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HIERARCHIES OF MEMORY LIMITED COMPUTATIONS

R.E., Stearns, J. Hartmanis, and P.M. Lewis IIX
General Electric Research Laboratory, Schenectady, N. Y.

An important goal of automata theory
is a basic understanding of the computa- ~
tional process for varjous classes of
problems. The theory must go beyond the
notion of computability and include some
measure of the difficulty of the computa-
tion and how that difficulty 1s related
to the organization of the machine that
performs the computation. The two mea=~
sures of difficulty that appear particu-
larly important are time and memory. In
this paper we apply the measure of tape
square requirements to a mumber of
computer-like machine models, including
the classical Turing machine. The results
are similar to but stronger than the .time
11?1ted results obtained in [1], {2], and
131.

The use of tape space as a complexity
measure is perhaps less realistic than
the time measure, but this 1s compensated
for by the sharper results. and by the
many insights it can give., (See [4) for
exgmple.) It is generally easier to in-
tuit why a problem inherently requires
8o much tape rather than why it requires
so much time. In this paper, we restrict
our attention to the so-called recognition
problems, but the extension to other prob-
lems is fairly evident.

. The Turing machine variations we
consider are on-line or off-line (one-way
. or two-way) and push-down tape and ordin-
ary tape. The input tape is separated
from the working tape 8o as to achieve
complexity less than that of linear
bounded automats. The study of the rath-
er specialized push-down cases 1s justi-
fied by its potential applications to the
study of languages, such as those of [4].

THE BASIC MACHINE MODELS

We begin with our most general defi-
nition, that of an off-line Turing ma-

178

chine. This definition is specifically
oriented toward recognition problems.
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Fig. 1 Off-line Turing Machine

An off-line Turing machine is a ma-~
chine as shown in Fig. 1 consisting of a
finite control with two tapes: one a read
only input tape and the other a read-write
working tape. The squares of the input
tape may contain either symbols from a
finite input alphabet A or a special end
marker symbol and the working tape squares
may contain any symbol from a finite set
K. An operation of the machine is deter-
mined by the state of the control and the
symbols under each reading head. The
operation consistg of over-printing a new
symbol on the working tape, shifting the
input tape (one square right, one square
left, or no shift), shifting the working
tape, and changing the control state.
Certaln stopping states are called accept-
ing states and certain other stopping
states are called refecting states. The

"machine 1s always started in a designated

starting state with a blank working tape
and the input reading head on the left-
most square of a finite length of tape

- with end markers on the two end squares

and symbols from A on the other squares,
These symbols from A read left to right
constitute the input word. It is assumed



that the control unit is designed so as to
keep the reading head on the input tape,
If the sequences of operations resulting
from an input word carries the machine
into an accepting state, we say that the
word is accepted by the machine, and 1if
the ifoput word is carried into a reject-
ing state, we say that the input is
relected. If any word is neither accepted
or rejected, then we say that the machine
is not a recognition device.

An off-1line push~down machine is an
off-line Turing machine with the restric-
tion that the machine overprint the blank
symbol before any right shift of its work-
ing tape. It is customary to think of
this right shift as a pop-up and a left
shift as a push-down. '

An on-1line Turing machine is an off-
line Turing machine with the additional
restriction that the input tape cannot be
shifted right and with the change that
the disjoint accepting and rejecting
states be states that occur just prior to
a8 left shift rather than being stopping
states. An input word on the input tape
is accepted by the machine if and only if
the machine enters an accepting state
prior to shifting the last input symbol
and the machine rejects the input if and
only 1f it enters a rejecting state prior
to shifting the last symbol. For this
on-line model, the end markers are super=
fluous,

An on-line push-down machine 1is an
on-line Turing machine with the restric-
tion that the machine overprint the blank
symbol before any right shift of its
working tape. Again, it {8 customary to
use the pop-up and push-down terminology.

A machine M of any of the four above
types is sald to recognize g set of £i-
nite words W if and only if each word in
W 18 accepted and each word not in W is
rejected by the machine.

