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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES

Edward P. Moore

INTRODUCTION
This paper is concerned with finite automata1 from the 

experimental point of view. This does not mean that it reports the 
results of any experimentation on actual physical models, hut rather it 
is concerned with what kinds of conclusions about the internal conditions 
of a finite machine it is possible to draw from external experiments. To 
emphasize the conceptual nature of these experiments, the word "gedanken- 
experiments" has been borrowed from the physicists for the title.

The sequential machines considered have a finite number of states, 
a finite number of possible input symbols, and a finite number of possible 
output symbols. The behavior of these machines is strictly deterministic 
(i.e., no random elements are permitted in the machines) in that the 
present state of a machine depends only on its previous input and previous 
state, and the present output depends only on the present state.

The point of view of this paper might also be extended to pro­
babilistic machines (such as the noisy discrete channel of communicationOtheory ), but this will not be attempted here.

EXPERIMENTS
There will be two kinds of experiments considered in this paper. 

The first of these, called a simple experiment, is depicted in Figure 1.

1The term "finite" is used to distinguish these automata from Turing 
machines [considered in Turing’s "On Computable Numbers, with an 
Application to the Entscheidungsproblem", Proc. Lond. Math. Soc.,
(1936) Vol. 24, pp. 230-265] which have an infinitetape, permitting 
them to have more complicated behavior than these automata.
^Defined in Shannon’s "A Mathematical Theory of Communication", B.S.T.J.
Vol. 27, p. 4o6 .

i 29
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MOORE

FIGURE 1 . Schematic Diagram of a Simple Experiment

A copy of the sequential machine being observed experimentally 
will receive successively certain input symbols from the experimenter.
The sequence of output symbols will depend on the sequence of input 
symbols (the fact that the correspondence is between sequences rather than 
individual symbols is responsible for the terminology "sequential machine") 
in a way that depends on which particular sequential machine is present 
and its initial state.

The experimenter will choose which finite sequence of input 
symbols to put into the machine, either a fixed sequence, or one in which 
each symbol depends on the previous output symbols. This sequence of 
input symbols, together with the sequence of output symbols, will be called 
the outcome of the experiment. In addition there can be a conclusion which 
the experimenter emits, the exact nature of which need not be specified.
The conclusion might be thought of as a message typed out on a typewriter, 
such as "The machine being experimented on was in state q at the 
beginning of the experiment". It is required that the conclusion depend 
only on which experiment is being performed and what the sequence of output 
symbols was.

The second kind of experiment considered in this paper is the 
multiple experiment, shown in Figure 2 .

In this case the experimenter has access to several copies of the 
same machine, each of which is initially in the same state. The experi­
menter can send different sequences of inputs to each of these K copies, 
and receive from each the corresponding output sequence.

In each of these two kinds of experiments the experimenter may 
be thought of as a human being who is trying to learn the answer to some 
question about the nature of the machine or its initial state. This is 
not the only kind of experimenter we might imagine in application of this 
theory; in particular the experimenter might be another machine. One of 
the problems we consider is that of giving explicit instructions for 
performing the experiments, and in any case for which this problem is 
completely solved it is possible to build a machine which could perform 
the experiment.
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GEDANKEN-EXFERIMENTS ON SEQUENTIAL MACHINES 1 31

FIGURE 2 . Schematic Diagram of a Multiple Experiment

EXAMPLES
It may be instructive to consider several situations for which 

this sort of theory might serve as a mathematical model.
The first example is one in which one or more copies of some 

secret device are captured or stolen from an enemy in wartime. The 
experimenter1s job is to determine in detail what the device does and how 
it works. He may have partial information, e.g., that it is a bomb fuze or 
a cryptographic device, but its exact nature is to be determined. There 
is one special situation that can occur in such an experiment that is 
worthy of note. The device being experimented on may explode, particularly 
if it is a bomb, a mine, or some other infernal machine. Since the 
experimenter is presumably intelligent enough to have anticipated this 
possibility, he may be assumed to have conducted his experimentation by 
remote control from a safe distance. However, the bomb or mine is then 
destroyed, and nothing further can be learned from it by experimentation.
It is interesting to note that this situation can be represented exactly 
by the theory. The machine will have some special state q , the exploded 
state. The transitions defining the machine will be such that there exists 
a sequence of inputs that can cause the machine to go into state qn, but 
no input which will cause it to leave the state. Hence, if the experi­
menter happens to give the wrong sequence to the machine, he will be unable 
to learn anything further from this copy of the machine.
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132 MOORE

There is a somewhat artificial restriction that will be imposed 
on the action of the experimenter. He is not allowed to open up the 
machine and look at the parts to see what they are and how they are inter­
connected. In this military situation, such a restriction might correspond 
to the machine being booby trapped so as to destroy itself if tampered with. 
It might also correspond to an instance where the components are so 
unfamiliar that nothing can be gained by looking at them. At any rate, we 
will always impose this somewhat artificial restriction that the machines 
under consideration are always just what are sometimes called "black boxes", 
described in terms of their inputs and outputs, but no internal construction 
information can be gained.

Another application might occur during the course of the design 
of actual automata. Suppose an engineer has gone far enough in the design 
of some machine intended as a part of a digital computer, telephone central 
office, automatic elevator control, etc., to have described his machine in 
terms of the list of states and transitions between them, as used in this 
paper. He may then wish to perform some gedanken-experiments on his 
intended machine. If he can find, for instance, that there is no experi­
mental way of distinguishing his design from some machine with fewer 
states, he might as well build the simpler machine.

