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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES

Edward PF. Moore

INTRODUCTION

This paper is concerned with finite automata1 from the
experimental point of view. This does not mean that it reports the
results of any experimentation on actual physical models, but rather it
is concerned with what kinds of conclusions about the internal conditions
of a finite machine it is possible to draw from external experiments. To
emphasize the conceptual nature of these experiments, the word "gedanken-
experiments” has been borrowed from the physicists for the title.

The sequential machines considered have a finite number of states,
a finite number of possible input symbols, and a finite number of possible
output symbols. The behavior of these machines is strictly deterministic
(i.e., no random elements are permitted in the machines) in that the
present state of a machine depends only on its previous input and previous
state, and the present output depends oniy on the present state.

The point of view of this paper might alsc be extended to pro-
babilistic machines (such as the noisy discrete channel of communication
theorye), but this will not be attempted here.

EXPERIMENTS

There will be two kinds of experiments considered in this paper.
The first of these, called a simple experiment, is depicted in Figure 1.

"The term "finite" is used to distinguish these automata from Turing
machines [considered in Turing's "On Computable Numbers, with an
Application to the Entscheldungsproblem", Proc. Lond. Math. Soc.,
(1936) Vol. 24, pp. 230-265] which have an infinite tape, permitting
them to have more complicated behavior than these automata.

2Defined in Shannon's "A Mathematical Theory of Communication”, B.S.T.J.
Vol. 27, p. %o06.
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FIGURE 1. Schematic Diagram of a Simple Experiment

A copy of the sequential machine beidg observed experimentally

willl receive successively certain input symbols from the experimenter.

The sequence of output symbols will depend on the sequence of input

symbols (the fact that the correspondence is between sequences rather than
individual symbols is responsible for the terminology "sequential machine")
in a way that depends on which particular sequential machine is present
and its initial state.

The experimenter will choose which finite sequence of input
symbols to put into the machine, either a fixed sequence, or one in which
each symbol depends on the previous output symbols. This sequence of
input symbols, together with the sequence of output symbols, will be called
the outcome of the experiment. In addition there can be a conclusion which
the experimenter emits, the exact nature of which need not be specified.
The conclusion might be thought of as a message typed out on a typewriter,
such as "The machine being experimented on was in state g, at the
beginning of the experiment”. It i1s required that the conclusion depend
only on which experiment is being performed and what the sequence of output
symbols was.

The second kind of experiment considered in this paper is the
multiple experiment, shown in Figure 2.

In this case the experimenter has access to several coples of the
same machine, each of which is initially in the same state. The experi-
menter can send different sequences of inputs to each of these K copies,
and receive from each the corresponding output sequence.

In each of these two kinds of experiments the experimenter may
be thought of as a human being who is trying to learn the answer to some
question about the nature of the machine or its initial state. This is
not the only kind of experimenter we might imagine in application of this
theory; in particular the experimenter might be another machine. One of
the problems we consider is that of giving explicit instructions for
performing the experiments, and in any case for which this problem is
completely solved it is possible to build a machine which could perform
the experiment.
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FIGURE 2. ©Schematic Diagram of a Multiple Experiment

EXAMPLES

It may be instructive to consider several situations for which
this sort of theory might serve as a mathematical model.

The first example is one in which one or more coples of some
secret device are captured or stolen from an enemy in wartime. The
experimenter’'s job 1s to determine in detail what the device does and how
it works. He may have partial information, e.g., that it is a bomb fuze or
a cryptographic device, but its exact nature is to be determined. There
is one special situation that can occur in such an experiment that is
worthy of note. The device being experimented on may explode, particularly
if it is a bomb, a mine, or some other infernal machine. Since the
experimenter is presumably intelligent enough to have anticipated this
possibility, he may be assumed to have conducted his experimentation by
remote control from a safe distance. However, the bomb or mine is then
destroyed, and nothing further can be learned from 1t by experimentation.
It is interesting to note that this situation can be represented exactly
by the theory. The machine will have some special state Ay the exploded
state. The transitions defining the machine will be such that there exists
a sequence of inputs that can cause the machine to go into state q,» but
no input which will cause it to leave the state. Hence, if the experi-
menter happens to give the wrong sequence to the machine, he will be unable
to learn anything further from this copy of the machine.
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There is a somewhat artificial restriction that will be imposed
on the action of the experimenter. He 1s not allowed to open up the
machine and look at the parts to see what they are and how they are inter-
connected. In this military situation, such a restriction might correspond
to the machine being booby trapped so as to destroy itself 1f tampered with.
It might also correspond to an instance where the components are so
unfamiliar that nothing can be gained by looking at them. At any rate, we
will always impose this scmewhat artificial restriction that the machines
under consideration are always just what are sometimes called "black boxes",
described in terms of their inputs and outputs, but no internal construction
information can be gained.

Another application might occur during the course of the design
of actual automata. BSuppose an engineer has gone far enough in the design
of some machine intended as a part of a digital computer, telephone central
office, automatic elevator control, etc., to have described his machine in
terms of the list of states and transitions between them, as used in this
paper. He may then wish to perform some gedanken-experiments on his
intended machine. If he can find, for instance, that there is no experi-
mental way of distinguishing his design from some machine with fewer
states, he might as well build the simpler machine.

