of “221212…21210”; in this case,
the system 3 active element will move left until a 0 is active without
any  change  to  the  tape  (because  that  is  how  system  3  behaves  in
state  A).  Once  the  0  is  active,  it  will  change  into  a  2,  and  the
element  to  its  right  (a  2)  will  become  active  in  state  B;  that  2  will
remain  a  2,  and  the  element  to  its  right  (the  second  2  of  the
repetition  that  is  missing  its  final  0)  will  become  active  in  state  C;
the element to its right (the first 1) will become active in state B, and
then  the  system  will  follow  a  cycle  where  1212  (with  the  first  1
active  in  state  B)  will  change  to  1221  (with  the  element  to  its  right
active in state B) as long as the alternating 1s and 2s continue. (This
assumes  that  w  is  at  least  2,  so  that  the  string  missing  its  final  0  is
made  of  22,  followed  by  a  whole  number  of  repetitions  of  1212,
followed  by  a  1).  When  the  final  1  is  active,  this  will  be  in  state  B,
so  it  will  remain  a  1  and  whatever  was  to  its  right  will  become
active  in  state  B.  The  number  of  0s  in  the  area  to  the  left  has  been
reduced  by  1,  so  the  number  of  steps  that  the  remainder  of  the
system  3  string  representing  the  left-hand  end  of  the  system  4  tape
has to remain with an even parity is reduced by 1, so that portion of
the  string  will  retain  the  property  that  was  required  in  the  initial
condition, and because it is defined to have even parity, the element
to its right (which corresponds to the start of the first element of the
system  4  tape)  will  become  active  in  state  B.  This  has  achieved  the
desired  result  of  changing  from  state  A  to  state  B  while  leaving  the
active element in the same place, so all that has to be shown is that
the  cells  that  became  active  during  this  have  the  required  property
of having an even parity for the next x scans if encountered in state
B  each  time.  It  has  been  established  above  that  the
“022121…… 21”  that  is  the  final  0  of  the  repetition  beforehand,
followed  by  the  repetition  missing  its  final  0,  changes  into  “2211”
repeated  2w-1

 times;  because  everything  to  the  right  of  this  region
has the required property, and the concatenation of two regions has
the required property, all that is left to show is that that region has
the  required  property.  To  see  this,  observe  that  the  parity  set

corresponding  to  this  region  is  2w+1 - 3  (because  two  steps  of

recolored  rule  60  evolution  from  this  pattern  lead  to  a  pattern

consisting  of  2w+1
 2s,  which  has  the  parity  set  2w+1 - 1),  and

(b)
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therefore  it  must  have  an  even  parity  for  the  next  x  zeros  as  x
cannot be more than 2w+1 - 4. 

Showing this graphically may be easier to visualize than a text descrip-
tion (the bold shows where the repetition missing its final 0 was before
this happened; this example uses a single 1 as the string to the right of
the repetition missing its final 0): 

022121211

A

022121211

A

222121211

B

222121211

C

221121211

B

221121211

B

221121211

C

221122211

C

221122111

B

221122111

B 

The  argument  above  requires  that  there  is  always  at  least  one  0  in  the
system  3  region  representing  the  left-hand  end  of  the  system  4  tape;
this,  however,  is  guaranteed,  because  at  most  one  zero  net  is  removed
from  that  region  whenever  the  leftmost  element  of  the  system  4  tape
becomes  active  in  state  A,  and  immediately  afterward  the  string  repre-
senting  the  leftmost  element  of  the  system  4  tape  becomes  active  in
state  B,  and  therefore  has  a  scan,  and  w  has  already  been  assumed  to
be sufficiently high that no string has more than 2w  scans (and 2w+1 - 4
is  more  than  2w  for  w  at  least  2).  This  implies  that  the  active  element
will  never  go  off  the  left-hand  end  of  the  initial  condition,  and  there-
fore when the active element does leave the initial condition, it must be
to go off the right-hand end, fulfilling that condition in Conjecture 3. 

A star active in state A must be a 0 replacing the 2 at the rightmost end
of a set. So this happens: 

2.

{ set *{ set }

------0------

A

------2------

B
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So  as  required,  the  star  has  been  deleted,  the  set  previously  to  its  right
has  become  active,  and  the  2  that  was  replaced  in  the  element  to  the
left is back as a 2 again. (In this case, one step in system 4 corresponds
to one step in system 3.) 

Although  this  looks  complicated,  this  is  actually  just  a  description  of
what  happens  after  a  scan.  The  condition  described  in  the  system  4
rules  corresponds  to  a  scan  in  system  3;  a  0  in  system  4’s  set  corre-
sponds  to  odd  parity  in  system  3  (which  by  sublemmas  7  and  8  causes
the  system  to  change  to  the  other  state  out  of  B  and  C,  as  desired,  but
the  “0  to  the  right”  possibility  could  apply  here  and  will  be  discussed
later), and the fact that the scan has happened means that the length of
time  until  the  next,  next-but-one,  next-but-two,  and  in  fact  all  remain-
ing  instances  of  odd  parity  at  a  scan  has  been  reduced  by  one  scan
(which  emulates  the  decrementing  of  the  set).  So  if  there  is  not  a  0  to
the right of the set (i.e., there is another set to the right, not a star), that
set  will  correctly  become  active,  and  the  emulation  works  correctly.  If
there is a 0 to the right of the set, then there are two possibilities. One
possibility is that all the 1s and 2s are replaced by other 1s and 2s, and
the  system  ends  up  with  the  0  to  the  right  of  the  set  active,  and  in
state�B; this is consistent with the definition of an active star in state B,
meaning that the element to the right has been activated as desired. The
other  possibility  is  that  the  scan  would  have  ended  up  in  state  C,  were
it  not  for  the  0  to  the  right,  but  instead  ended  up  in  state  A,  with  the
rightmost element of the set replaced with a 0 and the rightmost of the
two  adjacent  0s  thus  produced  being  active;  this  is  the  definition  of  an
active star in system 4’s state C. The remaining thing to check is that it
must  have  been  a  2  that  was  replaced  by  a  0,  but  sublemmas  3  and  4
show that only an element that would otherwise have changed to 2 can
change  to  0  this  way,  so  the  set  that  was  previously  active  has  had  its
equivalent  altered  appropriately.  That  covers  all  the  cases,  so  this  rule
in system 4 is accurately simulated in system 3. 

3.

A  star  active  in  state  B  must  be  a  0  replacing  the  2  at  the  leftmost  end
of a set. So this happens: 

4.

{ set }* set }

------0------

B

------2------

A

So  as  required,  the  star  has  been  deleted,  the  set  previously  to  its  left
has  become active  (or to  be precise  will become  active when  the active
element  reaches  its  leftmost  element  due  to  the system  being  in  state  A
and the set to its left consisting only of 1s and 2s), and the 2 that was
replaced in the element to the right is back as a 2 again. 

This is the most complicated of the equivalences between the rules. On
the left is what happens; compare it with the example on the right. 

5.
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{ set ** set } { set *{ set }

------00------ ------02------

A B

------02------ ------02------

B C

After this rule has happened in system 4, rule 3 is always the next rule
to  apply  (because  it  leaves  the  active  element  as  a  set  (there  must  be  a
set to the right of a star) and in state C). The top two rows in the exam-
ple on the right show the state that would result according to the initial
conditions  if  rule  5  changed  the  active  state  to  state  B  and  did  not
add/remove the 1; the two rows below show the step after it. The final
results  are  very  similar,  except  that  in  the  example  on  the  left,  the  sys-
tem has finished in state B but not state C. So the result is the same as
in the  example on the right,  except that all  but the first  element of the
set to the right of the star are negated, and (due to additivity) the state
that  will  be  active  when  the  element  to  the  right  of  the  set  to  the  right
of  the  star  becomes  active  will  be  B  instead  of  A  or  C,  or  A  or  C
instead of B; in other words, apart from the set to the right of the star,
the result is the same as if system 4’s rule 5 had been “If a star is active
and the system is in state C, the element to its right becomes active and
the  system remains  in state  C.” As  for the  changes to  the set  itself, the
state  after  the  active  element  is  outside  this  set  after  this  pseudo-scan
will  be  the  same  as  the  example  on  the  right  (with  a  proper  scan)
except that all the elements but the first will be changed from a 1 to a 2
or vice versa, so it is left to show that doing this in system 3 is equiva-
lent  to  adding/removing  a  1  from  the  set  to  the  right  before  rule  3  is
applied (equivalent to adding/removing a 0 after rule 3 is applied, or to
changing the parity ready for the next scan but leaving the original par-
ity in subsequent scans in the system 3 equivalent). To show that this is
the  case,  consider  what  happens  when  just  the  first  element  of  a  set  of
adjacent 1s and 2s of width 2w  is changed from a 1 to a 2 or vice versa
in system 3. It will change the parity of the set at the next scan (because
exactly one element has changed), and all of the elements of the set will
end  up  with  the  opposite  parity  to  what  they  would  have  had  if  the
first element had not been changed (the first element because it had its
parity changed, and subsequent elements because the change in the first
element’s  parity  causes  them  to  change  to  the  opposite  parity  to  the
parity  they  would  have  had  otherwise).  But  as  has  already  been  estab-
lished  above,  the  change  in  every  element’s  parity  has  no  effect  for  the
next 2w - 1 steps, and so with a sufficiently high value of w will never
have  any  effect  at  all.  Therefore,  system  3  is  capable  of  simulating  a
rule�5/rule  3  pair  in  system  4,  and  so  can  simulate  every  rule  in
system�4. 