It should be remarked that from this engineering point of view 
certain results closely paralleling parts of this paper (notably the 
reduction described in Theorem k ) have recently been independently found by 
D. A. Huffman in his Ph.D. thesis in Electrical Engineering (M.I.T.). His 
results are to appear in the Journal of the Franklin Institute.

Still another situation of which this theory is a mathematical 
model occurs in the case of the psychiatrist, who experiments on a patient. 
He gives the patient inputs (mainly verbal), and notes the outputs (again 
mainly verbal), using them to learn what is wrong with the patient. The 
black box restriction corresponds approximately to the distinction between 
the psychiatrist and the brain surgeon.

Finally, another situation of which this might conceivably be a 
mathematical model occurs when a scientist of any sort performs an experi­
ment. In physics, chemistry, or almost any other science the inputs which 
an experimenter puts into his experiment and the outputs he gets from it 
do not correspond exactly to the things the experimenter wishes to learn 
by performing the experiment. The experimenter is frequently forced to ask 
his questions in indirect form, because of restrictions imposed by 
intractable laws of nature. These restrictions are somewhat similar in 
their effect on the organization of the experiment to the black box 
restriction.
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GEDA3MEN-EXPERIME3WS ON SEQUENTIAL MACHINES 133

The analogy between this theory and such scientific experimenta­
tion is not as good as in the previous situations, because actual experi­
ments may be continuous and probabilistic (rather than finite and 
deterministic), and also because the experiment may not be completely 
isolated from the experimenter, i.e., the experimenter may be experimenting 
on a system of which he himself is a part. However, certain qualitative 
results of the theory may be of interest to those who like to speculate 
about the basic problems of experimental science.

CONVENTIONS
Each machine will have a finite number n of states, which will 

be called q.|, q2, . .., qn a finite number m of possible input symbols
which will be called S1, S2, ..., Sm, and a finite number p of possible
output symbols, which will be called Sm+1> Sm+2' . m̂+p. In several
examples used in this paper we will have m = 2, p = 2, S1 = Ŝ  = 0, 
and S2 = Ŝ  = 1 .

Time is assumed to come in discrete steps, so the machine can be 
thought of as a synchronous device. Since many of the component parts of 
actual automata are variable in their speed, this assumption means the 
theory has not been stated in the most general terms. In practice, some 
digital computers and most telephone central offices have been designed 
asynchronously. However, by providing a central "clock" source of uniform 
time intervals It is possible to organize even asynchronous components so 
that they act in the discrete time steps of a synchronous machine. Digital
computers and other electronic automata are usually built in this
synchronous fashion. The synchronous convention is used in this paper since 
it permits simpler exposition, but the fact that these results can be 
translated with very little change into asynchronous terms should be 
obvious from the fact that Hoffman wrote his paper in terms of the 
asychronous case.

The state that the machine will be in at a given time depends 
only on its state at the previous time and the previous input symbol. The 
output symbol at a given time depends only on the current state of the 
machine. A table used to give these transitions and outputs will be used 
as the definition of a machine. To illustrate these conventions, let us 
consider the following example of a machine:
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Machine A

Present State
Previous Previous Input Present Present
State 0 1 State Output
*1 % q 3

0

q2 q3 *2 0

q3 % % *3 0

% q2 ^2 %
1

These two tables give the complete definition of a machine 
(labelled machine A, for future reference). In the left table, the present 
state of the machine is given as a function of the previous state and the 
previous input. In the right table, the present output of the machine is 
given as a function of the present state.

An alternate way of representing the description of a machine 
can also be used, which may be somewhat more convenient to follow. This 
other representation, called a transition diagram, consists of a graph 
whose vertices correspond to the states of the machine represented, and 
whose edges correspond to the possible transitions between those states. 
Each vertex of this transition diagram will be drawn as a small circle, 
in which is written the symbol for the corresponding state, a semicolon, 
and the output which the machine gives in that state.

Each pair of these circles will be joined by a line if there is 
a direct transition possible between the corresponding pair of states. An 
arrowhead will point in the direction of the transition. Beside each such 
line there will be written a list of the possible input symbols which can 
cause the transition. Below is given a transition diagram for machine A:

FIGURE 3 • Transition Diagram of Machine A
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 135

An experiment can be performed on this machine by giving it some 
particular sequence of inputs. As an example, the sequence 000100010 
might be used. If the machine is initially in the state q1 , the outcome 
of this experiment would be:

0 0 0 1 0  0 0 1 0

Qt %  0-2 qi ^  %
0 1 0  0 0 1 0 0 0

where the first line of the above is the sequence of inputs, the second 
line is the sequence of states, and the third line is the sequence of 
outputs. The last two lines can be obtained from the first by use of the 
tabular definition of machine A or its transition diagram. It should be 
emphasized that only the bottom line of the above is observable by the 
experimenter, and the sequence of states is hidden away, usable only in 
arriving at or explaining the observable results of the experiment.

Suppose that the same sequence of inputs mentioned above is 
presented to machine A, initially in some other state. The outcome of the 
experiment would be one of the following, according as the initial state 
is q2, q5, or q̂ :

0 0 0 1 0 0 0 1 0

CVJ
o' % 2̂ % 2̂ Qt q5

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0

q3 % 2̂ *1 % q2 %
0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0
% q2 % q2 *1 % 0-2 q5
1 0 0 1 0 0 1 0 0

Even though this example of an experiment involved putting a 
predetermined sequence of input symbols into the machine, it should not be 
assumed that this is the only kind of experiment permitted. In general, 
the inputs to the machine can depend on its previous outputs, permitting 
the course of the experiment to branch.