TAPE COMPLEXITY

If L(n) is a computable function of
the positive integers into the positive
integers, we say that L(n) is a tape
function and that a machine M operates
within tape L(n} if and only if the work-
ing tape head visits at most L{n) squares
of the working tape for each input of
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tape

length n. If a machine M recognizes a set
W and operates within tape L(n), then we
say that W is L{(n)-tape recognizable on a
machine of the same type as M. For any
given machine type, we let

cL(n) or . CL

represent the collection of all sets that
are L(n)-tape recognizable by a machine of
that type. The set C is referred to
as a tape complexity &fﬂgs.

The tape complexity classes have
many properties in common with the time
complexity classes of (1]. For any L(n)
and any type machine, the class C;, is
recursively enumerable., Thus no C; can
contain all recursive ‘sets, For the two
Turing machine models, this fact guar-
antees an infinite set of distinct com-
plexity classes. The chief purpose of
this paper is to investigate these com-
plexity classes and their ordering in
more detail.

Using the notation (r] to represent
the smallest integer m such that m 2 r,
we can now state a basic equivalence
theorem.

Theorem 1: For any machine type and any
positive integer N, a set W is L(n)-tape
recognjzable 1f and only if it is tL(n)Rﬂ-
tape recognizable; in other words,

CL(n) = C[L(n)/N] B

Proof: Obviously, any machine M which
recognizes W within tape L(n) can be re-
designed into a machine M' so that one
square of the working tape of M' contains
the information on N working tape squares
of M and such that M' recognizes W within
[L(n)/Nﬁ.l

Corollary 1.1: 1If L and Q are tape func-

tions such that

S

inf

n—.ﬂ

n) >0,

o
~~

then CQ

<.



Proof: The inequality means that L{n) =

Q(n)/N for some large N and so L{n}-tape
ecognizable sets are automatically

EQ(n)/N]- tape recognizable and are there-
ore Q(n)-tape recognizable.®

Corollary 1.2:
tions such that

If L and Q are tape func-

<

sup 43 o :>

b ¢ laad

then CQ 2 CL.
Proof: This is the reciprocal of Corol-
lary 2.1.1

Corollary 1.3:
tions such that

1If 1, and Q are tape funce

L(n) .
Q{n)

0 < lim
n-‘m

then CQ = CL.

Proof: This follows from Corollaries 1.2
and 1.3.4

This last theorem and corollaries
ghow that it is the rate of growth of
L(n) that determines the class CL(n) and

we may thus permit ourselves to be a lit-
tle careless in specifying tape functions.
We will sometimes, for example, refer to
tape function L{n) = log log n even
though we have not specified a base, even
though it is mot integer valued, and even
though it is technically undefined for

n equal to one. The exact method
of rounding this function off to an in-
teger and defining it for small n is
clearly irrelevant and a change of base
simply introduces a constant factor which
by Corollary 1.3 leaves the complexity
class unaltered.

MINIMAL TAPE FUNCTION GROWTHS

The smallest tape complexity class
is that defined by the tape function
L(n) = 1 or equivalently by any constant
or bounded L(n). This class is obviously
the class of regular sets: those sets
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that can be recognized by a finite state
machine. There are, however, some un-
bounded L{n) that also give the same tape
complexity class of regular sets. For
each machine type, there is a minimal
growth rate that must be maintained in
order to recognize non-regular sets,
show this first for off-line machines.

We

Theorem 2;: For any off-line machine M
that recognizes a non-regular set and

operates within tape L{(n), there is a

number p such that for all integers I,
there is & number nj such that

< Pj
L(nj) 2 § and ny <P

Proof: For purposes of this proof, we
assume without loss of generality that

the reading head of the working tape nev-
er leaves a blank on a square that it
visits. This amounts to treating over-
printed blanks as distinct from original
blanks. We define a memory configuration
to be any combination of control state,
string of non-blank symbols printed on

the working tape, and location of the
head on these symbols. If the string of
symbols has length (strictly) less than

j, we call the memory configuration a j-
configuration. If k is the number of non-
blank symbols in the working tape alphabet
and q is the number of control states, the
number of memory configurations with
string of length exactly 1 is clearly i-q-
k' and the number of j-configurations 1s
j=1

§ 1.q.k! which is less th
i=1

Letting q be the number of symbols in the
input alphabet, we choose p to be a num-
ber such that

3

pP

an joq'kj.