Because  system  3  can  simulate  all  details  of  system  4  for  an  arbi-
trary number of steps (with the right initial condition), it follows that
if  system  4  can  emulate  any  two-color  cyclic  tag  system  for  an  arbi-
trary number of steps, so can system 3 and therefore system 0. 
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Conjecture 5 7.

The  following  system  (“system  5”)  can  emulate  any  two-color  cyclic
tag  system  for  an  arbitrary  number  of  steps,  using  a  finite-size  initial
condition  and  finite-length  list  of  rules  in  which  at  some  point,  the
program  attempts  to  add  the  rule  after  the  finite  number  of  rules
given.

A program consists of an initial condition (a “bag” of non-negative
integers;  that  is,  a  set  that  allows  multiple  copies  of  an  element  to  be
contained),  and  a  list  of  rules  (a  list  of  sets  of  positive  integers).  The
initial  condition  cannot  contain  any  0s  to  start  with.  The  following
steps are followed in order: 

If  there  are  any  duplicates  in  the  bag  of  integers,  they  are  removed  in
pairs until either 1 or 0 of each integer remains. 

1.

Each integer in the bag of integers is decremented, and every integer in
each of the rules is incremented. 

2.

If  there  is  a  0  in  the  bag  of  integers,  it  is  removed  and  replaced  by  the
entire  contents  of  the  first  rule,  which  is  then  deleted.  (Subsequent
replacements  use  the  rules  that  were  originally  second,  third,  fourth,
and so on.) 

3.

Go back to step 1 and repeat forever. 4.

An example, to demonstrate the notation I use: 

3,4,6 1,2 5,8 "" 9,10,14

It is a list of space-separated comma-separated lists; the first list is the
initial bag, and the subsequent lists are the rules that the system uses.
"" represents a rule with no integers. 

Conjecture 5 Implies Conjecture 4 (and Therefore Conjecture 0) 7.1

Again,  this  implication  is  shown  by  constructing  an  initial  condition
that  allows  system  4  to  emulate  system  5  for  an  arbitrary  number  of
steps,  in  such  a  way  that  the  condition  on  the  system  5  initial  condi-
tion in Conjecture 5 turns out to imply the condition on the system 4
initial condition in Conjecture 4. 

Initial Condition 7.1.1

The  initial  condition  consists  of  the  following  sets  in  order.  All  sets
are separated by stars in this particular initial condition (although this
is not a requirement of system 4, and many of the stars will be deleted
during execution). The number f  is a large positive integer; the larger
the value of f, the more steps that can be simulated and the higher the
numbers  that  can  be  involved  in  the  calculation  (to  simulate  for  an
arbitrary number of steps, it is a matter of selecting a sufficiently large
value of f ). 

22 A. Smith

Complex Systems, 29 © 2020



At the start: 

◼ A  set  containing  all  integers  that  are  twice  a  member  of  the  initial  bag
after duplicates are removed in pairs, minus 2. (This set is the active ele-
ment in the initial condition, in state A, fulfilling the condition in Con-
jecture 4 that states just that.) 

◼ f  empty sets. 

Repeated for each rule R:

◼ A set containing all integers from 0 to f3, except those that are equal to

f + 3  plus  twice  an  element  of  R,  after  duplicates  have  been  removed
from  R  in  pairs,  and  possibly  containing  other  integers  higher  than  f3
(it does not matter whether it does or not). 

◼ f2 empty sets. 

◼ A set containing all integers from 0 to f3, and possibly containing other

integers higher than f3 (it does not matter whether it does or not). 

◼ f2 - 2 empty sets. 

Why the Initial Condition Works 7.1.2

First, consider how consecutive sets in system 4 behave when not sepa-
rated  by  a  star  (starting  in  state  A  in  the  initial  condition).  When  the
rightmost  set  is  active  in  state  A,  all  the  sets  going  leftward  in  turn
will  become  active  in  state  A  until  either  a  star  or  the  left  end  of  the
tape is reached. The leftmost set must be the first to become active in
state  B  or  C  (following  the  same  reasoning  as  in  the  proof  for  Lem-
ma�0),  and  then  all  the  consecutive  sets  will  become  active  in  state  B
or C, going to the right. The state will change between state B and C
a number of times equal to the number of 0s combined in the sets, so
it only matters whether an odd or even number of 0s exist in the sets
combined;  and  because  all  the  sets  are  decremented  simultaneously
during this process, and nothing else can cause the sets to decrement,
it  only  matters  whether  an  odd  or  even  number  of  any  other  integer
exist  in  the  sets  combined.  In  fact,  the  sets  can  be  treated  as  one  big
set  that  contains  all  elements  that  the  consecutive  sets  have  an  odd
number of times between them; for instance, 

*{1,2,3,4,5}{1,3,5}{3,4,6}*

is equivalent to 

*{2,3,6}*

The  conglomeration  of  sets  formed  at  the  start  of  the  tape  using
this  method  in  system  4  represents  the  bag  of  system  5,  and  it
removes  duplicates  automatically  for  the  reasons  explained  above,
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emulating  step  1  of  the  process;  to  add  a  rule  to  the  bag,  all  that  is
needed  is  to  remove  all  stars  between  the  bag  and  the  rule.  (For  rea-
sons explained later, the elements of this conglomeration of sets in sys-
tem 4 are each twice the relevant element in system 5.) 

To  see  how  steps  2  and  3  work,  consider  what  happens  starting
from  the  initial  condition  until  the  first  star  is  reached.  The  leftmost
conglomeration  of  sets  (the  bag)  will  be  active  in  state  A  and  then  in
state B; all its elements will be decremented (so that they become odd
numbers),  and  then  the  first  star  will  become  active.  There  are  two
possibilities from here. 

The  first  is  that  the  bag  did  not  contain  a  0  (containing  a

0  21 - 2 is equivalent to containing a 1 before step 2, i.e., a 0 after

step 2); in this case, the star will be reached in state B. The star will be
removed, merging an empty set with the bag (which has no effect; f  is
assumed to be sufficiently large that it is an empty set that is reached
and  not  a  set  containing  elements)  and  the  bag  will  become  active  in
state A again. It will then become active in state B, all its elements will
be decremented, and because it did not contain a 0 (because all its ele-
ments  were  odd)  the  next  star  will  also  be  removed,  merging  another
empty  set  with  the  bag,  and  the  bag  will  become  active  again  in
state�A. 2 has been subtracted from every element of the leftmost con-
glomeration of sets, which corresponds to decrementing every element
of the bag in system 5. Note also that the number of empty sets to the
left  of  the  first  non-empty  set  that  is  to  the  right  of  a  star  has  been
decreased  by  2;  define  t  to  be  f  minus  this  value  (so  t  starts  at  0  and
increases  by  2  every  time  this  possibility  happens).  The  elements  in
the  rules  have  not  been  increased  yet,  as  step  2  would  suggest;  the
value of t “remembers” that the elements must be increased sometime
in  the  future.  I  show  below  that  when  a  rule  is  added  to  the  bag,  the

elements added to the bag are t  2 higher than the corresponding ele-

ments were in that rule in the initial condition, so that this increase in
t really does have the effect of incrementing each rule. There was not
a  0  in  the  bag,  so  step  3  should  (and  does)  do  nothing  in  this  case;
therefore,  steps  2,  3  and  4  (because  it  returns  to  an  initial-condition-
like state from which the same behavior happens) in system 5 are cor-
rectly emulated by system 4 in this case. 