There would be several ways of specifying such a branching 
experiment, but for the purposes of this paper, a loose verbal description 
of such experiments will be used. If it were desired to make these 
descriptions more formal, the experimenter could be described as another 
sequential machine, also specified in terms of its internal states, inputs,
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136 MOORE

and outputs. The output of the machine being experimented on would serve 
as input to the experimenter and vice versa. The experimenter would also 
have another output in which it would summarize the results of the experi­
ment, indicating what has been learned about the machine by the experiment.

In the simple sequence given above as an example of an experiment, 
it is natural to define the length of the experiment as 9 , since this is 
the number of terms in the input sequence, and the number of discrete steps 
of time required to perform this experiment. But in the case of an experi­
ment with possible branches during its performance, some of these branches 
may lead to a conclusion more quickly than others. In this case the length 
required for the longest possible alternative would be taken as the length 
of the experiment.

Although a branching experiment is the most general type of 
deterministic experiment, most of the experiments which will be required 
in the proofs of this paper can simply be sequences. For example, the 
shortest simple experiment which can be used to distinguish between two 
states (of the same or different machines) is merely a sequence. For if 
this is the shortest experiment, the result is not known until the last 
step, i.e., the output sequences coming to the experimenter are the same 
except for the last term. This term comes too late to affect any part of 
the experiment.

Two machines, S and T, will be said to be isomorphic if the 
table describing S can be obtained from the table describing T by 
substituting new names for the states wherever they occur as either the 
arguments or the entries of the table. Clearly, isomorphic machines will 
always have the same behavior, and will be indistinguishable from one 
another by any experiment.

Since distinguishability has already been referred to several 
times, and is vital to every proof in this paper, it will be explained in 
some detail.

A state q̂  of a machine S will be said to be indistinguishable 
from a state q . of S if and only if every experiment performed on S 
starting in state q^ produces the same outcome as it would starting in 
state q ..

A pair of states will be said to be distinguishable if they are 
not indistinguishable. Hence, q^ is indistinguishable from q. if and 
only if there exists some experiment of which the outcome depends on which 
of these two states S was in at the beginning of the experiment.

Similarly, we can say that a state q^ of a machine S is 
distinguishable (or indistinguishable) from a state q̂  of a machine T if 
there exists an experiment (or there does not exist an experiment) of which
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 137

the outcome starting with machine S in state q^ differs from the
outcome starting with machine T in state q̂  .

Finally, distinguishability and indistinguishability can be 
defined for pairs of machines. A machine S will be said to be
distinguishable from a machine T if and only if at least one of the
following two conditions hold: either

(1 ) there exists some state q^ of S, and some experiment
the outcome of which beginning with S in state q^
differs from its outcome beginning with T in each of its
states, or

(2) there exists some state q̂  of T, and some experiment
the outcome of which beginning with T in state q̂
differs from its outcome beginning with S in each of
its states.
S and T will be said to be indistinguishable if and only if

they are not distinguishable, or, in other words, if both of the following
two conditions hold:

(1 ) for every state q^ of S, and every experiment, there
exists a state q̂  of T such that the experiment
beginning with machine S In state q^ produces the same
outcome as the experiment beginning with machine T in 
state q ., and

(2) for every state q̂  of T, and every experiment, there
exists a state q^ of S such that the experiment beginning 
with machine T In state q̂  produces the same outcome as 
the experiment beginning with machine S In state q̂ .
If S is indistinguishable from T, then the two machines are 

alike in their behavior (although they may differ in their structure), and 
may be thought of as being interchangeable. In any practical application 
of real machines, the manufacturer can take advantage of this equivalence, 
and produce whichever of the two machines is cheaper to build, easier to 
repair, or has some other desirable internal property.

Distinguishability and indistinguishability are defined here as 
binary relations. That is, they hold between a pair of machines or a pair 
of states. This does not mean that an experiment which distinguishes be­
tween them must be a multiple experiment. In many cases a simple experi­
ment suffices. In any event, we perform the experiment on just one of the 
two machines or states we wish to distinguish, and Its outcome depends on 
which of the two was present. In these cases we may think of the conclu­
sion which the experimenter reaches as being of the form: "If the machine
being examined was either S or T, then it is now known to be T."
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This is certainly an extremely elementary kind of a conclusion, 
which makes a binary choice between two alternatives. Part of this paper 
will deal with methods of building up more complicated conclusions from 
such elementary ones.

An obvious modification of distinguishability is to state whether 
the machines which can be distinguished require multiple experiments to 
tell them apart or not. In the case of pairs of states, the two kinds of 
distinguishability can easily be seen to coincide.

In the course of the proofs given below, it will frequently be 
convenient to look at experiments in terms of what is actually happening 
inside the machines. Although the experimenters are not permitted to look 
inside the black boxes, we are under no such restriction. In fact, we will 
be able to learn more about the limitations imposed by the black box 
restriction if we have no such restriction on our observations, construc­
tions, or proofs.

AN ANALOGUE OF THE UNCERTAINTY PRINCIPLE
The first theorem to be proved will be concerned with an 

interesting qualitative property of machines.
Theorem 1: There exists a machine such that any pair of its states are
distinguishable, but there is no simple experiment which can determine 
what state the machine was in at the beginning of the experiment.

