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An Inductive Version of Nash-Williams’
Minimal-Bad-Sequence Argument
for Higman’s Lemma

Monika Seisenberger

1 Mathematisches Institut der Universitit Miinchen* * *

2 Department of Computer Science, University of Wales Swansea!

Abstract. Higman’s lemma has a very elegant, non-constructive proof
due to Nash-Williams [NW63] using the so-called minimal-bad-sequence
argument. The objective of the present paper is to give a proof that uses
the same combinatorial idea, but is constructive. For a two letter alpha-
bet this was done by Coquand and Fridlender [CF94|. Here we present
a proof in a theory of inductive definitions that works for arbitrary de-
cidable well quasiorders.

1 Introduction

This paper is concerned with Higman’s lemma [Hig52], usually formulated in
terms of well quasi orders.

If (A, <4) is a well quasiorder, then so is the set A* of finite sequences
in A, together with the embeddability relation < 4+,

where a sequence [ay,...,a,] is embeddable in [by, ..., by,,] if there is a strictly
increasing map f: {1,...,n} — {1,...,m} such that a; <a by for all i €
{1,...n}.

Among the first proofs of Higman’s lemma which all were non-constructive
the proof of Nash-Williams using the so-called minimal-bad-sequence argument
is considered most elegant. A variant of this proof was translated by Murthy via
Friedman’s A-translation into a constructive proof [Mur91], however resulting in
a huge proof whose computational content couldn’t yet be discovered. More di-
rect constructive proofs were given by Schiitte/Simpson [SS85], Murthy /Russell
[MRI0], and Richman/Stolzenberg [RS93|. The Schiitte/Simpson proof uses or-
dinal notations up to €y and is related to an earlier proof by Schmidt [Sch79], the
other proofs are carried out in a (proof theoretically stronger) theory of induc-
tive definitions. However, their computational content is essentially the same,
but does not correspond to that one of Nash-Williams’ proof. (The proof the-
oretic strength of the general minimal-bad-sequence argument is I_I%—CAO, as
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was shown by Marcone, however it is open whether the special form used for
Higman’s lemma has the same strength [Mar96].)

The objective of this paper is to present a constructive proof that captures
the combinatorial idea behind Nash-Williams’ proof. For an alphabet A con-
sisting of two letters this was done by Coquand and Fridlender [CF94]. Their
proof can quite easily be extended to a finite alphabet. To obtain a proof for
arbitrary decidable well quasiorders, more effort is necessary, as we will describe
in section

A proof of Higman’s lemma which in contrast to all proofs mentioned above
does not require decidability of the given relation <4 was given by Fridlender
[ETi07]. His proof is based on a proof by Veldman that can be found in [Vel00].
In our formulation of Higman’s lemma we will also use an accessibility notion,
as it was done in Fridlender’s proof.

2 Basic Definitions and an Inductive Characterization of
Well Quasiorders

In the whole paper we assume (A, < 4) to be a set with a reflexive and transitive,
decidable relation.

Definition 1. We use

a,b,... for letters, i.e., elements of a A,

as,bs, ... for finite sequences of letters, i.e. elements of A*,
v,w,... for words, i.e., elements of A*, 2

vs, ws, . .. for finite sequences of words, i.e., elements of A** .

By as*xa we denote the sequence obtained from the sequence as by appending the
element a. ws*w is defined similarly. At some places we add brackets to keep the
expressions legible. However, unary function application will be written without
brackets, in general.

For a finite sequence ws of non-empty words let lastsws denote the finite
sequence consisting of the end-letters of the words of ws, that iSE

lasts [wy*ayq, . .., wpka,] = [a1,...,an], n > 0.

! Whereas transitivity is only required for historical reasons, but is not used in our
proof, decidability plays an essential role.
w1 W2 W3 W4 Ws

2 Although of the same kind we distinguish be-

tween finite sequences (of letters) and words,
because they will play different rolls, as is il-

lustrated in the picture on the right.
3 In our picture we have lasts [wi, ..., ws] = as. as
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Definition 2 (Higman Embedding). The embedding relation on A* can be
inductively described by the following rules:

v <g- w v <a- w, a<ab

[] <ax[] v <ax wka vka < g« wkb

Definition 3 (Good/Bad). A finite sequence [ay,...,a,] (respectively an in-
finite sequence ap,as,...) of elements in A is good if there exist i < j < n
(1 < j <w) such that a; <4 aj; otherwise it is called bad.

Furthermore, we use the notion good(as, a) if there is an element in as, say
the i-th one, such that (as); <4 a. bad(as,a) stands for —good(as, a).

Finally, badsubseq(as) determines the first occurring bad subsequence in as:

badsubseq([]) =]

badsubseq(as)+a if bad(badsubseq(as), a),

badsubseq(as+a) = {badsubseq(aS) otherwise.