The  other  possibility  is  that  there  is  a  0  in  the  bag.  (During  this
description, the value of t remains fixed until the end of the emulation
of  steps  2,  3  and  4.)  In  this  case,  the  star  will  be  reached  in  state  C.
Therefore, the set to its right (an empty set) becomes active in state C
and a 1 is added to it; then the 1 will be decremented to a 0, and the
star to its right will become active in state C. This is repeated until the
first  non-empty  set  to  the  right  of  a  star  (i.e.,  the  set  representing
the�next  rule  to  be  added)  is  reached,  at  which  point  all  f - t  previ-

24 A. Smith

Complex Systems, 29 © 2020



ously  empty  sets  to  its  left  will  have  been  replaced  with 0  (and  all

f - t + 1 stars to its left  will still exist). This  non-empty set contains a
0 (in fact, it has been defined to contain all integers strictly less than f,
and  several  others  too),  so  as  it  becomes  active  in  state  C  (after  a  1
has been removed from it, as it contains a 1 for f > 1), it will be decre-
mented  and  the  star  to  its  right  will  become  active  in  state  B.  That
star  is  removed  (merging  an  empty  set  with  the  non-empty  set),  the
non-empty set and the star to its left become active, the star to its left
is  removed,  and  the  non-empty  set  becomes  active  in  state  B.  It  now
does not contain a 0, as its 1 was removed on the previous step, so it
will be decremented and the next star to its right will become active in
state  B,  and  will  be  removed,  merging  another  empty  set  to  the  non-

empty  set.  (The  merge  of  a  0  to  the  left  of  the  non-empty  set  will

remove  its  0  for  the  next  step  too,  so  at  this  point  the  non-empty  set
has  been  decremented  twice,  and  what  would  be  its  0  “removed”

(in�fact,  canceled  out);  at  this  point,  f - t  stars  and  f - t - 1  0s  exist

to its left, and f2 - 2 empty sets exist to its right before the next non-

empty set.) 
Now,  the  following  happens  f - t - 1  times:  the  system  changes  to

state  A  and  moves  left  until  it  encounters  a  star,  it  removes  that  star

(causing a 0 to merge with the set the next time the system is in state

A  again),  the  non-empty  set  is  decremented  (it  did  not  contain  a  0,
because it did not at the start of this loop and does not after each iter-

ation,  as  a  0  will  merge  with  it  at  the  end  of  the  loop,  removing  its

own  0),  a  star  becomes  active  to  its  right  in  state  B,  the  star  is
removed  (merging  an  empty  set  with  the  non-empty  set)  and  the
system  changes  back  to  state  A.  At  the  end  of  this  loop,  there  is  one

star  and  no  0s  to  the  left  of  the  non-empty  set,  and

f2 - 2 - f - t - 1  f + t - 1 empty sets to its right; the non-empty set

itself has been decremented f - t + 1 times. 
After the loop, the last star is going to be removed to its left, caus-

ing the non-empty set to merge with the bag the next time the system
is in state A; it will be decremented (it did not contain a 0 before this
because  it  did  not  after  the  last  iteration  of  the  loop)  and  one  more
star will be removed to its right and the empty set merged, and the sys-
tem  changes  to  state  A.  This  leaves  the  bag  containing  every  integer

from  0  to  f3 - f - t + 2  f2 + t - 2  (which  is  assumed  to  be  suffi-

ciently  large  that  the  bag  now  contains  every  integer  that  ever
becomes relevant during the simulation), except elements that were in
the  bag  when  the  star  was  encountered  in  state  C  (these  are  all  odd
numbers  from  system  4’s  point  of  view  and  not  a  legal  initial  condi-
tion  from  system  5’s),  and  elements  that  were  not  in  the  non-empty
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set  after  it  had  been  decremented  f - t + 2  times  total  (each  such  ele-
ment  was  of  the  form  f + 3 + 2x  for  x  in  the  rule  that  the  non-empty
set  represents  in  the  initial  condition,  and  so  is  now  of  the  form
t + 2x + 1),  and  f + t - 2  empty  sets  to  the  right  of  the  bag  before  the
next non-empty�set. 

The bag now becomes active in state A, so it immediately becomes
active  in  state  B  (being  the  leftmost  set);  it  contains  a  0  (all  the  inte-
gers  it  does  not  contain  that  ever  become  relevant  during  the  simula-
tion  are  odd),  so  it  is  decremented  and  the  star  to  its  right  becomes
active in state C. This causes all f + t - 2 empty sets to its right, up to
the  next  non-empty  set  (which  can  be  assumed  to  contain  every  inte-
ger  that  becomes  relevant,  as  a  sufficiently  large  value  for  f  can  be

chosen), to become 0, and the non-empty set itself to become active

in  state  C,  with  its  1  removed  (just  as  when  the  0  in  the  bag  was
encountered  originally).  This  non-empty  set  contains  a  0,  so  as  it
becomes  active  in  state  C,  it  will  be  decremented  and  the  star  to  its
right  will  become  active  in  state  B.  That  star  is  removed  (merging  an
empty  set  with  the  non-empty  set),  the  non-empty  set  and  the  star  to
its  left  become  active,  the  star  to  its  left  is  removed,  and  the  non-
empty set becomes active in state B. It now does not contain a 0, as its
1 was removed on the previous step, so it will be decremented and the
next  star  to  its  right  will  become  active  in  state  B,  and  will  be
removed,  merging  another  empty  set  to  the  non-empty  set.  (The
merge  of  a  {0}  to  the  left  of  the  non-empty  set  will  remove  its  0  for
the�next  step  too,  so  at  this  point  the  non-empty  set  has  been  decre-
mented  twice,  and  what  would  be  its  0  “removed”  (in  fact,  canceled

out); at this point, f + t - 2 stars and f + t - 3 0s exist to its left, and

f2 - 4 empty sets exist to its right before the next non-empty set.) 

There will now be a loop, identical to the previous one except with
f + t - 3  iterations,  which  does  the  same  thing  for  the  same  reasons.

At the end of this loop, there is one star and no 0s to the left of the

non-empty set, and f2 - 4 - f + t - 3  f - t - 1 empty sets to its right

before the next non-empty set (that represents the next rule). 
After the loop, the last star is going to be removed to the left of the

non-empty set, causing it to merge with the bag the next time the sys-
tem is in state A. The non-empty set does not contain a 0 but contains
every other integer that becomes relevant during the course of the sim-
ulation, so after it is decremented in state B, it contains every relevant
integer and the star to its right becomes active in state B, causing it to
be  removed  and  the  system  to  change  to  state  A  (merging  an  empty
set with the bag and non-empty set that contains an integer), and the
bag to become active in state A. The bag now contains a decremented
version of every integer it did not contain last time it was active; that
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is, 2 less than all the integers it contained the last-but-one time it was
active, and all integers t + 2x where x was an element of the rule to be
added; this is equivalent to the combined behavior of steps 2 and 3 in
system 5. (An integer 2x - 2 in the bag in system 4 corresponds to an
integer x in the bag in system 5; so t + 2x in system 4 corresponds to

x + t  2 + 1  in  system  5,  that  is,  an  element  of  the  rule,  incremented

once  on  each  previous  step  and  once  more  on  this  step.  To  see  why
the rules other than the rule being added have been incremented, sim-

ply observe that the new t is f - f - old t - 2 , that is, old t - 2.)

Therefore,  the  initial  condition  given  for  system  4  accurately  emu-
lates  all  steps  of  the  corresponding  system  5  initial  condition,  and  so
system  4  can  emulate  system  5.  In  order  to  show  that  Conjecture  5
implies Conjecture 4 (which is already known to imply Conjecture 0),
it only remains to show that when the evolution of the system 4 initial
condition leaves the defined portion, it is in state C. This is implied by
the condition that at some point, the system 5 system must try to add
a  nonexistent  rule,  because  doing  this  will  follow  all  the  steps  in  the
description above up to the point where the set corresponding to that
rule  would  be  (but  is  not),  at  which  point  the  system  4  system  is  in
state C. 