The machine A, already described on the previous pages, satis­
fies the conditions of the theorem. The previously described experiment 
will distinguish between any pair of states, except the pair (q1, q^). 
That is, given any other pair of states, if it is known that the machine 
is in one state of this pair at the beginning of the experiment, applying 
this experiment will give an output that depends on which state the 
machine was in. In order to distinguish between q1 and q̂ , the experi­
ment should consist of applying the sequence i1. The outcome of this 
will be:

1 1  1 1
*1 q3 ^3 %
0 0 0 1

Thus there exists a simple experiment which can distinguish 
between any pair of states. Furthermore, the multiple experiment which 
uses two copies of the machine, sending one of the two previously men­
tioned sequences to each, can obtain enough information to completely 
specify what state the machine was in at the beginning of the experiment.
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 139

To complete the proof, it need only he shown that given only one
copy of machine A, there is no experiment which can determine whether it
was in state q at the beginning of the experiment.

It is clear that any experiment will distinguish between q1 
and q̂ , since the first output symbol will be different. But any simple 
experiment that distinguishes q from q2, cannot distinguish q from 
q^. To see this, note that any experiment which begins with the input 1 
does not permit q to be distinguished from q2 (since in either case 
the first output is 0 and the second state is q̂ , so that no future 
inputs can produce different outputs). Similarly any experiment which 
begins with the input 0 does not permit q1 to be distinguished from q^.

This result can be thought of as being a discrete-valued analogue
of the Heisenberg uncertainty principle. To point out the parallel, both 
the uncertainty principle and this theorem will be restated in similar 
language.

The state of an electron E will be considered specified if 
both its velocity and its position are known. Experiments can be performed 
which will answer either of the following:

(1) What was the position of E at the beginning of the experiment?
(2) What was the velocity of E at the beginning of the experiment?

In the case of machine A, experiments can be performed which
will answer either of the following:

(1) Was A in state q2 at the beginning of the experiment?
(2 ) Was A in state q̂  at the beginning of the experiment?

In either case, performing the experiment to answer question 1 
changes the state of the system, so that the answer to question 2 cannot 
be obtained. In other words, it is only possible to gain partial informa­
tion about the previous history of the system, since performing experiments 
causes the system to "forget" about its past.

By analogy with the uncertainty principle, could we also state 
that the future state of machine A cannot be predicted from past experi­
mental results? Here the analogy ends. Even though we cannot learn by 
experiment what state machine A was in at the beginning of the experiment, 
we can learn what state it is in at the end of the experiment. In fact, 
at the end of the first experiment described, machine A will be in one 
particular predetermined state (independent of its initial state), namely 
the state q^.

Despite the incompleteness of the analogy, it does seem interest­
ing that there is an analogue of the uncertainty principle in this discrete, 
deterministic system. Any applications of this example to causality, free 
will, or other metaphysical problems will be left to the reader.
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FURTHER THEOREMS ON DISTINGUISHABILITY

Theorem 2: Given any machine S and any multiple experiment performed on
S, there exist other machines experimentally distinguishable from S for 
which the original experiment would have had the same outcome.

Let S have n states q ,... qn, and let the experiment have
length k. Then define a machine T having n(k+i) states q1, q?, . ..,
qn(k+0  aS follows:If the machine S goes from state q^ to q. when it receives 
the input symbol a, then let T go from Q.j_+tn to °lj+(t+i )n un<̂ er 
same input, for all t such that 0 < t < k, but let T go from
t0 ^j+kn*

If the machine S has output symbol b in state q̂ , let T
have output symbol b in state Q.j_+tn' ^or 0 < t < k, but let T have
some output symbol different from b in state

Then at the step t+i of any simple experiment, the machine T 
will be in state Q.j_+tn whenever machine S is in state q^ and
0 £ t < k. But at any step later than the kth, machine T will be in 
state Q-i+icn* Thus it can be seen that for the first k steps of any 
simple experiment, the outputs of S and T will be alike. But after 
the kth step, the outputs of S and T will always be different. The 
extension to multiple experiments Is immediate.

This result means that it will never be possible to perform 
experiments on a completely unknown machine which will suffice to identify 
it from among the class of all sequential machines. If, however, we 
restrict the class to be a smaller one, it may be possible. In particular, 
much of the rest of this paper will be concerned with the case where the 
class consists of all machines with n states or fewer, m input symbols 
or fewer, and p output symbols or fewer. Such a machine will be called 
an (n, m, p) machine.

Definition: A machine S will be said to be strongly connected if for
any ordered pair (q̂ , q .) of states of S, there exists a sequence of 
inputs which will take the machine from state q^ to state q̂  .

The term "strongly connected" is used since any such machine will 
have a transition diagram which is a connected graph, but the converse is 
not true. A counter-example to the converse is given by the following 
machine:
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES

Machine B

Present State
Previous Previous Input Present Present
State 0 1 State Output

q2 q3 *1 0
q2 *1 % q2 1

q3 q2 q3 0

% q2 ^2 %
0

Theorem 3: If S Is a strongly connected machine, and T is indistin­
guishable from S by any simple experiment, then for every state q^ of 
S there exists a state q . of T which is indistinguishable from q^ by 
any simple experiment.

Since T is indistinguishable from S by any simple experiment, 
we have, as one of the two conditions Implied by indistinguishability, that 
given any state q^ of S, and any simple experiment on S beginning in 
state q̂ , there exists a corresponding state q. of T such that the 
same experiment, starting with a copy of T in state q̂ , will produce 
the same sequence of output symbols. This theorem states that if S is 
strongly connected, q. can be chosen independently of the experiment.
That is, q. corresponds to q^ for all experiments, rather than just 
this particular experiment.