It should be remarked that from this engineering point of view
certain results closely paralleling parts of thils paper (notably the
reduction described in Theorem 4) have recently been independently found by
D. A. Huffman in his Ph.D. thesis in Electrical Engineering (M.I.T.). His
results are to appear in the Journal of the Franklin Institute.

Still another situation of which this theory is a mathematical
model occurs in the case of the psychiatrist, who experiments on a patient.
He gives the patient inputs (mainly verbal), and notes the outputs (again
mainly verbal), using them to learn what is wrong with the patient. The
black box restriction corresponds approximately to the distinction between
the psychiatrist and the brain surgeon.

Finally, another situation of which this might conceivably be a
mathematical model occurs when a scientist of any sort performs an experi-
ment. In physics, chemistry, or almost any other science the inputs which
an experimenter puts into his experiment and the outputs he gets from it
do not correspond exactly to the things the experimenter wishes to learn
by performing the experiment. The experimenter i1s frequently forced to ask
his questions in indirect form, because of restrictions imposed by
intractable laws of nature. These restrictions are somewhat similar in
their effect on the organization of the experiment to the black box
restriction.
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 133

The analogy between this theory and such scientific experimenta-
tion is not as good as in the previous situations, because actual experi-
ments may be continuous and probabilistic (rather than finite and
deterministic), and also because the experiment may not be completely
isolated from the experimenter, i.e., the experimenter may be experimenting
on a system of which he himself i1s a part. However, certain qualitative
results of the theory may be of interest to those who like to speculate
about the basic problems of experimental science.

CONVENTIONS
Each machine will have a finite number n of states, which will
be called Qs Qps c+cr G @ finite number m of possible input symbols
which will be called S1, Sg, ey Sm, and a finite number p of possible
output symbols, which will be called Sm+1, Sm+2, s Spype In several
examples used in this paper we will have m =2, p=2, S, =3, =0,

1 3
and S2 = Sh = 1.

Time is assumed to come in discrete steps, so the machine can be
thought of as a synchronous device. Since many of the component parts of
actual automata are variable in their speed, this assumption means the
theory has not been stated in the most general terms. In practice, some
digital computers and most telephone central offices have been designed
asynchronously. However, by providing a central "clock" source of uniform
time Intervals it 1is possible to organize even asynchronous components so
that they act in the discrete time steps of a synchronous machine. Digital
computers and other electronic automata are usually built in this
synchronous fashion. The synchronous convention is used in this paper since
it permits simpler exposition, but the fact that these results can be
translated with very little change into asynchronous terms should be
obvious from the fact that Huffman wrote his paper in terms of the
asychronous case.

The state that the machine wlll be in at a given time depends
only on its state at the previous time and the previous input symbol. The
output symbol at a given time depends only on the current state of the
machine. A table used to give these transitions and outputs will be used
as the definition of a machine. To illustrate these conventions, let us
consider the following example of a machine:
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134 MOORE

Machine A
Present State

Previous Previous Input Present Present
State 0 1 State Output

a, ay Qs q, 0

a5 q, s a, 0

Q5 ), ay q5 0

Qy, s a5 ay 1

These two tables give the complete definition of a machine
(labelled machine A, for future reference). In the left table, the present
state of the machine is given as a function of the previous state and the
previous input. In the right table, the present output of the machine is
given as a function of the present state.

An alternate way of representing the description of a machine
can also be used, which may be somewhat more convenient to follow. This
other representation, called a transition diagram, consists of a graph
whose vertices correspond to the states of the machine represented, and
whose edges correspond to the possible transitions between those states.
Each vertex of this transition diagram will be drawn as a small circle,
in which 1s written the symbol for the corresponding state, a semicolon,
and the output which the machine gives in that state.

Each pair of these circles will be joined by a line if there is
a direct transition possible between the corresponding pair of states. An
arrowhead will point in the direction of the transition. Beside each such
line there will be written a 1list of the possible input symbols which can
cause the transition. Below is given a transition disgram for machine A:

FIGURE 3. Transition Diagram of Machine A
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GEDANKEN-EXPERIMENTS ON SEQUENTTIAL MACHINES 135

An experiment can be performed on this machine by giving it some
particular sequence of inputs. As an example, the sequence 000100010
might be used. If the machine is initially in the state qqs the outcome
of this experiment would be:

¢} 0 9] 1 0 0 0 1 0
Q @ 9 9 9 9 9 9 9
0 1 0 0 o] 1 o] 0 0

where the first line of the above is the sequence of inputs, the second
line is the sequence of states, and the third line is the sequence of
outputs. The last two lines can be obtained from the first by use of the
tabular definition of machine A or its transition diagram. It should be
emphasized that only the bottom line of the above i1s observable by the
experimenter, and the sequence of states is hidden away, usable only in
arriving at or explaining the observable results of the experiment.
Suppose that the same sequence of inputs mentioned above 1is
presented to machine A, initially in some other state. The outcome of the
experiment would be one of the following, according as the initial state

is gy, g5, Or qy:

0 0 0 1 0 0 0 1 0
Q 9, @ 9 95 9 9 9 U
0 0 1 0 0 1 0 0 0
o] 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 o]
0 0 0 1 0 0 0 1 0
C].)_L q2 q] QJ_} q2 q1 Q.L‘_ q2 q5
1 0 0 1 0 0 1 0 0

Even though this example of an experiment involved putting a
predetermined sequence of input symbols into the machine, it should not be
assumed that this is the only kind of experiment permitted. In general,
the inputs to the machine can depend on its previous outputs, permitting
the course of the experiment to branch.