Proof of Conjecture 5 (and Therefore of Conjecture 0) 7.2

First,  observe  that  any  cyclic  tag  system  can  be  emulated  by  a  cyclic
tag system in which elements of the strings to be added always occur
in pairs, simply by doubling each element of each string to be added,
doubling  each  element  of  the  initial  condition,  and  introducing  a
blank  string  to  be  added  between  each  of  the  original  strings  to  be
added, including between the last and first (thus causing every second
element to always be ignored). 

Here is the definition and notation I will use for a two-color cyclic
tag system: 

A  two-color  cyclic  tag  system  consists  of  an  initial  condition  (a
finite  string  of  1s  and  0s,  containing  at  least  one  element)  (the  initial
working string), and a positive number of finite strings of 1s and 0s to
be  added,  which  have  a  set  order.  Repeatedly,  the  first  element  from
the working string is removed, and the current first string to be added
is  moved  to  the  end  of  the  list;  if  a  1  was  removed,  a  copy  of  that
string is also concatenated to the end of the working string. 

The  notation  shows  the  initial  working  string,  followed  by  each
string  to  be  added  in  order  (with  substituting  for  an  empty  string  to
be added): 

110 11 0 01 ""
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As before, the proof is shown by stating an initial condition for sys-
tem 5 that emulates any given cyclic tag system in which the elements
of the strings to be added always occur in pairs, and proving that that
initial  condition  works  and  obeys  the  constraint  set  out  in  Conjec-
ture�5. 

Initial Condition 7.2.1

Each element in the working string corresponds to two integers in the
bag;  for  a  0  in  the  working  string,  there  is  a  difference  of  1  between
the integers, and for a 1 in the working string, there is a difference of
2 between the integers. Each integer representing a bit nearer the start
of  the  working  string  must  be  lower  than  each  integer  representing  a
bit  nearer  the  end  of  the  working  string  (i.e.,  the  integers  that  repre-
sent  each  bit  in  the  working  string  going  from  the  start  to  the  end
must  increase  in  order).  For  instance,  with  the  working  string  of  110
given as an example above, the elements of the initial bag correspond-
ing  to  elements  in  the  working  string  could  be  1,3,4,6,7,8.  The  bag
also  contains  some  very  large  integers  (it  does  not  matter  what  they
are, so long as they are sufficiently large and distinct, and a construc-
tion for the exact size they need to be is given in “How Many Steps?”
below);  one  for  each  integer  anywhere  in  the  generated  system  5  sys-
tem, and one for each rule in the generated system 5 initial condition,
plus one extra; how many of these integers are needed (and how high
they  have  to  be)  depends  on  other  details  of  the  generated  system  5
initial  condition,  but  the  other  details  of  that  initial  condition  do  not
depend on those integers, so they can simply be calculated and added
in at the end. 

As the cyclic tag system need be emulated only for a finite number
of  steps  to  prove  Conjecture  5,  repeat  the  strings  to  be  added  suffi-
ciently many times that the end of the repetition is never reached dur-
ing the number of steps the system is to be emulated for; then, there is
no need to emulate wrapping back to the first string. Each string to be
added  is  represented  by  two  rules.  Each  pair  of  identical  elements  of
the  string  to  be  added  corresponds  to  two  integers  in  the  second  rule
of each pair; for a 0 in the string to be added, there is a difference of
one between the integers, and for a 1 in the string to be added, there
is  a  difference  of  three  between  the  integers.  Each  pair  of  integers  in
the  second  rule  of  each  pair  must  have  its  lower  integer  higher  by  at
least  three  than  any  integer  in  the  initial  bag,  or  in  any  previous  rule
(except  the  first  rule  of  the  pair),  or  that  is  part  of  the  representation
of  any  bit  in  that  string  to  be  added  that  comes  before  the  bit  in  the
string to be added that this pair of integers represents. The first rule in
each  pair  consists  of  the  second  rule  with  two  added  to  each  integer.
So for instance, the example cyclic tag system above 
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110 11 0 01 ""

is equivalent to the cyclic tag system 

111100 1111 "" 00 "" 0011 "" "" ""

and using the construction above, one way to emulate this in system 5
for  eight  steps  (not  counting  the  very  large  integers  in  the  initial  bag)
(more steps could be obtained by repeating the strings to be added) is: 

1,3,4,6,7,9,10,12,13,14,15,16 21,24,27,30 19,22,25,28 "" "" 35,36
33,34 "" "" 41,42,45,48,39,40,43,46 "" "" "" "" "" "" 

Why the Initial Condition Works 7.2.2

To prove that the initial condition works, it is only necessary to show
that  starting  in  an  initial  condition  corresponding  to  one  state  of  the
cyclic  tag  system  and  running  system  5  for  some  length  of  time,  the
system  reaches  an  initial  condition  corresponding  to  the  next  state  of
the  cyclic  tag  system.  It  also  needs  to  be  noted  that  the  system  will
finally  end  by  trying  to  add  a  rule  that  was  not  in  the  initial  condi-
tion; this is because the very large integers in the initial bag cannot be
removed due to being equal to each other as they are decremented at
the  same  rate,  so  each  must  either  remove  another  integer  (as  it  hap-
pens,  this  case  cannot  happen,  but  it  is  easier  to  prove  that  it  works
even  if  it  could  happen  than  to  prove  that  it  cannot  happen),  or
remove a rule, and even then there will be at least one left over, so at
some point a nonexistent rule must be added. There are two cases. 

If the first element of the working string is a 0 (i.e., the two lowest
integers  in  the  bag  differ  by  one),  then  the  next  two  occasions  on
which  a  rule  is  added  to  the  bag  will  be  one  iteration  of  system  5’s
steps  apart.  Between  the  additions,  the  elements  added  from  the  first
rule of the pair are decremented by one, and those in the second rule
of the pair are incremented by one. As a result, when the second rule
of  the  pair  is  added,  each  of  its  elements  will  correspond  to  an  ele-
ment  added  by  the  first  rule.  This  will  form  a  duplicate  for  each  ele-
ment,  and  as  a  result  all  the  elements  thus  added  will  be  removed.
(The addition of the first rule of the pair could not itself have caused
any  elements  to  be  removed,  as  each  element  in  it  is  higher  than  any
other  element  in  the  bag  at  the  time,  having  started  higher  than  any
element  that  could  have  been  added  previously  in  the  program  and
only  been  incremented  since.)  The  system  ends  up  with  the  first  pair
of  rules  (i.e.,  the  first  string  to  be  added)  having  been  removed
(moving it to the end of the list of strings to be added is not necessary
as  the  end  of  that  list  is  never  reached),  and  the  0  at  the  start  of  the
string  removed;  as  all  the  other  rules  have  incremented  at  the  same
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rate,  and  every  integer  in  the  bag  has  decremented  by  the  same
amount,  the  resulting  string  is  an  acceptable  “initial  condition”  for
the  situation  after  the  0  and  rule  have  been  removed,  and  this  case  is
accurately emulated. 

If the first element of the working string is a 1 (i.e., the two lowest
integers  in  the  bag  differ  by  two),  then  the  next  two  occasions  on
which  a  rule  is  added  to  the  bag  will  be  two  iterations  of  system  5’s
steps  apart.  Between  the  additions,  the  elements  added  from  the  first
rule of the pair are decremented by two, and those in the second rule
of the pair are incremented by two. As a result, when the second rule
of  the  pair  is  added,  each  integer  added  will  be  two  higher  than  the
corresponding integer added by the first rule of the pair. All such inte-
gers  added  will  be  higher  than  any  other  integer  in  the  bag  at  that
time, as each element in the pair of rules is higher than any other ele-
ment  in  the  bag  at  the  time,  having  started  higher  than  any  element
that  could  have  been  added  previously  in  the  program  and  only  been
incremented  since.  So  each  pair  of  elements  in  the  second  rule  of  the
pair, which corresponds to a pair of identical elements of the string to
be  added,  converts  into  four  integers  in  the  bag;  a  00  in  the  string  to
be  added  will  cause  integers  x,  x + 1,  x + 2,  x + 3  to  be  added  to  the
bag,  and  a  11  in  the  string  to  be  added  will  cause  integers  x,  x + 2,
x + 3,  x + 5  to  be  added  to  the  bag.  Each  of  these  patterns  corre-
sponds to a 00 or 11 respectively in the bag (two pairs of integers dif-
fering  by  1  and  by  2,  respectively),  and  because  a  gap  of  three  is  left
between  pairs  of  integers  within  the  same  rule,  they  will  be  added  so
that  their  ascending  order  corresponds  to  adding  the  integers  in  the
right order at the end of the bag. So in other words, the 1 at the start
of  the  working  string  has  been  removed,  and  the  contents  of  the  first
string  to  be  added  has  been  added  at  the  end  of  the  rule,  and  that
string has been removed (moving it to the end of the list of strings to
be  added  is  not  necessary,  because  the  end  of  that  list  is  never
reached). 