To prove the theorem first note that if we consider an experiment 
consisting of any sequence of input symbols applied to machine S in state 
q , there must have been states of T which would have given the same 
sequence of outputs. With each such sequence of input symbols, we associate 
the set cf states that machine T could be in at the end of this sequence
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after having produced the same sequence of outputs that S would produce 
starting in state q1. Then if we lengthen the sequence of input symbols, 
the number of elements in the associated set can only decrease, but it can 
never become zero (or else this would give an experiment which distinguishes
S from T).

Hence, we can choose a particular sequence and extend it until 
the number of elements in the associated set of states of T can no longer 
be decreased by any further extension. Then we add to this sequence a 
further sequence which will cause machine S to go successively into every 
one of its states at least once, if the entire sequence is applied starting 
in state q .

Then for each state q^ of S, consider the set Y of states 
which are associated with the subsequence obtained by truncating the 
original sequence at the last time it causes S to go into state q̂ .
Then Y is non-empty, and every member is indistinguishable from q̂ .
This follows from the fact that if q̂  is a member of Y and is distin­
guishable from q̂ , the experiment that distinguishes them defines a 
sequence, which when added to the truncated sequence above, would give a 
further reduction of the number of elements in its associated set. But 
this contradicts the definition of the original sequence.

Note the words "strongly connected" cannot be removed from the 
statement of Theorem 3. A counter-example is given by machine B, defined 
just before Theorem 3, which is indistinguishable by any simple experiment 
from the machine B*, defined by removing the bottom row from each of the 
two tables that define machine B. However, the state q̂  of machine B 
is distinguishable from every state of B1.
Theorem hi The class of all machines which are indistinguishable from a 
given strongly connected machine S by any simple experiment has a unique 
(up to an isomorphism) member with a minimal number of states. This unique 
machine, called the reduced form of S, is strongly connected, and also 
has the property that any two of its states are distinguishable.

Given any machine T, indistinguishable from S, define the 
relation R to hold between states of S and states of T if they are 
indistinguishable by a simple experiment. That is, the state q of S 
will have the relation R to the state q . of T if and only if there is 
no simple experiment which can distinguish them.

Then by Theorem 3 the domain of the relation R is the set of 
all states of S. And, after verifying the transitivity of indistinguish- 
ability it can be seen that any two states of S are indistinguishable 
from each other if and only if they are indistinguishable from the same 
state of T. Hence, the number of equivalence classes into which the
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 1^3

states of S are partitioned by the equivalence relation of indistin- 
guishability is the smallest number of states which T can have.

Let us define a machine T* with exactly this many states, 
associating each state with one such equivalence class. We can define the 
output symbol for each state of T* to be the output symbol for any state 
in its equivalence class, since if the states are indistinguishable, they 
must give the same output symbols. We define the transitions by letting 
state q^ of T* go into state q. of T* upon receiving the input 
symbol a, if and only if some member of the equivalence class associated 
with q^ goes into some member of the equivalence class associated with 
q. upon receiving the input symbol a. There is never any ambiguity in 
this definition, since indistinguishable states cannot have transitions 
which take them into distinguishable ones (or else this would give a way 
of distinguishing the original indistinguishable states).

Next, T* can be seen to be indistinguishable from S as an 
immediate consequence of its definition. Also T* is strongly connected, 
since to go between states q^ and q. of T*, use the sequence which 
goes from any state in the equivalence class associated with q^ to any 
state in the equivalence class associated with q ..

Then to show that T* is unique up to an isomorphism, consider 
any other machine T, having the same number of states, and also indis­
tinguishable from S. Then since T will also be indistinguishable from 
T*, and T* is strongly connected we can apply Theorem 3. Then defining 
another relation R as done earlier in the proof, note that it can be seen 
to be a 1:1 correspondence between the states of the two machines, and in 
fact, it is the desired isomorphism.
Definition: A machine S will be said to be in reduced form, if and only
if S is the reduced form of S.
Theorem 5: If S is a strongly connected machine, then S is in reduced
form, if and only if any pair of its states are distinguishable. To prove 
the converse, consider the relation of indistinguishability as in the proof 
of Theorem k: it partitions the states of S into equivalence classes,
each having just one member. Hence, the reduced form of S as constructed 
above has exactly as many states as S, and the uniqueness of the reduced 
form of S completes the proof.

The following is an example of a machine which this theorem shows 
to be not in reduced form. This particular example has just one pair of 
states which are indistinguishable:
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Machine C

Present State
Previous Previous Input Present Present
State 0 1 State Output

^2 *1 *3-1 0
q2 q3 *1 <i2 1

q2 0

In connection with these theorems, it might he mentioned that not 
every machine indistinguishable from a strongly connected machine is 
strongly connected. The machines B and B1, previously described, also 
serve as an example of this.

However, since the reduced form of a machine is unique and has 
no indistinguishable states, it may be thought of as a simplified version 
of the machine, with all unessential parts of its description removed.
The reduction of a machine to its reduced form is closely related to one 
of the steps proposed by D. A. Huffman as a step in the design of 
sequential machines.

The reduced form will be considered the natural form in which to 
describe a strongly connected machine, and the remaining theorems of this 
paper will be written in a form so as to apply directly to machines in 
reduced form. The indirect application of these results to other strongly 
connected machines is also sometimes possible.
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES

THEOREMS CONCERNING LENGTHS OF EXPERIMENTS
The theorems proved heretofore have mainly been concerned with 

qualitative questions, i.e., whether or not it is possible to perform 
experiments which answer questions about the current state of a machine or 
its internal structure. The remaining theorems will be concerned with how 
many steps these experiments require, and their proofs will include methods 
for designing the experiments.
Theorem 6: If S is an (n, m, p) machine such that any two of its
states are distinguishable, then they are distinguishable by a simple 
experiment of length n-1.