Definition 4 (Well Quasiorder). (4, <4) is a well quasiorder (wqo) if every
infinite sequence of elements in A is good.

Definition 5 (The Relation <4 and Its Accessible Part). The relation
<AC A* x A* is defined by

bs < 4 as 1+ bs = as*a for some a € A s.t. bad(as, a).

The accessible part (also called the well-founded part) of the relation <4 is
inductively given by the rule

Vbs <4 a5 accg, bs
acCg , as

and provides the following induction principle@ for any formula ¢:

Vas. Vbs < 4 as ¢(bs) — ¢(as)
Vas.accg , as — ¢(as)

Definition 6 (Well Quasiorder, Inductive Characterizatiord). (4,<,)
is a well quasiorder if acce, [] holds.

4 At some places we use a seemingly stronger induction principle where the premise
is of the form Vas.accx , as — Vbs <4 as ¢(bs) — ¢(as). This principle can be easily
derived from the above one.
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Definitions[3toBlshould be understood for arbitrary (reflexive and transitive)
relations, not only for our fixed (A, <4). We will use them also for (A%, <4-).
Moreover, the operation acc will also be applied to the relations < 4« and <,
still to be defined.

3 Towards a Constructive Proof

In order to motivate further definitions we first want to give the idea behind
the constructive proof. This is best done by showing the connection between the
classical and the constructive proof. To this end we shortly recall Nash-Williams’
minimal-bad-sequence proof and show how the main steps are captured by the
inductive proof. We also include an informal idea of the latter.

The steps of the Nash-Williams’ proof:

1. In order to show “wqo(A) implies wqo(A*)”, assume for contraction that
there is a bad sequence of words.

2. Among all infinite bad sequences we choose (using classical dependent choice)
a minimal bad sequence, i.e., a sequence, say (w;);<., which is minimal with
respect to a lexicographical order on infinite sequences of words (where w;
is less or equal we, if wy is an initial segment of wy).

3. Since w; # [], let w; = v;*a; for all 4. Using Ramsey’s theorem and the
fact that our alphabet A is a well quasiorder, we know that there exists an
infinite subsequence a,, <4 ax, <a --- of the sequence (a;);<w. This also
determines a corresponding sequence w, ..., Wy, —1, Vsy, Vg, - « -

4. The sequence wi,...,Wx,—1,Vk; Vs, - --- Must be bad (otherwise (w;)i<y
would be good), but this contradicts the minimality in 2.

In the constructive proof this steps correspond to

1. Prove inductively “acce, [] — acce . []7-

. The minimality argument will be replaced by structural induction on words.
3. Given a bad sequence ws = [wy,...,wy,] s.t. w; = v;*a;, we are interested
in all subsequences a,, <4 --- <4 a,, of maximal lengtlﬁ and their corre-
sponding sequences wi, ..., Wx;—1,Vx,,- - - 5 Uk, - 101 the proof these sequences
will be computed by the procedure forest which takes ws as input and yields
a forest labeled by pairs in A** x A. In the produced forest the right-hand
components of each path form a weakly ascending subsequence of [a1, . . ., a;]

[\

5 In our paper we only deal with this second definition of a well quasiorder since it is
very suitable for a constructive proof. For sake of completeness we give an argument
for the equivalence of definition ] and definition [B. To prove that definition [6limplies
definition [ one shows more generally that for all as such that acc« , as holds every
infinite sequence, starting with as, is good. The reverse direction is an instance of
Brouwer’s axiom of bar induction.

5 By maximal length we mean that we only look at those subsequences which are
ascending, but not contained in other ones, for instance our chosen subsequences of
[1,4,3,0,3] are [1,4], [1,3,3] and [0, 3].
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and the corresponding sequence of form w1, ..., wx,—1, Vs, .- -, Vs, could be
read off in the left-hand component of the endnode of such a path. If we
extend the sequence ws badly by a word v*a, then in the existing forest
either new nodes, possibly at several places, are inserted, or a new singleton
tree with node (ws+v,a) is added. Now the informal idea of the inductive
proof is: if in forestws not infinitely often new nodes could be inserted and
if also not infinitely often new trees could be added, then ws could not be
extended badly infinitely often. Formally this will be captured by the state-
ment: Yws. accg , badsubseq(lasts ws) — acc forest ws — acc . ws
4. The first part of item 4 corresponds to lemma [

We proceed with the formal definition of forest and the relation < on forests.

Definition 7. We use

t for elements in T'(A** x A), i.e., trees labeled by pairs in A** x A,
f,ts  for elements in (T'(A** x A))*, i.e., forests.