;o
> a. 209 gor 2113 .

Now let nj be the smallest integer

such that M uses at least j working tape
squares to process some input word

w XX

1 2...xn

3

of length nj. The non-regularity of the

set recognized by M guarantees the



Because of w,
Thus

when M finally either accepts or rejects
w, 1t is not in a j-configuration since
by definition, j-configurations utilize
less than } working tape squares.

existence of such a word.
we must of course have L(nj) z i,

In processing w, the machine M may
cross and recross many times any particu-
lar input symbol x, on its inpuc -tape.

1 be the set of all
configurations achieved by M while proces-
sing w and while the reading head is at
the symbol X;4

For each 1 s nj, let S

In order to bound nj, we will first

show that Sr
X # X

Sr = S and X
consider what happens when the machine

processes the word

Ss for r < s Implies that

For assume to the contrary that

Xg for some r < s, and

w X X teeX .

"3
The length of w' is less than 0y

1°" " *e¥s41

and so

all the memory configurations that occur
in processing w' must be j-configurations
because of the minimal nature of nj We

now show that the j-configurations for any
of w' will be j-configurations from the
set S84 (which recall was defined for w).
'Assume to the contrary that in processing
w', M is reading x4 and for the first
time enters a j-contiguration that is not
in 54. This could only conceivably occur
when the reading head had just crossed
from X. to x_ . or from X .1 tO x.. Sup~
pose the machine is crossing from X, to
its configur-
Ss the

machine is in a configuration that could
also have occurred at Xg in w. Further-

X By assumption, at X.

s+1°

ation is in 5 . But since S =
r r

= xs,
into one of the configurations that occur
at x in processing w, This configuration
is by definition in S5, which proves the
assertion that all j- conflguracions oc~
curring from processing w' are S, config-
urations. But this means that M does .not
stop while processing w' since the only
stopping configuration in the processing
of w is not a j-configuration (because

more since X, the machine must go
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at least j squares are needed and thus
the S, contain no stopping configuration).
Since™™ must stop for all inputs by defi-
nition, this 1s a contradiction which
proves the assertion that S = 8 , implies
8
that x _ # x_.
s
Since the S; have to be distinct for
two occurrences of the same input symbol,
the input length nj must be no greater

than the number of subsets of j-configur-
ations times the number of input symbols.

qic?

But this number is less than aZj and

h
80 “j < pp by choice of p.a

Corollary 2.1: For off-line type ma-

chines, if L(n) 1s a tape function such
that

then C; contains only regular sets; that

i? CL(n) constant'

Proof: 1If CL contains a non-regular set,
then L(n.) 2 j =2 lo log n, or
() 23 g, log, ny
L(n.)
log log n )
P °p ]

for all nj given by the theorem and so
the limit cannot g0 to zeroc.®

Corollary 2.2: For machines of an off-

Proof:

line type, if cL(n) ¢contains a non-regular
set, then

L{n)

log log n >0

sup

n—~=

This 1s the converse of Corollary
2.1.%

Corollary 2.3: For machines of an off-

line type, if L(n) is a monotone tape
function such that CL(n) containg a



non~regular set, then

CL(n) 2 clog log n

Proof: Letting j = [log_log nl, we
have n 2 nj and so P P

L(n) 2 L(nj) z 3= [1ogp10gp nl,
hence

L{n

z 1
1
ogp(n)

inf

-~

lo
gP

-and the result follows by Corollary l.1.8

Theorem 3: For on-line Turing machines,
i1f L(n) is a tape function, then either

or C

cL(n) = cconstant L{n) 2 Clog n’

depending on whether or not

L) _

inf fog B

n—‘&

Proof: Assume that there is an on-line
Turing machine M which operates on tape
L{n) and recognizes a non-regular set.
We make all the conventions we did in
the first paragraph of the proof of
Theorem 2 except that we choose p such
that