As  both  cases  have  been  covered,  it  has  been  shown  that  system  5
can  emulate  any  two-color  cyclic  tag  system  for  an  arbitrary  number
of  steps;  it  has  already  been  shown  that  for  an  arbitrary  number  of
steps, system 4 can emulate system 5, system 3 can emulate system 4,
and  system  3  is  equivalent  to  system  2,  which  is  equivalent  to  sys-
tem�1, which is equivalent to system 0. Therefore, system 0 can emu-
late any two-color cyclic tag system for an arbitrary number of steps,
and  the  extra  condition  that  Conjecture  0  requests  also  follows
through each of the conjectures, and so Conjecture 0 is true. 
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How Many Steps? 8.

A  concern  left  over  from  the  introduction  is  calculating  the  values  of
w  and  f  that  are  needed  to  emulate  a  cyclic  tag  system  to  the  desired
number  of  steps.  Here  are  algorithms  to  calculate  the  required  value,
and proofs that the value works. 

Calculating f8.1

f  affects two things, the spacing between non-empty sets in the result-
ing  system  4  system  (and  therefore  the  maximum  possible  value  of  t)
and  how  high  the  numbers  in  those  sets  go.  First,  it  is  easy  to  show
that  it  is  the  maximum  possible  value  of  t  that  is  the  limiting  factor;
when  a  set  becomes  “merged”  to  the  leftmost  set  (i.e.,  all  stars
between it and the leftmost set are removed), it has been decremented
f - t + 2 times (i.e., at most f + 2 times), and from then on it is decre-
mented  once  every  time  t  is  increased;  that  is,  the  set  can  be  decre-
mented  at  most  f + 2 + t*  times,  where  t  is  the  maximum  value  of  t
required;  assuming  that  f  is  at  least  three  (as  we  are  choosing  the
value of f, we can simply choose it to be at least three), the set will be
decremented  at  most  f2 + 2  times,  so  the  elements  in  the  set  above  f3
will never become relevant. Therefore, it is f  as a determiner of t*  that
is  more  important;  so  far  it  is  been  determined  that  any  value  of  f
such that f ≥ 3 and f ≥ t* will do, so that all that is needed is to deter-
mine t* (the maximum possible value of t that might be involved). 

Every time t increases by two, the elements in the leftmost conglom-
eration of sets in system 4 decrease by two, corresponding to the ele-
ments  in  the  bag  in  system  5  being  decremented,  that  is  one  step  of
system 5. So t*  is simply twice the maximum possible number of sys-
tem 5 steps that need to be run before the system “finishes” (either by
running  out  of  rules  or  by  running  out  of  elements  in  the  bag).  To
determine  this  value,  consider  a  system  5  system  in  which  the  maxi-
mum  integer  in  the  bag  or  any  rule  in  the  initial  condition  is M - 1,
and induct on the number of rules in the system. 

The Base Case  8.1.1

For  a  system  with  one  rule,  either  the  bag  must  be  empty  (no  steps
needed), or its minimum element must be less than or equal to M - 1;
so  the  rule  will  be  added  and  the  system  will  be  out  of  rules  after  at
most M steps, and 2t*  M  M30 . (Likewise, if the system has more

than one rule, the first rule must be added after at least M steps.) 

Induction Step  8.1.2

Suppose  a  system  with  maximum  value  in  the  initial  condition  M - 1
is run until a rule is added, which happens after at most s steps. Once
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the rule has been added, the maximum value in the initial condition is
M + s - 1  (because  the  highest  integer  possible  in  the  bag  just  before
the rule is added is M - s - 1 and in a rule just before the rule is added
is  M + s - 1).  The  reasoning  in  the  base  case  shows  that  s  M;  so
assuming  for  induction  that  a  system  with  n  rules  finishes  in  at  most

3(n-1)M  steps,  a  system  with  n + 1  rules  must  finish  in  3(n-1)2M

steps  (for  it  to  finish  after  the  first  rule  is  added)  plus  3(n-1)M  steps
(for  it  to  reach  the  point  where  the  first  rule  is  added),  that  is  3nM
steps. 

Therefore, by induction, a system 5 system in which the maximum
integer  in  the  bag  or  any  rule  in  the  initial  condition  is  M - 1,  and

with  n  rules,  must  finish  executing  after  at  most  3(n-1)M  steps,  and

therefore  t*  and  therefore  f  is  twice  this  value,  2⨯3n - 1M  (or  three

times the value if this value is less than three). 

The Extra Added Large Integers in the System 5 Initial 
Condition 

8.2

All that is needed with these integers is that they are so large they do
not  interfere  while  the  cyclic  tag  system  is  still  running  (they  come
into play later, once the required number of steps has been run and/or
the working string ends up empty). Therefore, they simply have to be
higher  than  the  maximum  number  of  steps  that  the  evolution  of  the
rest of the system 5 system could take; this value has already been cal-
culated  in  the  section  above  (“a  system  5  system  in  which  the  maxi-
mum  integer  in  the  bag  or  any  rule  in  the  initial  condition  is M - 1,

and with n  rules, must finish executing  after at most  3(n-1)M steps”),
and adding 1 to this number gives the minimum possible value of the
extra added large integers. 

Calculating w8.3

Given  that  a  system  4  program  has  been  compiled  from  a  system  5
program,  choosing  a  value  of  w  so  that  the  system  3  program  can
emulate  the  system  4  program  is  actually  quite  easy;  simply  choose  it
so  that  2w  is  at  least  f3.  To  see  why  this  works,  consider  what  the

value  of  w  actually  does;  its  only  effect  on  the  program  is  that  if  the
section of the system 3 program that corresponds to a set in system 4
is  decremented  more  than  2w  times,  it  starts  getting  “corrupted”  and
having the wrong parity. But it is already been determined in the pre-
vious section that sets will be decremented fewer than f3  times (when

determining  that  this  was  not  the  limiting  factor),  so  as  long  as  2w  is
at least f3 it will not be the limiting factor either, f  will be (if compiled

from  system  5)  or  the  number  of  steps  chosen  to  emulate  when  com-
piling from a cyclic tag system will be. 
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These calculations for f  and w are clearly sufficiently simple not to
be  universal  themselves,  so  the  problem  brought  up  in  the  introduc-
tion has now been solved. 

From Arbitrary to Infinite 8.4

For  convenience,  Conjecture  0  (which  has  now  been  proved)  is
restated below: 

The Turing machine 

-0- -0- -1- -1- -2- -2-

A B A B A B

-1- -2- -2- -2- -1- -0-

B A A B A A 

(“system 0”) can emulate any two-color cyclic tag system for an arbi-
trary  number  of  steps,  using  a  finite-length  initial  condition  in  which
the  leftmost  cell  starts  active  in  state  A  and  in  which  the  first  cell  to
become  active  after  the  emulation  has  finished  is  the  cell  to  the  right
of the initial condition, and that cell becomes active in state A. (To be
precise,  “finite-length  initial  condition,”  given  in  this  and  future  con-
jectures,  refers  to  an  initial  condition  in  which  only  finitely  many  of
the  cells  are  relevant,  and  no  other  cells  are  visited  during  the  evolu-
tion of that initial condition.) 