There would be several ways of specifying such a branching
experiment, but for the purposes of this paper, a loose verbal description
of such experiments will be used. If it were desired to make these
descriptions more formal, the experimenter could be described as another
sequential machine, also specifiied in terms of its internal states, inputs,
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136 MOORE

and cutputs. The output of the machine belng experimented on would serve
as input to the experimenter and vice versa. The experimenter would also
have another output in which it would summarize the results of the experi-
ment, indicating what has been learned about the machine by the experiment.

In the simple sequence glven above as an example of an experiment,
it is natural to define the length of the experiment as 9, since this 1is
the number of terms in the input sequence, and the number of discrete steps
of time required to perform this experiment. But in the case of an experi-
ment with possible branches during its performance, some of these branches
may lead to a conclusion more quickly than others. In this case the length
required for the longest possible alternative would be taken as the length
of the experiment.

Although a branching experiment 1s the most general type of
deterministic experiment, most of the experiments which will be reguired
in the proof's of this paper can simply be sequences. For example, the
shortest simple experiment which can be used to distinguish between two
states (of the same or different machines) is merely a sequence. For if
this is the shortest experiment, the result is not known until the last
step, 1.e., the output sequences coming to the experimenter are the same
except for the last term. This term comes toc late to affect any part of
the experiment.

Two machines, S and T, will be sald to be isomorphic if the
table describing S can be obtained from the table describing T by
substituting new names for the states wherever they occur as either the
arguments or the entries of the table. Clearly, isomorphic machines will
always have the same behavior, and will be indistinguishable from one
another by any experiment.

Since distinguishability has already been referred to several
times, and is vital to every proof in this paper, it will be explained in
some detail.

A state 44 of a machine S will be sald to be indistinguishable
from a state qj of 3 1if and only if every experiment performed on S
starting in state a4 produces the same outcome as it would starting in
state qj.

A pair of states will be said to be distinguishable if they are
not indistinguishable. Hence, dy is indistinguishable from q. if and
only if there exists some experiment of which the outcome depends on which
of these two states S was in at the beginning of the experiment.

Similarly, we can say that a state a4 of a machine S is
distinguishable (or indistinguishable) from a state qj of a machine T if
there exists an experiment (or there does not exist an experiment) of which
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL. MACHINES 137

the outcome starting with machine S 1in state a4 differs from the
outcome starting with machine T 1Iin state q..

Finally, distinguishability and indistinguishability can be
defined for pairs of machines. A machine S will be said to be
distinguishable from a machine T 1f and only if at least one of the
following two conditions hold: eilther

(1) there exists some state ay of 3, and some experiment

the outcome of which beginning with S in state qy

differs from its outcome beginning with T 1in each of 1its

states, or

(2) there exists some state qj of T, and some experiment

the outcome of which beginning with T in state q.

differs from its outcome beginning with S in each of

its states.

S5 and T will be said to be indistinguishable 1if and only if
they are not distinguishable, or, in other words, if both of the following
two conditions hold:

(1) for every state a3 of S, and every experiment, there

exists a state q. of T such that the experiment

beginning with machine S 1in state a3 produces the same

outcome as the experiment beginning with machine T 1n

state qj, and

(2) for every state qj of T, and every experiment, there

exists a state ay of S such that the experiment beginning

with machine T 1in state qj produces the same outcome as

the experiment beginning with machine S 1in state q; -

If S 1is indistinguishable from T, then the two machines are
alike in their behavior (although they may differ in their structure), and
may be thought of as being interchangeable. In any practical application
of real machines, the manufacturer can take advantage of this equivalence,
and produce whichever of the two machines is cheaper to build, easier to
repair, or has some other desirable internal property.

Distinguishability and indistinguishability are defined here as
binary relations. That is, they hold between a pair of machines or a pair
of states. This does not mean that an experiment which distinguishes be-
tween them must be a multiple experiment. In many cases a simple experi-
ment suffices. In any event, we perform the experiment on just one of the
two machines or states we wish to distinguish, and its outcome depends on
which of the two was present. In these cases we may think of the conclu-
sion which the experimenter reaches as being of the form: "If the machine
being examined was either S or T, then it is now known to be T."
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This is certainly an extremely elementary kind of a conclusion,
which makes a binary choice between two alternatives. Part of this paper
will deal with methods of building up more complicated conclusions from
such elementary ones.

An obvious modification of distinguishability 1s to state whether
the machines which can be distinguished require multiple experiments to
tell them apart or not. In the case of pairs of states, the two kinds of
distinguishability can easily be seen to coincide.

In the course of the proofs given below, it will frequently be
convenient to look at experiments in terms of what is actually happening
inside the machines. Although the experimenters are not permitted to look
inside the black boxes, we are under no such restriction. In fact, we will
be able to learn more about the limitations imposed by the black box
restriction if we have no such restriction on our observations, construc-
tions, or proofs.