The tree with root (ws, a) and finite sequence of immediate subtrees ts is written
(ws, a)ts. We use the destructors left and right for pairs and the destructors root
and subtrees for trees, hence root (ws, a)ts = (ws,a) and subtrees (ws, a)ts = ts.
For better readability we set:

newtree (ws, a) = (ws, a)[],

roots [t1,...,ts) := [rootty, ..., roott,],
lefts [(us1,a1), -, (WSp,an)] = [151,...,08y],

rights [(us1, a1), ..., (WSp, an)] := [a1,...,ap].

Definition 8. Let ws € A™ be a sequence of non-empty words. Then forest ws €
T((A** x A))* is defined recursively by: AR

forest [] =],

{ insertforest(forest ws, w,a)  if good(badsubseq(lasts ws), a)
forest ws*(w+a) = .
(forest ws) * newtree (ws*w, a) otherwise,

7 For sake of simplicity we define insertforest by a map operation, i.e., we insert a new
node at every possible place. However, it would already suffice to insert at least once
and it even could be arbitrarily chosen where to insert.

8 In case of a finite alphabet forest ws has only non-branching trees where the right-
hand components of such a tree are constant. So, if in the notion of [CE94] we
have To(us, ws) or Ro(us,ws), in our setting the sequence vs could be read off as the
left-hand component in the endnode of the tree whose right-hand components are 0.
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where

if right (roott) <4 a
insertforest(f,w,a) = map | At inserttree(t, w, a) f
t

and

inserttree((us, a')ts, w,a) =

(us, a’)insertforest(ts, w,a)  if good(rights (rootsts), a),
(us, a’) (ts * newtree (vsxw, a)) otherwise.

Definition 9. Let f and f’ be forests in T'((A** x A))*. Then

f! = insertforest(f, w, a) for some w € A*,a € A
f' < f = { such that f’ # f and the left-hand component of
each label in f’ is a bad sequence in A**.

Lemma 1. Let ws be a bad sequence of non-empty words. Then in every label
of forest ws the left-hand component is a bad sequence.

Proof. IND (structure of ws). 1. ws = []. Clear.

2. Assume that every left-hand component of a label in forest ws is bad and
look at the nodes in forest ws*(w*a) where ws*(w=*a) is assumed to be bad.

Case 1: bad(badsubseq(lastsws), a). Then in forest ws*(w+*a) only one node
was added, i.e., the node with label (ws*w,a) where by assumption wsxw is
bad.

Case 2: good(badsubseq(lastsws),a). In this casd] some nodes of the form
(usxw, a) were inserted in forest ws where vs is a left-hand component of a node in
forest ws which by assumption is bad. Assume good(us, w), that is, Ji(vs); <a» w
and show L.

Case 2.1: (uvs); is a word in ws. Then, by the Higman embedding we obtain
(vs); <ax wxa — contradicting the badness of ws*(w+a).

Case 2.2: (1s); is a word in ws cut by an end letter ag and by the construction
of the forests it holds ag < a1 Then, again by the Higman embedding it follows
(vs);*ap <a+ wxa. Contradiction. O

Lemma 2. i) acc []. ii) acc< f Aacex [t] — aces f * t.

Proof. 1) acc< [] holds by definition, since there is no tree in which new nodes
could be inserted. ii) Clear, since insertforest is defined by a map-operation. 0O

9 Here, we only sketch the combinatorial part of the proof; a formal proof involves an
induction on the tree structure.
10 Note that transitivity is not required.
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Lemma 3. Assume acc, []. Then Vws. acc ,. ws — Va.acc [newtree (ws, a)].

Proof. IND;(accg ,. ): IH1: Vs < 4+ ws, Va. acc [newtree (us, a)]. Let a € A. In-
stead of proving acc [newtree (ws, a)] we show more generally that this assertion
holds for all ¢ with root¢ = (ws, a) such that

(a) the subtrees of ¢ form a forest in accx and

(b) rights (roots (subtreest)) is sequence in acc¢ ,

We do this by main induction on (b) and side induction on (a), i.e., formally
we prove

Vas. accg , as —

Vis. accs ts —
Vt. roott = (ws,a) A subtreest = ts A as = rights (roots (subtreest)) —
acc [t].

IND2(accg, ). Assume that we have an as such that acc, as.

INDs(acc< ). Let #s be such that acc ts and fix ¢ such that roott = (ws, a),
subtreest = ts, and as = rights (roots (subtreest)).

We have to prove acc [t]. By the definition of accx and < if suffices to show
V' [t'] < [t] — accx [t'] where t’ = inserttree(t, w,a’) # t for some w € A*,a’ € A
and all left-hand components of nodes in ¢’ are required to be bad. We prove the
assertion by case distinction on the definition of inserttree.

Case 1: ' = (ws,a) (is * newtree (ws*xw, a’)) for some w and a’ such that
bad(as,a’). Then we have

roott’ = (ws,a),
subtreest’ = s * newtree (ws*w, a’),

asxa’ = rights (roots (s x newtree (wsxw, a’))).