Pj > a-j-kj

for all j. For any given n, let

be a shortest word such that the proces-
sing of w by M marks at least j = log n
tape squares., In processing w, M cannot
mark j working tape squares before the
reading head reaches x_, because than a
shorter subsequence ofw would use 3j
squares, Machine M cannot repeat a con-

figuration on x  and x  such that x = x,

r
and r < 8 because then

w' = x,...x X

veoX
r s+l

1 n
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would be a shorter word using j working
tape squares. Therefore, m - 1 18 no
greater than the nmumber of }-configura-
tions times the size of the input alpha-
bet. Therefore m s pJ £ n and w extended
to a word of length n also requires j =
logp n tape squares. Therefore

i—LSEl > 1 for all n
ogp n

and the result follows.p

Theorem 4: For an on-line push-down ma-
chine and tape function L{n}, either

C, »

CL(n) = Ceonstant °F CL(n) = *n

depending on whether or not

inf Eéﬂl =0
n@

Rl

Proof: Assume that there is an on-line
push-down machine M that operates on tape
L{n) and recognizes a non-regular set.
There must be some input word

W= Kya.sX
1°° " m

that puts the machine into a configuration
with p symbole pushed-down for some p >
aqgk where a 1s the size of the input
alphabet, g the number of control states,
and k the size of the working tape alpha-
bet. Call these symbols kl"'kp‘ With

each ki’ we associate the control state

q and the input symbol x, that occurred

Iy

just before ki was printed. Because of

the size of p, there must be some r and s
such that r < 8, k_ = ks’ x, =x, , and

i B

q. = qg. 1f jr = ja’ the machine cycles
and if §_ < ), then
Wh = XXy (xj b 100Xy )h-
r r

is an input word of length jr + (js - jrﬁx
that requires s + (8-r)h tape squares.



Thus L(n) must grow linearly as the
theorem ¢laims,

Very similar reasoning shows that
the machine cannot push down more than
gk tape symbols for a given input letter
without cycling and thus any non-regular
set which is recognizable, must be L(n) =
n tape recognizable.l

This last theorem completely dispbses
of the on-line push-down case. The hier-
archy consists of two classes, Cl and Cn.

These classes are distinct because some
push-down machines recognize non-regular
sets.

For the on-line Turing wachine, it is
clear that the get

fok1k | k an integer}

is log n-tape recognizable and so the
bound of Theorem 3 is exact.

We now wish to find sets which are
log log n-tape recognizable on the off-
line machines. Let b, represent the
binary expansion of integer i on alpha-
bet {0,1} and let w, on alphabet {0,1,s}
be given by

W = b0 8 bl 8...8 bk .
(e.g. wy, = 05 18 10 s 11 8 100) To
recognize whether a given input sequence
is in {w_}, treat it as a sequence of
binary numbers placed between s markers,
and check the first number to see if it
is b . If it is, start checking the
suce®sive numbers to see 1f they are one
more than the preceding. If and when a
nucber is encountered that fails this
test, quit the computation and reject the
sequence. To check any palr of consecu-
tive numbers to see if the right-hand
number is one larger, it {s sufficient
to compare corresponding bits one at a
time in order end remember the carry var-
iable with the finite control. On the
off~line Turing machine, the digits may
be compared one at a time going back and
forth between the numbers using the work-
ing tape to record the position (i.e.
first, second, etc.) of the digit being
compared. If the left-hand number has
length £, than this takes log ¢ working
sguares. On the other hand, it is easily
verified that £ < log n where n is the

18y

length of the input word. Hence our
scheme takes log log n on the off-line
Turing machine and the lower boumd of
Corollary 2.3 is exact for the off-line
Turing machine,