Given that this is true, it is possible to construct an initial condition
for system 0 that emulates a two-color cyclic tag system for an infinite
number of steps. A preliminary result needs to be proved; that a finite
region of system 0 cannot get into a loop (i.e., given any finite region
of  a  system  0  tape,  if  the  active  element  starts  in  that  region  it  must
leave  it  eventually).  This  is  more  easily  seen  in  the  equivalent  sys-
tem�1;  counting  from  the  left-hand  end  of  a  region  of  the  tape,  it  is
possible  to  add  together  the  positions  of  all  0s  in  that  region  of  the
tape, and by considering every rule in system 1 it can be shown if this
value  ever  increases,  it  decreases  to  a  lower  value  than  the  value  it
increased from on the previous step; in order for the system to change
from state A to state B or vice versa, this value must decrease; and the
system  cannot  get  into  a  loop  without  changing  from  state  A  to
state�B  or  vice  versa,  because  in  all  rules  in  which  the  system  stays  in
state A the active element must move left and in all rules in which the
system  stays  in  state  B  the  active  element  must  move  right.  If  a  loop
therefore  could  exist  inside  a  finite  region  of  system  1,  charting  the
progress  of  the  value  obtained  by  adding  together  the  positions  of  all
0s  in  that  region  of  the  tape  whenever  that  value  decreased  would
lead  to  an  infinite  strictly  decreasing  sequence  of  non-negative  inte-
gers, which is mathematically impossible. 

Therefore, it is now known that any cyclic tag system can be emu-
lated for a finite number of steps, in a finite region of a system 0 tape
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(starting  with  the  leftmost  element,  a  0,  active  in  state  A),  and  some
time  after  the  emulation  finishes  (which  it  must  do),  eventually  if  the
element to its right is a 0 it will become active in state A. To emulate
a  two-color  cyclic  tag  system  for  an  infinite  number  of  steps,  all  that
is needed is to concatenate the system 0 initial condition to emulate it
for 1 step with the system 0 initial condition to emulate it for 2 steps,
for 3 steps, for 4 steps and so on up to infinity, and start the entire sys-
tem  with  the  leftmost  0  of  the  first  initial  condition  active  in  state  A;
in fact, any increasing sequence of integer numbers of steps will work.
(What  is  in  the  initial  tape  to  the  left  of  that  does  not  matter,  as  it
never becomes active.) Each of these emulations will run one after the
other, in sequence; for any given number of steps, the infinite concate-
nated  initial  condition  will  therefore  emulate  that  program  for  that
number  of  steps,  and  the  number  chosen  does  not  have  to  be  input
beforehand  or  encoded  in  any  way  in  the  program  itself;  in  other
words, system 0 is now emulating the cyclic tag system for an infinite
number of steps.

An Initial Condition Obtainable in a Non-universal Way 9.

The  above  proof  leaves  many  options  open  in  the  initial  condition
that is used; in this section, I aim to show that at least one initial con-
dition exists that is sufficiently simple to calculate that the calculation
can be done by an obviously non-universal algorithm. 

The  way  in  which  this  is  achieved  is  to  create  an  initial  condition
that represents an emulation of the cyclic tag system for one cycle (in
a way that can be shown to always terminate, and therefore definitely
not be universal), which can be transformed using a simple and obvi-
ously  non-universal  rule  into  an  initial  condition  that  represents  an
emulation for two cycles, four cycles and in general 2n  cycles. (Here a
cycle refers to every rule in the cyclic tag system being applied exactly
once, so that the rules end up back in their original order.) Note that
the  translation  given  from  system  3  to  system  0  cannot  possibly  be
universal (one simple way to prove this is by observing that each ele-
ment of the system 0 tape depends only on the corresponding element
on the system 3 tape, whether that element is active, which side of the
active  element  that  element  is  if  it  is  not  active,  and  what  state  the
system starts in, which is a finite amount of data for each element), so
it  is  sufficient  to  show  that  an  initial  condition  for  system  3  that
emulates  the  cyclic  tag  system  exists  that  can  be  calculated  in  a  non-
universal manner. 

Before this is done, though, I will prove a lemma, which proves the
validity of some of the constructions I will use below. 
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Lemma 2 9.1

If a string S of 1s and 2s of length 2w  in system 3 has a 1 in all posi-
tions but the leftmost 2v  (and possibly has 1s within those 2v  as well),
and v is less than w, then 

Its parity set contains no integers equal to or greater than 2v, and 1.

A string of 1s and 2s of length 2w  in system 3 consisting of 2v  1s, then
the first 2v elements of S, and then 1s for the rest of the string has a par-
ity  set  consisting  of  the  union  of  the  parity  set  of  S  and  the  same  set
with 2v added to each element, and a string consisting of the first 2v ele-
ments of S, then the same elements again, and padded to width 2w  with
1s has a parity set consisting of the parity set of S with 2v added to each
element, and 

2.

A  string  of  1s  and  2s  of  length 2y  (for  integer  y > v  )  in  system  3  that
has  its  first  2v  elements  the  same  as  S,  and  1s  everywhere  else,  has  the
same parity set as S. 

3.

Proof of Lemma 2 9.1.1

In the description below, XORing two strings together considers 2 to
be  the  “true”  value  and  1  to  be  the  “false”  value,  therefore  obeying
the truth table:

 1  2

 1  1  2

 2  2  1

To  see  why  part  1  of  Lemma  2  is  correct,  consider  the  cellular
automaton  given  in  Method  2  of  Corollary  1.  On  the  step  that  gives

the string corresponding to parity set 0 (call it step 0), the rightmost

2 is the leftmost element (call it element 0), and if on a step the right-
most  2  is  element  n,  and  that  element  is  not  the  rightmost  element,
then  on  the  next  step  the  rightmost  element  will  be  element  n + 1
(because  if  an  element  was  a  1  on  the  previous  step  and  had  nothing
but  1s  to  its  right  (i.e.,  it  was  to  the  right  of  element  n),  then  it  will
become  a  2  if  and  only  if  it  had  a  2  to  its  immediate  left  (i.e.,  it�was
element  n + 1));  by  induction,  the  rightmost  2  on  step  n  is  element  n.
Therefore,  if  the  highest  integer  h  in  S  is  greater  than  or  equal  to  2v,
then  on  step  h  of  the  evolution  of  the  cellular  automaton  the  right-
most  2  will  be  element  h  (and  therefore  element  h,  outside  the
leftmost 2v, will be a 2 on that step); also, no other steps of that cellu-
lar automaton that are XORed together to give S had element h as a 2
(because h was the highest element in the parity set, all previous steps
had the rightmost 2 somewhere to the left of element h), contradicting
the condition of the lemma, so part 1 of Lemma 2 must be correct. 

To  see  why  part  2  of  Lemma  2  is  correct,  consider  that  the  string
given is equivalent to string S XORed with a string R that consists of
the leftmost 2v  elements of S written twice and then filled to the same

Universality of Wolfram's 2, 3 Turing Machine 35

https://doi.org/10.25088/ComplexSystems.29.1.1

https://doi.org/10.25088/ComplexSystems.29.1.1


width as S with 1s, so all that is needed to show is that R’s parity set
is equivalent to S’s with 2v added to each element; this is equivalent to
saying  that  running  the  Method  2  cellular  automaton  for  2v  steps  on
S  will  give  R.  There  are  several  ways  to  prove  this  (one  is  to  use  the
binomial  formula  for  Pascal’s  triangle;  if  an  expression  E  that  is  the
sum  of  xn  for  all  n  where  element  n  of  s  is  a  2  is  constructed,  then  a
step  of  the  cellular  automaton  corresponds  to  multiplying  E  by

x + 1mod 2, and 2v  steps correspond to multiplying E by x + 12
v

,

which  is  x2
v
+ 1  (mod 2)  because  all  intermediate  terms  are  even

(because  the  exponentiation  corresponds  to  squaring  v  times,  and

squaring  a + b  (mod 2)  gives  a2 + 2ab + b2,  which  is  just  a2 + b2),

which  duplicates  the  terms  of  the  first  2v  powers  of  x,  corresponding
to a duplication of the first 2v elements of S and therefore to R). 

To see why part 3 of Lemma 2 is correct, simply observe that only
the  first  2v  steps  of  the  cellular  automaton  are  relevant  in  calculating
S, and so elements to the right of element 2v - 1 never change from a
1, and so regardless of the value of w, the system 3 string with a given
parity set will be the same, except for 1s padding the right-hand side. 

The One-Cycle Initial Condition 9.2

These are the choices made when calculating the one-cycle initial con-
dition. The algorithms given for calculating the initial condition in the
main proof above always terminate, therefore this step cannot be uni-
versal (or it could not have been proven to always terminate). 