Since all left-hand components in t’ are supposed to be bad, in particular, we have
that ws+w is bad, i.e., wsxw < 4+~ ws. By IH; we obtain acc [newtree (ws*w, a’)],
and hence by lemma

acc ts * newtree (ws*w, a’).

Now, since asxa’ < 4 as, we may apply IHa to asxa’, ts * newtree (ws*w, a’) and ¢’
and conclude acc [t'].

Case 2: t' = (ws, a) insertforest(ts, w,a’) where a’ such that good(as,a’). In
this case we have

roott’ = (ws, a),
subtreest’ = insertforest(ts, w, a’),
as = rights (roots (subtreest')).

' Tt’s intended that [t] lies in the image of the partial function forest, however we
don’t need this restriction in the formulation of the lemma.
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Moreover [t'] < [t] implies subtreest’ < subtreest = s, and by IH3, applied to
subtreest’ and ¢', we end up with acc [t'].

Now, the proof of the general assertion is completed, and we may put as = [],
f =] and t = newtree (ws, a). Since we have acc¢, [] by assumption and acc []
by lemma 2] we obtain acce ,. ws — acc [newtree (ws, a)]. O

4 The Proof of Higman’s Lemma

Proposition 1 (Higman’s Lemma). accg, [] — acce . []-
Proof. Assume accg, []. We show more generally

Vas. acCg, as —
Vf. acc< f—
Vws. as = badsubseq(lastsws) A f = forestws — acc . ws.

IND; (acc«, ). Let as be such that acc« , as and IH; : Vs <4 as,Vf.accs f —
Vws. bs = badsubseq(lastsws) A f = forestws — acce . ws.

INDy(accx ). Let f bes.t accs f and IHa: V7 < f, Vws. badsubseq(lasts ws) =
as N f' = forestws — acc . ws and assume that we have ws such that as =
badsubseq(lastsws) and f = forest ws. In order to prove acc« ,. ws we fix w s.t.
ws*w is bad and show acc« ,. ws+xw by induction on the structure of w:

IND3(w). 1. accg ,. ws[] holds by definition of acc,. -

2. Now, assume that we have a word of form w+a. We show acc . ws*(w+a)
by case analysis on whether or not bad(as, a).

Case 2.1: bad(as, a). Then we have

as*a = badsubseq(lasts (ws*(wxa))),

f * newtree (ws+w, a) = forest (wsx(wxa)).

First, we show acc< f * newtree (ws*w, a). By assumption we already have acc f
and by IH3 acc . ws*w. Hence, by lemma[3] we obtain acc< [newtree (ws*w, a)]
and by lemma [2] we may conclude

accx f % newtree (wsxw, a).

Now we are able to apply IH; (to asxa, f*newtree (ws*w,a) and ws*(w*a)) and
end up with accg ,. wsk(w*a).
Case 2.2: good(as, a). In this case it follows

as = badsubseq(lasts (wsx(wxa))),

insertforest(f, w, a) = forest (ws*(wxa)).

By lemma [T all left-hand components of nodes in insertforest(f, w,a) are bad.
Moreover, insertforest(f,w,a) # f since good(as,a) and badsubseq(lastsws) =
as = rights (roots (forest ws)) imply that indeed at least one node was inserted.
Hence, we obtain

insertforest(f,w,a) < f
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and we may apply IHs (to insertforest(f,w,a) and ws*(w*a)) and conclude
acC ,. wsk(wka).

This completes the proof of the general assertion. Now, by putting as =
[1,f =[] and ws = [] and the fact that acc< [] holds by definition we obtain
acce ] - acce. (] 0

5 Conclusion

We presented a new constructive proof of Higman’s lemma for arbitrary decid-
able well quasiorders in a theory of inductive definitions. We hope not only that
this proof gives more insight in the interplay of classical proofs using a minimal
bad sequence argument and constructive proofs, but also that this strategy is ex-
tendible to other non-constructive theorems, for instance Kruskal’s tree theorem
and the so-called extended Kruskal theorem, also known as Kruskal’s theorem
with gap condition. Both have proofs using a minimal-bad-sequence argument
(see [INWG63| resp. [Sim85]), however no constructive proof at all is known for
the latter. Kruskal’s theorem was proved constructively (see [RW93] for a proof
using ordinal notations or [Sei01] for an inductive reformulation of this proof,
and [Vel0O] for a proof not requiring decidability). These proofs, however, are
quite involved in comparison with the minimal-bad-sequence proof.

We do not claim that our proof of Higman’s lemma is ‘better’ than the other
constructive proofs mentioned in the introduction, but, as already stated, it uses
a different combinatorial idea, hence results in another algorithm. An analysis
of these different algorithms is still missing and could give rise to an interesting
case study in machine supported theorem proving.
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