To get an example for the off-line
push-down machine, we first observe that
the sequence w, can be recognized on an

off-line push-down machine using L(n) =
log n. The digits in each bi are stored

on the push-down tape and then compared
digit by digit with b1+1. We now modify

v, as follows: We add two new symbols,

z and u (for zero and unit) to the input
alphabet {0,1,s8} and use these to mark
the position of a digit. Thus we define
bi to be the binary form of i written in
{0,1} with the digits addressed with con-
secutive numbers written in {z,u}. For
example,

b; =uzz Llur Quz0ul .
We define
a a a a
w, = bo 8 bl .8 bk

and consider how efficiently we can rec-
ognize {wE]. Expanding on the push-down

observations of the previous paragraph,
it 13 easy to verify that one can first
check the consistency of the addresses
(using 108 ) squAres) and then use
these addresses for a bit by bit compar-
ison as in the previous case, thus doing
all the processing in log log n tape
squares. )

MAXIMAL TAPE FUNCTION GROWTHS

Since the Turing machines can recog-
nize all recursive sets, no maximal CL

can be found for these machines. On the
other hand, we have seen in Theorem &

that C_ contains all the sets that can be
recognlzed by an on-line push-down machine
The off-line push-down case is settled by
the next result. '

Theorem 5: For off-line push-down ma-
chines, if L(n) is a tape functionm,



then
cL(n) [ Cn .
Proof: We need to show that C_ contains

the set recognized by any giveg off-line
push-down wmachine M. Suppose that at
some point in processing an input of

length n, machine M has symbols kl“'km

printed on its working tape., With each
symbol k., we associate the control state
q, and tﬁe square of the input tape which
odcurred just after k, was pushed-down
for the first time. If kr = ks and q, =

q, for some r # 8, then the associated

input squares must be distinct, for other-
wise M would return to that square over

and over again, each time with additional .

tape symbols, and would never stop. Thus

we must have
m S gske (n+2)

wvhere q 16 the number of control states,
k the size of the working tape alphabet,
and n+2 the number of input tape Bsquares
{counting the end markers). Thus M rec-
ognizes its set within tape L(n) =

q k (n+2) and so this set is L(n) = n-
tape computable by Corollary 1.3.9

LIMIT THEOREMS

We have seen that, for each machine
type, there is a quantum jump between the
tape requirements for regular sets and
those for non-regular sets, We shall now
show that above the initial jump (but be-
low C_ in the push-down case) a very
sligh? increase in limiting behavior of
a given tape function defines a new tape-
complexity class, The exact statement of
these results requires the concept of

"constructability,’” which we discuss with

each machine type.

A tape function L(n) is called
constructable on an off-line Turing ma~
chine 1f and only if ‘there is an off-line
Turing machine M which always stops, oper-
ates within tape L(n)}, and for each n
takes L{n) working tape squares for some
input of length n. (The condition that M
stops is actually superfluous.) Because
of Theorem 1 and its corollaries, we in-
formally extend the term ''constructable”
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Proof:

to include those fumctions Q(n) with the
same limiting behavior as constructable
L{n). This means, for example, that L(n)m=
log log n is constructable because we
previously discussed a machine (to rec-
ognize {w, 1) which operated within tape
log log n and took "exactly' log log n
for some inputs of length n, Similarly,
each off-line Turing machine that recog-
nizes some set alsc defines a correspond-
ing tape function. The "real~time count~-
able" functions of {5] and [1] are also
constructable because the counters do not
take enough operations to use more tape
than they count out. If R(n) is real-
time countable, one can first get log

log n by the previous scheme and then
count off R(log log n) working tape
squares, Thus R(log log n) is construct-
able. Since the real-time countable
functions are known to include all the
common monotone increasing functions ob-
tained from multiplication, exponentation
and function concatenation, the hierarchy
of constructable functions above log log n
1s very rich indeed. We now show that the
hierarchy of construetable functions cor-
respond to the tape-complexity class hier-
archy (for off-line Turing machines) with
in the equivalence of Corollaries 1.1 and
1.2a :

Theorem 6: For off-line Turing machines,
if L(n) is a constructable tape function,
then there exists a set W which is L{n)-
tape computable and 1s not Q{n)-tape
computable for all tape functions Q(n)
such that

g ) g
—p

The proof is by a diagonalization
method, We exhibit a machine M which
operates on L(n)} tape such that given any
other machine that uses Q(n) tape (as in
the theorem statement), there is some in~
put sequence for which M simulates this
other machine operating on that sequence
and gives a different output. Thus the
gset W iz the set recognized by M.