AN ANAT,OGUE OF THE UNCERTAINTY PRINCIPLE

The first theorem to be proved will be concerned with an
interesting qualitative property of machines.

Theorem 1: There exists a machine such that any pair of its states are
distinguishable, but there is no simple experiment which can determine
what state the machine was in at the beginning of the experiment.

The machine A, already described on the previous pages, satis-
fies the conditions of the theorem. The previously described experiment
will distinguish between any pair of states, except the pair (qJ, qi).
That is, given any other pair of states, if it is known that the machine
is in one state of this pair at the beginning of the experiment, applying
this experiment will give an output that depends on which state the
machine was in. In order to distingulsh between a, and qB, the experi-

ment should consist of applying the sequence 11. The outcome of this
will be:

11 [

o 0 o 1

Thus there exists a simple experiment which can distinguish
between any pair of states. PFurthermore, the multiple experiment which
uses two copies of the machine, sending one of the two previously men-
tioned sequences to each, can obtain enough information to completely
specify what state the machine was in at the beginning of the experiment.
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 139

To complete the proof, it need only be shown that given only one
copy of machine A, there 1s no experiment which can determine whether it
was in state q, at the beginning of the experiment.

It is clear that any experiment will distinguish between q,
and aQ, since the first output symbol will be different. But any simple
experiment that distinguishes a, from Py cannot distinguish a, from
qi. To see this, note that any experiment which begins with the input 1
does not permit q, to be distinguished from d, (since in either case
the first output is 0 and the second state is qi, so that no future
inputs can produce different outputs). Similarly any experiment which
begins with the input 0 does not permit q, to be distinguished from q3.

This result can be thought of as being a discrete-valued analogue
of the Heisenberg uncertainty principle. To point out the parallel, both
the uncertainty principle and this theorem will be restated in similar
language .

The state of an electron E will be considered specified if
both its velocity and its position are known. Experiments can be performed
which will answer either of the following:

(1) What was the position of E at the beginning of the experiment?
(2) What was the velocity of E at the beginning of the experiment?

In the case of machine A, experiments can be performed which
will answer either of the following:

(1) Was A in state a, at the beginning of the experiment?
(2) Was A 1n state A5 at the beginning of the experiment?

In elther case, performing the experiment to answer question 1
changes the state of the system, so that the answer to question 2 cannot
be obtained. In other words, it 1s only possible to gain partial informa-
tion about the previous history of the system, since performing experiments
causes the system to "forget" about its past.

By analogy with the uncertainty principle, could we also state
that the future state of machine A cannot be predicted from past experi-
mental results? Here the analogy ends. Even though we cannot learn by
experiment what state machine A was in at the beginning of the experiment,
we can learn what state it is in at the end of the experiment. 1In fact,
at the end of the first experiment described, machine A will be in one
particular predetermined state (independent of its initial state), namely
the state ds -

Despite the incompleteness of the analogy, it does seem interest-
ing that there is an analogue of the uncertainty principle in this discrete,
deterministic system. Any applications of this example to causallty, free
will, or other metaphysical problems will be left to the reader.
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FURTHER THEOREMS ON DISTINGUISHABILITY

Theorem 2: Given any machine S and any multiple experiment performed on
S, there exist other machines experimentally distinguishable from S for
which the original experiment would have had the same outcome.

Ilet S have n states Qyseee Gy and let the experiment have
length k. Then define a machine T having n(k+i) states Qys Aps wees
qn(k+1) as follows:

If the machine S goes from state as to qj when it receives
the input symbol a, then let T go from Listn to qj+(t+1)n under the
same input, for all t such that 0 <t <k, but let T go from a4 .xn
to qj+kn'

If the machine S has output symbol b 1n state ey let T
have output symbol b in state A4 4tn’ for 0 <t <k, but let T have
some output symbol different from b in state 4 4un®

Then at the step t+1 of any simple experiment, the machine T
will be in state 4 4tn whenever machine S 1s 1In state a; and
0 <t <k. But at any step later than the kth, machine T will be in
state A 4xn Thus it can be seen that for the first k steps of any
simple experiment, the outputs of S and T will be alike. But after
the kth step, the outputs of S and T will always be different. The
extension to multiple experiments 1s immediate.

This result means that it will never be possible to perform
experiments on a completely unknown machine which will suffice to identify
it from among the class of all sequential machines. If, however, we
restrict the class to be a smaller one, it may be possible. In particular,
much of the rest of this paper will be concerned with the case where the
class consists of all machines with n states or fewer, m input symbols
or fewer, and p output symbols or fewer. Such a machine will be called

an (n, m, p) machine.

Definition: A machine S will be said to be strongly connected if for
any ordered pailr (qi, g.) of states of 8, there exists a sequence of
inputs which will take the machine from state qs to state qj.

The term “"strongly connected" is used since any such machine will
have a transition diagram which is a connected graph, but the converse 1is
not true. A counter-example to the converse is given by the following
machine:
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 141

Machine B
Present State
Previous Previous Input Present Present
State 0 1 State Output
q, s As q, 0
a, q, dsx s 1
Qs Q, a, 45 0
ay a, a, dy,

Q30

FIGURE 4. Transition Diagram of Machine B

Theorem 3: If S 1is a strongly connected machine, and T 1is indistin-
guishable from S by any simple experiment, then for every state q4 of

3 there exists a state q.j of T which is indlistinguishable from ay by
any simple experiment.