For each positive integer k, we define the relation R̂ . to
hold between any two states q^ and q. of S if and only if q^ is
indistinguishable from q̂  by any experiment of length k. Since each 
R^ can be seen to be an equivalence relation, it defines a partition P^
of the set Z of states of S into equivalence classes.

Then 1 is a refinement of P̂ ; that is, if two states are
indistinguishable by any experiment of length k+1, they are indistin­
guishable by an experiment of length k. Further, if P^ does not sub­
divide Z into subsets having just one member, then pk+i is a proper 
refinement of P-, . To show this, choose any two states q. and q. whichK. 1 J
are indistinguishable by an experiment of length k. Since by hypothesis 
they are distinguishable, consider the shortest sequence of inputs which 
will serve as an experiment to distinguish them. If this sequence of 
inputs is of length r, consider the pair of states which q^ and q̂
are transformed into by the first r-k-1 inputs of this sequence. This
pair of states is distinguishable by an experiment of length k+1 (namely, 
the rest of the above sequence) but not by any experiment of length k 
(for such an experiment would contradict the minimal length of the above 
sequence).

Since P1 partitions Z into at least two subsets (for 
otherwise every state would have the same output associated, and hence no 
pairs of states are distinguishable) we can prove by induction from above 
that if k < n - 1, P̂. partitions Z into at least k+1 subsets, which
for the case k = n - 1 completes the proof of the theorem.

The above proof suggests a method for finding the shortest 
experiments for distinguishing between any two states. First construct 
P1, by subdividing Z into sets of states giving the same output symbol. 
Then, proceeding by recursion, P^+-| can constructed from P̂ . If any 
two states q^ and q̂  undergo transitions into states which belong to
different classes of P^ upon receiving the same input symbol a, then
q^ and q . should be put into different classes of > an<̂  a is the
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first symbol of an experiment for distinguishing between q^ and q̂  in 
k+1 steps. If, however, under all input symbols q^ and q̂  remain 
together in the same classes of P̂ , they are indistinguishable by any 
experiment of length k+1 , and hence belong in the same class of •
By continuing the recursion until any desired pair of states can be dis­
tinguished, this method constructs an experiment. It proceeds backwards; 
that is, the last step of the experiment is found first, and at the end of 
the construction the first step of the experiment is determined.

The following examples will show that the n-1 bound obtained 
in the theorem cannot be lowered. For each n > 3, define the machine 
Dn in accordance with the following table:

Machine Dn

k̂6 MOORE

Present State
Previous Previous Input Present Present
State 0 1 State Output

q2 q2 *1 1
q2 *1 d2 0

V i V i 0

qn-l In-2 V i 0

On V i qn 0

Then Dn is an (n, 2, 2 ) machine such that any two of its 
states are distinguishable, but the shortest experiment which can distin­
guish qn from Q.n_-| has length n-1 .

For the case n = 4, Dn is represented by the following 
transition diagram:

FIGURE 6 . Transition Diagram of Machine D^

Theorem 7: If S and T are (n, m, p) machines, such that some state
q^ of S can be distinguished from state q̂  of T, then this experi­
ment can be of length 2n-l.
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GEDANffiN-EXPERIMENTS ON SEQUENTIAL MACHINES 1̂ 7

First define the machine S + T, the direct sum of S and T.
The table defining it will contain all of the entries and arguments of the 
table for S, plus entries and arguments obtained from those of the table 
for T by replacing q^ by aH  i- This direct sum S + T
contains as submachines an isomorphic copy of S and one of T, but it 
is of course not strongly connected. Its transition diagram consists of 
the combined (but not connected) diagrams for S and T, with the names 
of the states of T changed to avoid ambiguity. Physically, the direct 
sum S + T can be interpreted as a black box which has either the behavior 
of S or that of T, with no way of changing it between the two kinds of 
behavior. S + T is a (2n, m, p) machine such that certain pairs of Its 
states are distinguishable, and hence by the methods used in proving 
Theorem 6, they can be shown to be distinguishable by an experiment of 
length 2n -1 . The experiment distinguishing any two states of S + T 
also obviously distinguishes between the corresponding states of S and T.

The following examples will show that the 2n-i bound obtained 
In this theorem cannot be lowered. For each n > 3 , define the machine 
En In accordance with the following table:

Machine En

Present State
Previous
State

Previous Input Present
State

Present
Output0 1

*1 q2 q2 *1 1

q2 % *3-1 d2 0

% ^i+1 qi-1 0

qn-l qn-2 qn-1 0

qn-i 0

It can easily be verified that the shortest experiment which 
distinguishes q1 of Dn from q1 of En has length 2n-1 . For the 
case n = k , the transition diagram of En is shown below:

FIGURE 7 . Transition Diagram of Machine E^
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Theorem 8: Given any (n, m, p) machine S such that any two of its
states can he distinguished, there exists an experiment of length
n(n-l)/2 which can determine the state of S at the end of the experiment

This experiment will be constructed as it is being performed 
(since this will in general be a branching experiment, a complete formali­
zation of this construction would involve defining a specific machine which 
could perform this experiment). As in the proof of Theorem 3, after each 
part of the experiment is performed there is a corresponding set of states 
which the machine could be in at the end of this experiment, i.e., which 
are compatible with all the outputs the machine has given during the 
experiment. Giving any one of certain sequences to the*machine will reduce 
the number of elements in this set of states. Choose one of the shortest 
sequences having this property, and perform it as the next part of the 
experiment. Repeat this process until the set of possible states has 
just one element, i.e., the state of the machine is known.