Let M' be a machine that constructs
L(n) and has an input alphabet A'., Con-
sider a new alphabet A formed from A' in
the following way: For each symbol x in
A', there are two symbols X, and x; in A.



Each input word from A may be interpreted
as a word from A' (by dropping subscripts)
or as a binary number (reading only the
subscripts). We now design a machine M
which operates in three phases.

Phase 1: Machine M reads the input
from A as a word from A' and behaves like
M' until M' stops. During the process,
it leaves a mark in the extreme left and
right working tape squares it visits.
Under all circumstances, M will confine
itself to the squares between the markers,
thus insuring that M operates within tape
L{n).

Phase 2: Reading the input as a
binary number i, M prepares on its work-
ing tape a description of the i-th off-
line Turing machine over input alphabet
A. This takes a certain number of
squares D; and if there is not enough
room between the end markers on the work=
ing tape, the machine stops and enters a
rejecting state.

Phase 3: If the description of M
has been successfully completed, the ma-
chine M begins to simulate My using the
input tape as the input and a special
track of the working tape as the working
tape of Mj. The working tape symbols of
M; are coded into binary and in general
it will take some k; squares of M to re-
present the information in one square
of M3, A third track of the working tape
is used to count in base three the opera=
tions of M, that have been simulated,

The simula%ion is continued until one of
three situations occur:

a) The simulation requires more
working tape than is available between
the end markers. At this point, M enters
a rejecting state,

b) The counting of the operations
of M, requires wore working space than is
avaiiable between the end markers. At
this point, machine M enters a rejecting
state. Note that this rule insures that
M always stops.

¢) Machine M, stops. Machine M
enters a rejecting state if M, enters an
accepting state and M enters an accepting
state if Mi enters a rejecting state.

Obviously; machine M redognizes some
set W within tape L(n) and all that

. L(N}.
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remains is to be shown that W cannot be
recognized within any Q(n) which satig-
fies the theorem. Suppose to the contrary
that some My recognizes W within tape
Q(n) where {(n) 1is some' funetion satisfy~
ing the limit equation, Clearly there is
a large integer N such that

L(N) 2 log,J

Dy

k) s Ly

< L(N)

and

gy NeL(N). 2PN o L0

b4

where gj is the numSer of control states
of Mj' Let w' be a word from A' which

has length N and for which M' visits L{N)
working tape squares. By adding sub-
scripts, convert w' to a word w from A
such that the binary number represented

is j. This is possible because L(n) =
log,} and because sufficient zero's can
be ddded on the left of the binary repre-
sentation of j to get a length N binary
representation. Now consider what happens
when input w is applied to M,

In phase 1, L(N) tape squares are
marked off. Phase 2 can be completed
because Dj £ L{N). 1In phase 3, gituation

a) cennot occur because Mj only requires
kj'Q(N) tape squares which is less than

Situation b) cannot oceur because
Mj does not cycle and cannot therefore

take more than L(N)-gJ-ZL(N) operationsg
before it stops, and M can count up to

5L operations. Whenever situation c¢)
occurs, M accepts those words which Mj
rejects and rejects those that M accepts,

3

and this would be contrary to the assump-
tion that Mj recognizes w, Thus there is

no posgibility that Mj recognizes w within
Q(n) and so the theorem 1is proved, §

A tape function L{(n) 1s called
constructable on an on-line Turing machine

if and only if there is an on-line Turing
machine M which always stops, operates



within tape L(n), and for each n takes
exactly L{n) working tape squares for all
inputs of length n. Agaln, we informally
call Q(n) "constructable' if it has the
same limiting behavior as L(n)This means,
for example, that L{(n) = log n is con-
structable because counting the number of
inputs in an appropriate base b causes a
machine to visit exactly [log, nl squares.
Similarly to the off-line case, if R{n)
is a real-time countable fimction, func~
tion R(log n) is constructable. Thus we
have a rich hierarchy of constructable
functions above log n which we now show
corresponds to the tape-complexity hier-
archy for on-linme Turing machines.