Since T 1is indistinguishable from S by any simple experiment,
we have, as one of the two conditions implied by indistinguishability, that
given any state a; of 3, and any simple experiment on S beginning in
state ay there exists a corresponding state qj of T such that the
same experiment, starting with a copy of T 1in state q., will produce
the same sequence of output symbols. This theorem states that if S 1is
strongly connected, qj can be chosen independently of the experiment.
That is, qj corresponds to a4 for all experiments, rather than just
this particular experiment.

To prove the theorem first note that if we consider an experiment
consisting of any sequence of input symbols applied to machine S 1in state
a,» there must have been states of T which would have given the same
sequence of outputs. With each such sequence of input symbols, we assoclate
the set cof states that machine T could be in at the end of this seguence
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after having produced the same sequence of outputs that S would produce
starting in state a, - Then if we lengthen the sequence of input symbols,
the number of elements in the associated set can only decrease, but it can
never become zero (or else this would give an experiment which distinguishes
3 from T).

Hence, we can choose a particular sequence and extend it until
the number of elements in the assoclated set of states of T can no longer
be decreased by any further extension. Then we add to this sequence a
further sequence which will cause machine S to go successively into every
one of its states at least once, i1f the entire sequence is applied starting
in state a, -

Then for each state aj of S, consider the set Y of states
which are assoclated with the subsequence obtalned by truncating the
original sequence at the last time it causes S to go into state Q-

Then Y 1s non-empty, and every member is indistinguishable from aj -
This follows from the fact that if qj is a member of Y and is distin-
guishable from Ay s the experiment that distinguishes them defines a
sequence, which when added to the truncated sequence above, would give a
further reduction of the number of elements in its associated set. But
this contradicts the definition of the original sequence.

Note the words "strongly connected" cannot be removed from the
statement of Theorem 3. A counter-example 1s given by machine B, defined
just before Theorem 3, which is indistinguishable by any simple experiment
from the machine B!, defined by removing the bottom row from each of the
two tables that define machine B. However, the state dy of machine B
is distinguishable from every state of B'.

Theorem 4: The class of all machines which are indistinguishable from a
given strongly connected machine S by any simple experiment has a unigue
(up to an isomorphism) member with a minimal number of states. This unique
machine, called the reduced form of S, 1is strongly connected, and also
has the property that any two of its states are distinguishable.

Given any machine T, indistinguishable from S, define the
relation R to hold between states of S and states of T 1if they are
indistinguishable by a simple experiment. That is, the state 4, of 3
will have the relation R to the state q. of T if and only if there is
no simple experiment which can distinguish them.

Then by Theorem 3 the domain of the relation R 1is the set of
all states of S. And, after verifying the transitivity of indistinguish-
ability it can be seen that any two states of § are indistinguishable
from each other if and only if they are indistinguishable from the same
state of T. Hence, the number of equivalence classes into which the
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states of S are partitioned by the equivalence relation of indistin-
guishability is the smallest number of states which T can have.

Let us define a machine T* with exactly this many states,
associating each state with one such equivalence class. We can define the
output symbol for each state of T* to be the output symbol for any state
in its equilvalence class, since 1f the states are indistinguishable, they
must give the same output symbols. We define the transitions by letting
state ay of T* go into state q. of T* wupon receiving the input
symbol a, if and only if some member of the equivalence class associlated
with q; goes into some member of the equivalence class associated with
g. upon receiving the input symbol a. There is never any ambiguity in
this definition, since indistinguishable states cannot have transitions
which take them into distinguishable ones (or else this would give a way
of distinguishing the original indistinguishable states).

Next, T* can be seen to be indistinguishable from & as an
Immediate conseqguence of its definition. Also T* 1is strongly connected,
since to go between states o and q. of T*, use the sequence which
goes from any state in the equivalence class assoclated with q; to any
state in the equivalence class asscciated with qj.

Then to show that T* 1s unique up to an isomorphism, consider
any other machine T, having the same number of states, and also indis-
tinguishable from 8. Then since T will also be indistinguishable from
T*, and T* 1is strongly connected we can apply Theorem 3. Then defining
another relation R as done earlier in the proof, note that it can be seen
to be a 1:1 correspondence between the states of the two machines, and in
fact, it is the desired isomorphism.

Definition: A machine S will be said to be in reduced form, if and only
if S 1is the reduced form of 9.

Theorem 5: If S 1s a strongly connected machine, then S 1s in reduced
form, if and only if any pair of its states are distinguishable. To prove
the converse, consider the relation of indistinguishability as in the proof
of Theorem 4: 1t partitions the states of S into equlvalence classes,
each having just one member. Hence, the reduced form of 3 as constructed
above has exactly as many states as S, and the uniqueness of the reduced
form of S completes the proof.