Choices Made in the System 5 Initial Condition 9.2.1

The  choices  to  be  made  here  are  which  integers  are  used  in  the  rules
and initial bag, and which extra high integers are added to the initial
bag  (the  number  of  cyclic  tag  rules  being  emulated  has  already  been
chosen,  as  one  cycle).  As  it  happens,  it  is  irrelevant  to  this  argument
what  choices  are  made  for  any  of  these  but  the  extra  high  integers,
but for the sake of definiteness take the minimum possible integer for
each  of  these  values.  The  algorithm  for  choosing  the  extra  high  inte-
gers is somewhat unusual, however; it consists of choosing an integer
e,  and  causing  the  extra  high  integers  to  be  the  other  integers  in  the
bag  with  2e  added  (if  this  is  not  enough,  as  it  may  well  not  be,  the
other extra high integers used are the original integers in the bag and

the  duplicates  just  added  with  2e+1  added,  then  if  that  is  not  enough
all  the  integers  in  the  bag  (the  originals  and  all  the  duplicates  added

so far) with 2e+2  added, and so on until there are enough); e is simply
chosen so that 2e  is sufficiently high (and what is sufficiently high has
been defined above). 
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Choices Made in the System 4 Initial Condition 9.2.2

The  choices  made  here  are  the  value  of  f,  and  which  elements  above
3f  are  in  the  “large  sets”  that  have  the  elements  from  0  to  3f  speci-
fied.  In  this  case,  f  is  chosen  to  be  any  power  of  2  that  is  sufficiently
large  (again,  what  is  sufficiently  large  for  this  has  been  defined
above),  and  the  large  sets  contain,  apart  from  the  elements  that  are
fixed  by  the  definition  of  the  system  4  initial  condition,  all  integers
from 3f + 1 to 4f - 1 inclusive (but no other elements). 

Choices Made in the System 3 Initial Condition 9.2.3

The only choices here are the value of w (it takes its minimum allow-
able  value,  2 + log2 f,  which  is  an  integer  because  f  has  been  defined

to be a power of 2), and the representation used for the left end of the
system  4  tape  (obviously  the  “02222…”  form,  because  this  is
required for infinite emulation of a cyclic tag system). 

When  constructing  the  system  3  initial  condition  that  corresponds
to the cyclic tag system for one cycle, though, one extra piece of infor-
mation  has  to  be  remembered;  what  the  system  3  string  corre-
sponding to the system 5 initial bag would have been if no extra high
integers have been added (this becomes relevant later). 

Transforming the Initial Condition for n Cycles into a Condition 

for 2n Cycles 

9.3

This  is  a  matter  of  working  out  what  changes  are  needed  to  convert
the n-cycle initial condition into a 2n-cycle initial condition; the origi-
nal change (in the cyclic tag system) is simply to double the number of
cycles of the cyclic tag system that are emulated. 

Changes in the System 5 Initial Condition 9.3.1

The  two  things  that  have  to  change  here  are  the  list  of  rules  and  the
extra high integers added to the bag. 

◼ The  list  of  rules  needs  to  double  in  length,  with  the  new  rules  having
their  lowest  elements  three  higher  than  the  highest  elements  of  the  old
rules, and the old rules untouched. The specific method to do this that I
will  use  here  is  to  add  2w  to  each  element  of  the  old  rules,  where  the
value of w from the previous initial condition is used; 2w  is at least 3f ,
which is at least 6M, where M is the highest element in the old rules, so
this is guaranteed to be high enough. 

◼ More extra high integers are needed, and they need to be higher. Dou-
bling their number will ensure that there are enough, because the num-
ber of elements in the rules has doubled and the number of elements in
the initial bag has remained the same. Instead of transforming the extra
high  integers,  the  old  extra  high  integers  are  discarded,  and  new  ones
created  using  the  same  method  as  in  the  initial  condition;  that  is,  the
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initial bag is duplicated with 2e  added to each element, with 2e+1  added
to  each  element  in  the  new  bag,  and  so  on,  until  there  are  enough;  the
number of duplicates needed cannot be more than twice the number of
duplicates as was needed in the one-cycle initial condition for each time
the  number  of  cycles  has  doubled  (because  twice  the  number  of  dupli-
cates  would  double  the  number  even  if  the  duplicates  added  when  2e

was added were not duplicated again when the duplicates for 2e+1  were
added).  Calculating  the  value  of  e  is  nontrivial;  2e  must  be  at  least
3(r-1)M  for  the  new  value  of  M,  where  r  is  the  new  number  of  rules.
The  highest  element  in  the  new  rules  is  the  highest  element  in  the  old
rules, plus 2 to the power of the old w; this means that with the old w
and new r, it is sufficient to make 2e  at least 32w

r
 (because this is higher

than 32
(r-1), and the old 2w  has to be higher than the old M); one value

that  accomplishes  this  is  42w
r ,  which  gives  a  value  of  2r +w  for  e  (with

the new r and old w). 

Changes in the System 4 Initial Condition 9.3.2

To change the system 4 initial condition to accommodate more cycles,
the value of f  needs to increase, which affects the number of duplica-
tions  of  empty  sets  and  the  value  up  to  which  the  sets  go;  also  the
number  of  groups  of  sets  that  represent  system  5  sets  needs  to
increase to allow for the new rules added to the system 5 initial condi-
tion,  and  the  first  set  needs  to  change  due  to  the  changes  in  the  sys-
tem�5 bag. 

◼ The value of f  needs to be at least 2⨯3(r-1)M, where r is the new num-
ber of rules in the system 5 initial condition and M is its new maximum
value. The extra high integers are by definition the highest integers any-
where  in  the  system  5  initial  condition.  Suppose  d  is  the  number  of
duplications  used  to  add  the  extra  high  integers  in  the  system  5  initial

condition; M  will  therefore  be  less  than  2e+d,  because  2e  is  obviously
higher  than  any  elements  in  the  initial  bag,  and  they  will  have  had  at

most  2e+d-1  added  to  them  to  create  the  extra  high  integers.  So  log2 M

is at most 2r +w + d. 23(r-1)  is less than 4r, so a valid value for log2 f  is

4r +w + d (with the new r and d, and old w). 

◼ As  in  the  one-cycle  initial  condition,  each  set  where  the  rules  for  con-
structing a system 4 initial condition specify integers up to 3f  also con-
tains integers from 3f + 1 to 4f - 1 inclusive, and no other integers. The
difference between the old and new values of f  has to be added to each
“gap” where those sets do not contain a particular element. 

◼ The  padding  of  null  sets  and  stars  between  sets  containing  lots  of  inte-
gers needs to change according to the new value of f ; it is easiest just to
recalculate it once the new value of f  is known. 

◼ The  new  sets  and  stars  to  be  added  are  the  same  as  the  old  ones  (not
counting  the  first  set  and  its  associated  padding),  just  with  2w+1 (using
the old w) added to the “gaps” in each of the non-null sets. 
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◼ The  first  set  (corresponding  to  the  system  5  bag)  will  be  the  same  as
before, except that the extra copies of it that are added will use the new
values of e and d. 

Changes in the System 3 Initial Condition 9.3.3

The new value of w is easy to calculate; it is just 2 + log2 f  (taking the

new value of f). This has a knock-on effect on the translation of every
set  and  the  region  representing  the  left  end  of  the  system  4  tape,  and
of course the changes in the system 4 initial condition also have to be
mirrored by changes to the system 3 initial condition. 

◼ The  number  of  repetitions  of  “0222…2222”  increases  by  the  ratio
between  the  old  and  new  2w,  as  does  the  length  of  each  repeated  ele-
ment (totaling the 0 and all the 2s). 