Theorem {: For on-line Turing wmachines,
1f L(n) is a constructable tape function,
then there exists a set W which is L{n}-
tape computable and is not Q(n)~tape
computable for all tape functions Q(n)
such that

Tt

inf (o

n—*

=0

Proof: Since the theorem holds trivially
for bounded L{n), we assume that L{n) is
unbounded. We know from the proof of
Theorem 4 that any machine that constructs
an unbounded L(n) must have L(n) 2 log B
for some base. This fact enables us to
again use a diagonalization proof. We
exhibit an on-line machine M which uses
L(n) tape and such that given any machine
which uses Q(n) tape, there is some ipput
sequence for which M simulates this ma-
chine and gives a different output, Be-
cause of the on-line character of M, the
simulation proceeds somewhat differemtly.

The input alphabet of M = {0,1}.
After its ith input M must do three
things.

Phase 1: Machine M initiates the
machine that constructs L{n) and marks
off L(i) squares on the working tape use-
ing special end markers. Subsequent ma-
chine operations before the next inmput
will be confined to this space.

Phase 2: The machine updates its
input storage. The past input is repre-
sented (if possible) on the working tape
by a number and a word, each stored In
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individual tracks. The number represents
the number of initial zeros of the input
sequence and the word consists of the
first one and all subsequent inputs.
number of initial zeros can always be
stored in some base b such that L(n) 2
log,n. 1f the word doesn't fit the al-
loted working tape space, the machine
enters "a state which rejects the present
and all subsequent inputs.

The -

Phase 3: Treating the stored word
as a binary number j, the machine treats
this as a description of the j-th binary
input on-line Turing machine Mj, and sim-

ulaCeS'Mj as it would process the input

sequence already applied to M. Using a
special binary track of the working tape
to simulate the working tape of Mj, some
55
present the information in one square of
Mj. The number of operations of Mj for
each input symbol are counted in base
three on another track of the working
tape. 7The simulation is continued until
one of three situations occur:

a) The simulation requires more
working tape than is available between the
end markers. At this point, M enters a
rejecting state and goes on to the next
input symbol.

squares of M will be sufficient to re=

b) The counting of the operations of
Mj requires more working tape than is

availsble between the end markers. At
this point M enters a rejecting state and
goes on to the next input symbol, This
rule prevents M from processing an input
symbol indefinitely.

c) Machine Mj completes its proces-

sing of the input word, Machine M rejects
the input if Mj accepts it and accepts the

input if Mj Machine M then
goes on to the next input symbol.

rejects it,

Obviously, machine M recognizes some
set W within tape L(n) and all that re-
mains is to show that W satisfies the
theorem. Supposing to the contrary that
some Mj recognizes W within tape Q(n)

where Q(n) is some function satisfying



the limit equation, we find an N such
that

L(N- {log,j]) = log,§ ,

kg Q) < L@y ,
and
L)+ 2t @ < 5L

Consider what M does after applying
N-[logzj] zeros followed by the binary

representation of 3. The first inequal-
ity insures that there is enough room to
store -the input, the second insures that
there 1s enough space to simulate Mj and

the third insures that the operations of
Mj do not overflow the counter,

Following the reasoning used to
prove Theorem 6, it is clear that M must
in fact treat this input opposite to M
and the theorem is proved by contradic
tion.0 :

For the off-linme push-down machines,
we know of no way to implement a diago-
nalization proof as was done for the Tur-
ing machines, but we can still demonstrate
a hierarchy by finding sets that satisfy
the next lemma,

Lemma: 1£ W is a set of words on alpha-~
bet A and L(n) is a function of integers
into integers such that for each n, there
is a word w_in W and a symbol a in A
such that :

1) the last L(n) symbols in v, are a,

2) w_ followed by any sequence of ad-
ditional a's is not in W;

then if W is Q(n)-tape computagble on an
off-1line push~down machine M, there ex-
ists a constant ¢ such that Q(n) 2 c¢.L(n).