The following is an example of a machine which this theorem shows
to be not in reduced form. This particular example has just one pair of
states which are indistinguishable:
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Machine C
Present State
Previous Previous Input Present Present
State 0 1 State Output
q, a, ad, 944 Y
s a5 Q, a5 1
Qs a, a, ds Y

FIGURE 5. Transition Diagram of Machine C

In connection with these theorems, it might be mentioned that not
every machine indistinguishable from a strongly connected machine is
strongly connected. The machines B and Bt, previously described, also
serve as an example of this.

However, since the reduced form of a machine is unique and has
no indistinguishable states, it may be thought of as a simplified version
of the machine, with all unessential parts of i1ts description removed.

The reduction of a machine to its reduced form is closely related to one
of the steps proposed by D. A. Huffman as a step in the design of
sequential machines.

The reduced form will be considered the natural form in which to
describe a strongly connected machine, and the remaining theorems of this
paper will be written in a form so as to apply directly tc machines in
reduced form. The indirect application of these results to other strongly
connected machines is also sometimes possible.
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THEOREMS CONCERNING LENGTHS OF EXPERIMENTS

The theorems proved heretofore have mainly been concerned with
qualitative questions, i.e., whether or not it is possible to perform
experiments which answer questions about the current state of a machine or
1ts internal structure. The remaining theorems will be concerned with how
many steps these experiments require, and their proofs will include methods
for designing the experiments.

Theorem 6: If S 1is an (n, m, p) machine such that any two of its
states are distinguishable, then they are distinguishable by a simple
experiment of length n-1.

For each positive integer k, we define the relation Rk to
hold between any two states a5 and qj of & 1if and only if qy is
indistinguishable from qj by any experiment of length k. Since each
Rk can be seen to be an equivalence relation, it defines a partition Pk
of the set Z of states of 3 into equivalence classes.

Then Pk+1 is a refinement of Pk; that is, if two states are
indistinguishable by any experiment of length k+1, they are indistin-
gulshable by an experiment of length k. Further, if Pk does not sub-

divide Z 1into subsets having Jjust one member, then P is a proper

refinement of Pk' To show this, choose any two statesk+éi and q.j which
are indistinguishable by an experiment of length k. Since by hypothesis
they are distinguishable, consider the shortest sequence of inputs which
will serve as an experiment to distinguish them. If this sequence of
inputs is of length r, consider the pair of states which ay and qj
are transformed into by the first r-k-1 inputs of this sequence. This
pair of states 1is distinguishable by an experiment of length k+1 (namely,
the rest of the above sequence) but not by any experiment of length k
(for such an experiment would contradict the minimal length of the above
sequence ).

Since P1 partitions Z into at least two subsets (for
otherwise every state would have the same output associated, and hence no
pairs of states are distinguishable) we can prove by induction from above
that if k <n - 1, Pk partitions Z into at least k+1 subsets, which
for the case k =n - 1 completes the proof of the theorem.

The above proof suggests a method for finding the shortest
experiments for distinguishing between any two states. First construct
P1,
Then, proceeding by recursion, Pk+1 can be constructed from Pk. If any
two states q; and qj undergo transitions into states which belong to

by subdividing 2 1into sets of states giving the same output symbol.

different classes of Pk upon recelving the same input symbol a, then

g. and qj should be put into diffeerent classes of P and a is the

i k+1?
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first symbol of an experiment for distinguishing between a; and qj in
k+1 steps. If, however, under all input symbols ay and q. remain
together in the same classes of Pk’ they are indistinguishable by any
experiment of length k+1, and hence belong in the same class of Pk+1'
By continuing the recursion until any desired pair of states can be dis-
tinguished, this method constructs an experiment. It proceeds backwards;
that is, the last step of the experiment is found first, and at the end of
the construction the first step of the experiment is determined.

The following examples will show that the n-1 bound obtained
in the thecrem cannot be lowered. For each n > 3, define the machine
D in accordance with the followlng table:

n
Machine Drl
Present State
Previous Previous Input Present Present
State 0 1 State Output
a4 Qs ay a, 1
Qs Qs a, a5 0
93 9141 931 4y 0
9n-1 9n An_» An-1
Ap dn 94 An

Then Dn is an (n, 2, 2) machine such that any two of its
states are distinguishable, but the shortest experiment which can distin-
guish 4, from Qo has length n-1.

For the case n =4, Dn is represented by the following

transition diagram:

FIGURE 6. Transition Diagram of Machine D,

Theorem 7: If 8 and T are (n, m, p) machines, such that some state

a; of S can be distinguished from state qj of T, then this experi-

ment can be of length 2n-1.
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First define the machine S + T, the direct sum of S and T.
The table defining it will contain all of the entries and arguments of the
table for 3, plus entries and arguments obtained from those of the table
for T by replacing a3 by PR for all i. Thils direct sum S + T
contains as submachines an isomorphic copy of S and one of T, but it
is of course not strongly connected. Its transition diagram consists of
the combined (but not connected) diagrams for S and T, with the names
of the states of T changed to avold ambiguity. Physically, the direct
sum S + T can be interpreted as a black box which has either the behavior
of S or that of T, with no way of changing it between the two kinds of
behavior. 8 + T is a (2n, m, p) machine such that certain pairs of its
states are distinguishable, and hence by the methods used in proving
Theorem 6, they can be shown to be distinguishable by an experiment of
length 2n-1. The experiment distinguishing any two states of 3 + T
also obviously distinguishes between the corresponding states of S and T.