It will be proved by induction on k that when the set of 
possible states of S has been reduced until it has n-k members, at 
most k(k+i)/2 units of time will have elapsed. This is obvious for 
k = 1 . For any k < n, let be this set having at most n-k+1
members. Also the partition P̂., as constructed in the proof of Theorem 6
partitions the set of states of S into at least k+1 classes. Then
G^ _ 1 must have members belonging to at least two different classes of P^ 
(otherwise one class of P̂_ has at least n-k+1 members, and the other k 
have at least k members, so their union, the set of states of S, must 
have at least n+1 members). Consider such a pair of states belonging to 
different classes of P̂ . An experiment distinguishing them has length k, 
and performing this experiment at this point will eliminate one or the 
other of the pair of states these will be transformed into by this experi­
ment from the set of possible states of S. Hence by the fact that the 
shortest sequence having this property will be used in the construction, 
at most k more steps are required to reduce the set until it has n-k 
members. Since by inductive hypothesis only at most (k-1)k/2 units of
time had been used before this reduction, at most k more brings the
total to at most k(k+1)/2 . To complete the proof, let k = n - 1 .

The following examples will show that the n(n-l)/2 bound 
obtained in this theorem is within a multiplicative constant of the best 
possible bound. For each j > 3. define the machine Fj in accordance 
with the following table:

This content downloaded from 
�������������74.111.110.15 on Wed, 01 Oct 2025 17:38:40 UTC������������� 

All use subject to https://about.jstor.org/terms



GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES

Present State

Machine F^

Previous
State

Previous Input Present
State

Present
Output0 1

qj + 2 qj+i 1
d2 q 3 q2 q2 0

qj+1 qj qJ 0

qj+1 qj + 2 qj+1 qj+1
0

q j+2 qj+3 q 2 qj + 2 0

q2j-1 q2j qj-1 Q2j-1 0

q2j q2j+1 qj q2j 0

Q2j + 1 q2 q 1 q2j + 1 0

Then P. has n = 2j+1 states, is strongly connected, and any
two of its states are distinguishable. It can be shown that the shortest
experiment which can determine the final state of S consists of the

2sequence of length j + j-2 having a "0” in all positions except the 
first and those positions divisible by j+2, in which it has a ”1". For 
the case j = 3, the transition diagram of P. is shown below:

FIGURE 8 . Transition Diagram of Machine F̂
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Theorem 9: If R^ ^ ^ is the class of all strongly connected (n, m, p)
--------  n,m,p
machines in reduced form, then there exists a simple experiment of length 

at most n ^ ^ p ^ n l  which, when performed on a copy of any member S of 

R will suffice to distinguish S from all other members of R
ii y m  y Jp ii y ill y

If n = 1, the result is obvious, so the proof will be concerned

with the case n > 2. R will be considered to have no two of its
n,m,p

members isomorphic; that is, it will consist of just one of every essen­

tially different strongly connected (n, m, p) machine in reduced form. 

Then define the machine Z, the direct sum (as in the proof of Theorem 7)

of all of the members of R . Apply to z the sort of experimentn,m, p
defined in the proof of Theorem 8, reducing the set of possible states it 

could be in until it has only one member. Then this identifies the 

machine S, up to an isomorphism.

To determine the length of this experiment, the first step is to 

note how many members R h a s . Since there are exactly n ^ p 11
ii y HI y jP

different (n,m,p). machines, the following correspondence between every

member of R and nl different (n, m, p) machines will show
n , m , p

R has at most n p /nl members. In the case of any member T of
n,m,p

R having exactly n states, the correspondence can be direct withn, m, p
all (n, m, p) machines obtained from T by all nl permutations of the 

names of the n states, since any two machines obtained from distinct per­

mutations must be distinct. But if T is a member of R having k
n, m, p

states, with k < n, define the (n, m, p) machine T* whose transitions 

and outputs agree with T for all q^ with i < k, but for all q^ with 

k < i < n, let the output be 0 and let all inputs cause a transition

into state Q.j_+1 > and for i = n let the output be 0 and all inputs

cause a transition into state q 1 . Then the correspondence can be defined 

between T and the nl different (n, m, p) machines obtained by per­

muting the names of the n states of T * . Then since no two (n, m, p)

machines have been made to correspond to the same member of R .
nm n

R^ has at most n ]? /nl members,n , m, p
Then, proceeding as in the proof of Theorem 8, we can estimate 

how many steps must be necessary to cut down the number of possible states 

of z . It will be convenient to consider the subsets of states of Z 

obtained from each of the original machines. By Theorem 8, at most 

n ( n - l )/ 2 steps are required to eliminate all but one of the members of 

any such set. But by Theorem 6, this last state can be eliminated (unless 

z actually is in this state) in at most 2n-l steps. But 

n(n-1 )/2 + 2n-1 < n 2 for n > 2, so each of the n ^ V ^ / n l  subsets 

require at most n s t eps.