Proof: There are more details to the
proof than space permits us to give, but
the basic idea 1s as follows, Letting q
be the number of states of the control of
M and k the number of working tape sym-
bols, it can be shown that, as M proces-
ses w, and scans the section of the input
tape containing the L(n) a's, the machine
cannot go more than g.k3XQ(n) operations
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without its behavior becoming "peniodiﬁ"
with period less than or equal to qakq .
This behavior could be either periodically
repeating a state-working tape memory con-
figuration where the length of the tape

is the same after each period, or period-
ically increasing where the number of
tape symbols is longer after each period,
1f the machine always became periodically
repeating as 1t crossed the a's, it could
not disﬁinguish between w_ and w_ followed
by g-%9¢)! a's because thése extfa a's
contain the period. The only alternatives
are that either M not become periodic in
which case

1 k%Q) = L(n)

or M becomes periodically increasing.

But if M becomes periodically increasing
we can bound the number of operations
since the tape lenéth cannot exceed Q{n).
After at most q-k9¥Q(n) operations, the
periodic increase must begin; and thence,
after at most every q-k9X operations the
length of the tape must increase by at
least 1, Since there can be at most Qn)
increases, the number of operations is at
most

a-xTQ@m) + k% Q)

= 2:¢-x%. q(n)
But this number of operations must be at

least enough to scan the L{n) a's at
least once, and so we must have

2.q-x% qn) > L(n)

Thus in either case, the lemma iskseen to
be true if we choose l/c = 2-q-k9%.8

We say that a tape function L(n) is
constructable on an off-line push-dowm

machine if there is a set W which satis-
fies the lemma and 1s L{n)-tape recogniz-
able on an off-line push-down machine.
Stated less formally, L{(n) 1s constructe
able if {t 15 possible for some input of
length n to recognize that exactly L(n)
ones appear at the end of the word and if
the recognition can be done within tape
L{n). Although these constructable func-
tions have not been investigated in much
detail, we know that they contain the
various rational powers of n, log n, and
log log m that lie between n and log log



n and so a falrly rich structure is
assured. We now carry the structure over
to the complexity hierarchy.

Theorem 8: For off-line push-down ma-
chines, if L(n) is a constructable func-
tion, then there exists a set W which 1is
L(n)-tape computable and is not Q(n}-
tape computable for all tape functions
Q(n) such that

m _ g

inf T(n)

-3

Proof: We choose W to be the set that
makes L(n) constructable and i{f W is also
Q(n)~tape computable, the lemma insures
us that Q(n) 2 c¢-L{n)} for some c and so

inf Qny 2 c.8
e AC)

SUMMARY

We have seen that bounding the tape
required to recognize a set on any of the
four machine types can be used a8 a com-~
plexity measure for the recognition prob-
lem, For three of the models, this leads
to a rich hierarchy of tape complexity
classes, each representing a different
degree of difficulty. The structure of
these hierarchies may be summarized as
follows:

1) For each model, the "simplest”

complexity class is Cconstant which is

the class of regular sets.

2) Each machine type has a lower
bound £(n) which bounds the non-regular
complexity classes in the sense that

a) 1m%‘% = 0 implies that
CL contains only regular
sets
and

tone L{n) such that CL
contains non-regular sets.

The function J(n) for each type is:
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off~1ine Turing machines
off-1ine push-down machines log logn

log logn

on-line Turing machines log n

on~line push-down machines n
3) For the Turing machine cases,

there is an infinite hierarchy of classes
above £ (n) in which the slightest inecrease
in the limiting behavior of one tape func-
tion gives a new tape function that de-
fines a new complexity class (whemever
the new function is constructable).

‘4) For the off-line push-down ma-
chines, there is a maximal complexity
class, namely CL(n)=n’ which contains all

sets that can be recognized by en off-
iine push-down machine. Between the fumc-
tions L(n) = n and £(n) = log log n, suit-
able slight increases in limiting behavior
again defines a new class.

5) TFor the on-line push-down machine,
the hierarchy consists of two sets,CL(n\_n
3=

and Cconstant’
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