The following examples will show that the 2n-1 bound obtained
in this theorem cannot be lowered. For each n > 3, define the machine

En in accordance with the following table:

Machine En

Present State

Previous Previous Input Present Present
State 0 1 State Output
Q, a, a, q, 1
a, a5 q, a5 0
qy Q141 i1 q 0
An-1 9n dn-» -1
9y An.1 qp 4n

It can easily be verified that the shortest experiment which
distinguishes a, of Dn from Q, of En has length 2n-1. For the
case n = 4, the transition diagram of En is shown below:

FIGURE 7. Transition Diagram of Machilne E4
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Theorem 8: Given any (n, m, p) machine S such that any two of its
states can be distinguished, there exists an experiment of length
n(n-1)/2 which can determine the state of S at the end of the experiment.

This experiment will be constructed as it is being performed
(since this will in general be a branching experiment, a complete formali-
zation of this construction would involve defining a specific machine which
could perform this experiment). As in the proof of Theorem 3, after each
part of the experiment is performed there is a corresponding set of states
which the machine could be in at the end of this experiment, i.e., which
are compatible with all the outputs the machine has given during the
experiment. Giving any one of certain sequences to the machine will reduce
the number of elements in this set of states. Choose one of the shortest
sequences having this property, and perform it as the next part of the
experiment. Repeat this process until the set of possible states has
just one element, i.e., the state of the machine is known.

It will be proved by induction on k that when the set of
possible states of S has been reduced until it has n-k members, at
most k(k+1)/2 wunits of time will have elapsed. This is obvious for
k =1. PFor any k <n, let Gk—1 be this set having at most n-k+l
members. Also the partition Pk’ as constructed in the proof of Theorem 6,
partitions the set of states of S into at least k+1 classes. Then
Gk—1 must have members belonging to at least two different classes of Pk
(otherwise one class of Pk has at least n-k+1 members, and the other Xk
have at least Xk members, so their union, the set of states of S, must
have at least n+1 members). Consider such a pair of states belonging to
different classes of Pk' An experiment distinguishing them has length k,
and performing this experiment at this polnt will eliminate one or the
other of the pair of states these will be transformed into by this experi-
ment from the set of possible states of S. Hence by the fact that the
shortest sequence having this property will be used in the construction,
at most k more steps are required to reduce the set until it has n-k
members. Since by inductive hypothesis only at most (k-1)k/2 wunits of
time had been used before this reduction, at most k more brings the
total to at most k(k+1)/2. To complete the proof, let k =n - 1.

The following examples will show that the n{n-1)/2 bound
obtained in this theorem is within a multiplicative constant of the best
possible bound. For each j > 3, define the machine Fj in accordance
with the following table:
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Maciiine Fj
Present State
Previous Previous Input Present Present
State 0 1 State Output
%4 Qjez | i+ 44 !
“] e | 4 %3
qj+1 qj+2 qj+1 qj+1
qj+2 qj+3 4z qj+2
9 -1 9z dj-4 92 j-1
RZY Qojer| 9 9
%2 541 9o 9 92541

Then F. has n = 2j+1 states, is strongly connected, and any
two of its states are distinguishable. It can be shown that the shortest
experiment which can determine the final state of S consists of the
sequence of length j2+j-2 having a "0" in all positions except the
first and those positions divisible by j+2, in which it has & ™1". For
the case j = 3, the transition diagram of Fj is shown below:

FIGURE 8. Transition Diagram of Machine ¥

3
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Theorem ¢: If Rn m,p is the class of all strongly connected (n, m, p)
I 2 2
machines in reduced form, then there exists a simple experiment of length
at most nnm+2pn/n! which, when performed on a copy of any member S of
R will suffice to distinguish S from all other members of R

n,m,p n,m,p

If n =1, the result is obvious, so the proof will be concerned
with the case n > 2. Rn m,p will be considered to have no two of its
2 2

members isomorphic; that is, it will consist of Jjust one of every essen-
tially different strongly connected (n, m, p) machine in reduced form.
Then define the machine =, the direct sum (as in the proof of Theorem 7)
of all of the members of Rn,m,p' Apply to = the sort of experiment
defined in the proof of Theorem 8, reducing the set of possible states it
could be in until it has only one member. Then this identifies the
machine S, up to an isomorphism.

To determine the length of this experiment, the first step is to

note how many members Rn,m,p has. Since there are exactly nnmpn
different (n,m,p) machines, the following correspondence between every
member of Rn,m,p andnmné different (n, m, p) machines will show
Rn,m,p has at most n p /n! members. In the case of any member T of

n,m,p having exactly n states, the correspondence can be direct with
all (n, m, p) machines obtained from T by all n! permutations of the
names of the n states, since any two machines obtained from distinct per-
mutations must be distinct. But if T 1s a member of Rn,m,p having k
states, with %k < n, define the (n, m, p) machine T* whose transitions
and outputs agree with T for all ay with 1 <k, but for all a5 with
k < 1 <n, let the output be 0 and let all inputs cause a transition

into state and for 1 =n 1let the output be 0 and all inputs

Qs g
cause a transizion into state a, - Then the correspondence can be defined
between T and the n! different (n, m, p) machines obtained by per-
muting the names of the n states of T*. Then since no two (n, m, D)
machines have been made to correspond to the same member of R

R nas at most n™™p?/n: members.
n,m,Dp

n,m,p’

Then, proceeding as in the proof of Theorem 8, we can estimate
how many steps must be necessary to cut down the number of possible states
of =. It will be convenient to consider the subsets of states of =
obtained from each of the original machines. By Theorem 8, at most
n(n-1)/2 steps are required to eliminate all but one of the members of
any such set. But by Theorem 6, this last state can be eliminated (unless
~ actually is in this state) in at most 2n-1 steps. But
n(n-1)/2 + 2n-1 < n® for n > 2, so0 each of the n™p™/nt  subsets
require at most n2 steps.