It seems probable that the nnm+ pn/nl estimate of this theorem 

could be improved considerably, since in the early parts of the experiment 

many states of z can be eliminated simultaneously. But it can be seen

Theorem 9: If ^ ^ is the class of all strongly connected (n, m, p)
--------  n,m,p
machines in reduced form, then there exists a simple experiment of length 

at most n ^ ^ p ^ n l  which, when performed on a copy of any member S of 

R will suffice to distinguish S from all other members of R
ii y m  y Jp ii y ill y

If n = 1 , the result is obvious, so the proof will be concerned

with the case n > 2. R will be considered to have no two of its
n,m,p

members isomorphic; that is, it will consist of just one of every essen­

tially different strongly connected (n, m, p) machine in reduced form. 

Then define the machine Z, the direct sum (as in the proof of Theorem 7)

of all of the members of R . Apply to z the sort of experimentn,m, p
defined in the proof of Theorem 8, reducing the set of possible states it 

could be in until it has only one member. Then this identifies the 

machine S, up to an isomorphism.
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and outputs agree with T for all q^ with i < k, but for all q^ with 

k < i < n, let the output be 0 and let all inputs cause a transition

into state Q.j_+1 > and for i = n let the output be 0 and all inputs
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n , m , p nrn n
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 151

that the hound cannot be lowered below mn-1 by considering the following 
abstract model of a combination lock. For each n,m > 2, define a basic 
machine Gn m as follows:

Machine G_ _ n , m
Present State

Previous Previous Input Present Present
State S ! s2 Sn State Output

*1 *1 *1 dl Qt 0

2̂ *1 *1 CL, Qq 0

<*1 *1 . . . 1̂ ‘Jn-I 0
1

Then a combination lock will be defined as an (n, m, 2) machine 
whose tables are obtained from those of Gn by replacing, for each i 
with 1 < i < n-1, exactly one of the q1 entries in the ith row of
the left-hand table above with a entry.

The only way to make this give a 1 output is putting it into
state qn and this will be said to be unlocking the combination lock. If
the combination lock is originally in state q^, it can be unlocked only 
by giving it exactly the proper input sequence for the last n-1 steps 
before unlocking it. This input sequence is, of course, called the 
combination of the lock. The machine H is an example of a combination 
lock having the combination 0,1,0 :

Machine H

Present State
Previous Previous Input Present Present
State 0 1 State Input

1̂ q2 *1 0

q2 % q2 0

q3 % 1̂ q3 0

% *1 %
1

FIGURE 9 . Transition Diagram of Machine H
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For each n, m there are exactly m11”1 different combination 
locks. Suppose you are given some unknown combination lock, initially in 
state q1 , and are required to identify which one is present by an experi­
ment which is as short as possible. Since in the first few steps in the 
experiment the lock cannot open, and at any later step in the experiment 
at most one combination lock can open, this experiment requires more than 
mn~1 steps.

FURTHER PROBLEMS
There are many further problems connected with this theory of 

sequential machines from the experimental point of view, which the author 
has not yet been able to solve.

One problem would be to find classes of machines more general 
than the strongly connected machines about which reasonable theorems can 
be proved. It should be pointed out that it was convenient to use direct 
sum machines (which are certainly not strongly connected) in two of the 
proofs. Infernal machines and the ordinary household electrical fuse 
provide important examples of machines which are not strongly connected.

Other problems which immediately suggest themselves are to Improve 
the bounds given by Theorems 8 and 9. The author would like to conjecture, 
in this connection, that the best bound in Theorem 9 will be independent 
of p .

Still another problem of interest is the length of an experiment 
required to tell whether a given copy of an unknown strongly connected 
(n, m, p) machine S is indistinguishable from a known (n, m, p) 
machine T. This problem is akin to that faced by a maintenance man in 
checking whether a given machine is out of order. He knows what the 
machine is supposed to do, and he wishes to find out whether or not it does 
do this. If not, it is assumed that the machine is still a finite-state 
machine, differing in some subtle way from the supposed machine. A bound 
n on the number of states of the machine is helpful in view of Theorem 2, 
and is presumably derivable from the known number of relays or other com­
ponents of which the machine is made. Theorem 9 does give a bound on the 
length of the experiment, although it seems fantastically large. A more 
reasonable experiment might be one which required the machine to undergo 
every transition only a few times.

Still other problems are suggested by permitting the inputs and 
the outputs of the machines to be k-tuples of symbols rather than single 
ones. The experimenters allowed in multiple experiments (see Figure 2) 
are already of this type, and many devices built out of relays or vacuum 
tubes have k-tuples of binary digits as their inputs or outputs. Such
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GEDANKEN-EXPERIMENTS ON SEQUENTIAL MACHINES 153

machines can be combined more freely than single input and output machines 
to make larger machines. Certain inputs of each machine are connected to 
the outputs of others, and other inputs and outputs of the individual 
machines are used as the inputs and outputs of the composite machine. If 
the k components of such a composite machine have n1, ng, ... and n̂. 
states each, the composite machine has

k
n n. 
i=i

states, namely the k-tuples of states of the component machines. Such 
composite machines are of particular interest if all or most of these 
states are distinguishable. Many problems exist in relation to the inverse 
question of decomposition into such components. Given a machine with n 
states, under what conditions can it be represented as a combination of two 
machines having n1 and n2 states, such that n-|n2 = n? Under what 
conditions is the decomposition unique?

One way of describing what engineers do in designing actual 
automata is to say that they start with an overall description of a machine 
and break it down successively into smaller and smaller machines, until the 
individual relays or vacuum tubes are ultimately reached. The efficiency 
of such a method might be determined by a theoretical investigation on 
such decompositions. This might also throw light on the validity with 
which the psychiatrists can hope to subdivide the mind into ego, superego, 
id, etc.
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