◼ The “gaps” in parity sets in the system 3 strings corresponding to non-
null system 4 sets need to be increased by the difference in the old and
new  values  of  f ,  and  their  maximum  value  needs  to  increase.  An  obvi-
ously  non-universal  algorithm  to  do  this  (Lemma  2  explains  why  this
set of steps has the desired effect): 

◼ Change the 0 in the set that represents the star at the end to a 2, if there
is one; 

◼ Undo the operation used to cause the set to start and end with a 2 (all
the  possibilities  for  this  are  self-inverse,  so  they  are  easy  to  undo,  and
examining the last two elements of the string will reveal which one was
used, as they come out different depending on which method was used,
and  must  have  been  “12”  beforehand  because  2w - 1  and  2w - 2  with
the old w were both in its parity set, due to the definition of the old w,
and  no  other  elements  of  the  parity  set  can  affect  what  those  two  ele-
ments have to be); 

◼ Replace the 2 at the end of each such set with a 1, which complements
its parity set; 

◼ Remove  the  duplication  of  the  sequence  where  the  repeated  section
starts at the old element f  (which is always possible because that is how
this  set  was  constructed  in  the  first  place),  which  has  the  effect  of  sub-
tracting the old f  from each element of the new parity set (i.e., each gap
in the original parity set); 

◼ Increase the length of the sequence to the new 2w  by padding with 1s; 

◼ Add  a  new  duplication  of  the  left  end  of  the  sequence  at  the  new  ele-
ment  f  (so  now  the  elements  in  the  parity  set  have  increased  by  the
right amount net);

◼ Replace the 1 at the end of the subset with a 2, turning the elements in
the parity set back into gaps, and also causing the set to go up to 4f - 1
with the new f  rather than 4f - 1 with the old f ; 
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◼ Cause  the  set  to  start  and  end  with  2,  using  the  method  detailed  in
Conjecture 4’s proof; 

◼ Change the relevant 2 in the set back into a 0, if a star was removed to
start with. 

◼ The  strings  corresponding  to  what  in  system  4  are  the  null  sets  and
stars that correspond to padding need to be widened for the new value
of w (the null set is, however, just 2w  1s by Corollary 1’s Method 2, or
that many 2s when changed to start and end with 2, and so widening it
is  easy),  and  more  repetitions  are  needed  (the  number  of  repetitions
needed is multiplied by the ratio of the old and new values of f ). 

◼ The  strings  corresponding  to  the  new  sets  that  are  added  in  system  4
are  obtainable  by  shifting  the  gaps  in  the  existing  parity  sets.  The
amount  by  which  the  gaps  have  to  be  shifted  is  a  power  of  2  (2w+1

using  the  old  w,  in  fact);  the  gaps  can  be  shifted  using  basically  the
same algorithm as detailed in the combined gap-shift-and-lengthen algo-
rithm  shown  two  bullet  points  above  (the  only  difference  is  that  the
fourth  and  fifth  steps  in  the  given  sequence  are  left  out,  and  the  old
2w+1

 rather than the new values of f  is used in the sixth step). 

◼ The string corresponding to the system 5 bag (i.e., the first system 4 set)
needs  be  widened,  and  to  have  its  parity  set  changed  to  change  what
the extra large integers are. To do this, the without-extra-large-integers
string that was remembered when constructing the one-cycle initial con-
dition  is  used;  it  is  widened  to  the  new  2w  by  right-padding  it  with  1s
(Lemma 2 says that this does not change its parity set), and then its par-
ity  set  is  duplicate  with  2e+1,  with  2e+2,  and  so  on  added  (the  new  d
times  in  total)  by  using  the  algorithm  given  in  Lemma  2  (i.e.,  move  its
elements 2e+1, then 2e+2, etc. to the left). 

d, e, r, w and f  9.4

The only place now that universality could exist in the algorithm used
to find the initial condition is in d, e, r, w and f, as they have all been
defined  in  terms  of  each  other’s  previous  values,  and  as  they  are
unbounded  integers,  they  could  in  some  problem  potentially  store
enough information that they could between them in principle form a
universal system. However, that is not the case in this system; the easi-
est  way  to  demonstrate  this  is  by  deducing  a  formula  for  each  of
them.  In  what  is  written  below,  dn  refers  to  the  value  of  d  in  the

22-cycle initial condition, and likewise for the other variables. 
d  doubles  with  each  doubling  of  the  number  of  cycles,  so

dn  2nd0. 

Likewise, r doubles with each doubling of the number of cycles; so
rn  2nr0. 

log2 f n  is  4rn +wn-1 + dn,  and  as  wn-1  is  2 + log2 fn-1,  log2 fn  is

2n+2r0 + 2 + log2 fn-1 + 2nd0.  This  is  log2 fn-1 + 2 + 2n4r0 + d0,  so
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log2 fn  is log2 f0  plus the sum with i from 1 to n of 2 + 2i4r0 + d0 or

log2 f0 + 2n + 2n+1 - 14r0 + d0,  and  fn  is  2  to  the  power  of  that

expression. 

wn is therefore log2 f0 + 2n + 2n+1 - 14r0 + d0 + 2. 

Finally,  e n  is  2n+1r0 + log2 f0 + 2n + 2n - 14r0 + d0  (which  can

be  obtained  simply  by  substituting  the  other  formulas  obtained  into
its own formula). 

Therefore,  this  algorithm  for  determining  an  initial  condition,
while  somewhat  complicated,  is  definitely  not  itself  universal,  and  so
the universality discovered above is a property of system 0, and not of
the algorithm used to find its initial condition. 
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Epilogue

How I Constructed This Proof 

Upon seeing the problem, the first step was to figure out what the Tur-
ing machine was actually doing. Checking the typical behavior of the
Turing  machine  led  me  to  come  up  with  system  2  as  describing  its
behavior  more  clearly  than  the  system  0  description;  I  worked  with
system  2  as  the  base  Turing-machine-like  system  throughout  most  of
the  construction  of  the  proof.  (I  discovered  system  3  later  when  I
started  writing  the  proof  up  rigorously;  it  makes  the  proof  consider-
ably  simpler  than  trying  to  prove  things  directly  from  system  2
because  the  tape  is  not  modified  when  “going  left,”  as  it  were.  I
thought of system 1 just before writing up the proof rigorously, as an
intermediate  step  to  showing  the  equivalence  of  systems  0  and  2.)  I
then explored possible assumptions that would make the proof possi-
ble  if  true.  The  first  assumption  was  that  a  string  of  1s  and  2s  could
be  constructed  to  simulate  any  finite-state  machine  whose  input  was
the  state  in  which  it  was  encountered  and  whose  output  was  its  par-
ity;  this  assumption  makes  the  proof  almost  trivial,  but  as  Lemma  1
shows,  is  not  true.  The  second  assumption  I  explored  was  what  is
given above as Corollary 1; this did turn out to be true, and suggested
trying  to  prove  the  emulation  for  an  arbitrary  rather  than  infinite
number  of  steps.  Around  this  time,  I  had  a  vague  idea  of  what  sys-
tem�4  was  like  floating  around  my  head,  but  nothing  formal  in  this
regard.  Something  similar  to  system  5  (although  the  exact  details
changed)  is  what  I  decided  would  be  “the  system  to  aim  for,”  after
thinking  about  how  to  exploit  the  behavior  of  a  0  in  system  2  to  do
what in the terminology I use above I would describe as merging sys-
tem 4 sets into the leftmost conglomeration at the right time; I quickly
decided that system 5 was universal, and in fact Conjecture 5 was the
first  part  of  the  above  I  proved,  which  spurred  on  my  attempts  to
prove or disprove Corollary 1. 

After  that,  it  was  a  case  of  trying  to  link  the  parts  of  the  proof
together.  I  developed  a  not-quite-rigorous  proof  of  Lemma  1  (and
therefore its corollary), then expressed in terms of system 2, and made
an attempt at emulating system 5 directly with system 2, but this last
step  was  too  complicated  to  do  all  in  one  go.  (I  had  a  system  5  to
system  0  compiler  at  that  point,  some  of  which  was  constructed  by
tinkering  with  the  values  until  they  worked,  so  I  was  pretty  sure  the
emulation was possible; I just had to prove my program worked. I did
not have any explicit cyclic tag to system 5 compiler until after I had
written  the  proof,  though,  just  thought  experiments.)  At  that  point,  I
started  writing  up  this  document,  discovering  systems  1  and  3,  and
started  running  experiments  and  thinking  of  proofs  to  work  out  the
exact details of system 4. After the proof had been written (although I
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made a few corrections and tweaks to it later), I worked out the pro-
grams  in  this  document  to  be  more-or-less  direct  translations  of  the
constructions  and  definitions  given  in  the  proof  itself,  both  to  find
errors in the proof and to give demonstrations of its ideas. I used the
programs  and  proofs  as  examples  to  test  each  other  (so  it  is  possible
that bugs remain in the programs, but I suspect if there are bugs they
will turn out not to happen in the cases that can come from construc-
tions in the proof). 

Appendix

Wolfram Language CodeA.

A  Mathematica  notebook  with  Wolfram  Language  code  developed
during work on the proof is available at:
https://content.wolfram.com/uploads/sites/13/2020/03/
jcs-29-1-Appendix.nb.
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