It seems probable that the n
could be improved considerably, since in the early parts of the experiment

nm+2pn/n'. estimate of this theorem

many states of £ can be eliminated simultanecusly. But it can be seen
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that the bound cannot be lowered below mn'1 by considering the following

abstract model of a combination lock. For each n,m > 2, define a basic

machine Gn,m as follows:

Machine Gn m

B

Present State

Previous Previous Input Present Present
State S1 82 e Srl State Output
4 4 | % 9 4
ad, 9, qa, qQ, a,
an a4 | 9 q, A1 0
a, 1

Then a combination lock will be defined as an (n, m, 2) machine
whose tables are obtained from those of Gn m by replacing, for each 1
)

with 1 <1 < n-1, exactly one of the a, entries in the 1th row of
the left-hand table above with a A4, entry.
The only way to make this give a 1 output is putting it into

state a, and this will be said to be unlocking the combination lock. If
the combination lock is originally in state dy s it can be unlocked only
by giving it exactly the proper input sequence for the last n-1 steps
before unlocking it. This input sequence 1s, of course, called the
combination of the lock. The machine H is an example of a combination
lock having the combination 0,1,0:

Machine H
Present State

Previous Previous Input Present Present
State 0 1 State Input

q, a5 q, a, 0

a5 Q, ds a5 0

Qs ), a4 Qs 0

ay q, a, ay 1

FIGURE 9. Transition Diagram of Machine H
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For each n, m there are exactly m!

locks. Suppose you are given some unknown combination lock, initially in
state q;. and are required to identif'y which one is present by an experi-
ment which 1s as short as possible. Since in the first few steps in the
experiment the lock cannot open, and at any later step in the experiment
at most one combination lock can open, this experiment requires more than
! steps.

different combination

FURTHER PROBLEMS

‘ There are many further problems connected with this theory of
sequential machines from the experimental point of view, which the author
has not yet been able to solve.

One problem would be to find classes of machines more general
than the strongly connected machines about which reasonable theorems can
be proved. It should be pointed out that it was convenient to use direct
sum machines (which are certainly not strongly connected) in two of the
proofs. Infernal machines and the ordinary household electrical fuse
provide important examples of machines which are not strongly connected.

Other problems which immediately suggest themselves are to 1mprove
the bounds given by Theorems 8 and 9. The author would like to conjecture,
in this connection, that the best bound in Theorem 9 will be independent
of p.

Still another problem of interest is the length of an experiment
required to tell whether a given copy of an unknown strongly connected
(n, m, p) machine S8 1is indistinguishable from a known (n, m, p)
machine T. This problem is akin to that faced by a maintenance man in
checking whether a given machine 1s out of order. He knows what the
machine 1s supposed to do, and he wishes to find out whether or not it does
do this. If not, it is assumed that the machine is still a finite-state
machine, differing in some subtle way from the supposed machine. A bound
n on the number of states of the machine 1s helpful in view of Theorem 2,
and is presumably derivable from the known number of relays or other com-
ponents of which the machine is made. Theorem 9 does give a bound on the
length of the experiment, although it seems fantastically large. A more
reasonable experiment might be one which required the machine to undergo
every transition only a few times.

Still other problems are suggested by permitting the inputs and
the outputs of the machines to be k-tuples of symbols rather than single
ones. The experimenters allowed in multiple experiments (see Figure 2)
are already of this type, and many devices buillt out of relays or vacuum
tubes have k-tuples of binary digits as their inputs or outputs. Such
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machines can be combined more freely than single input and output machines
to make larger machines. Certain inputs of each machine are connected to
the outputs of others, and other inputs and outputs of the individual
machines are used as the inputs and outputs of the composite machine. If
the k components of such a composite machine have n,, n
states each, the composite machine has

02 . and n,

states, namely the k-tuples of states of the component machines. Such
composite machines are of particular interest if all or most of these
states are distinguishable. Many problems exist in relation to the inverse
question of decomposition into such components. Given a machine with n
states, under what conditions can it be represented as a combination of two
machines having n, and n, states, such that n,n, =n? Under what
conditions is the decomposition unique?

One way of describing what engineers do in designing actual
automata 1is to say that they start with an overall description of a machine
and break it down successively into smaller and smaller machines, until the
individual relays or vacuum tubes are ultimately reached. The efficiency
of such a method might be determined by a theoretical investigation on
such decompositions. This might also throw light on the validity with
which the psychiatrists can hope to subdivide the mind into ego, superego,
id, etc.
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