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Summary. Under the banner of “hypercomputation” various claims are being
made for the feasibility of modes of computation that go beyond what is permitted
by Turing computability. In this article it will be shown that such claims fly in the
face of the inability of all currently accepted physical theories to deal with infinite
precision real numbers. When the claims are viewed critically, it is seen that they
amount to little more than the obvious comment that if non-computable inputs are
permitted, then non-computable outputs are attainable.

The Impossible As a Challenge

Why, sometimes ['ve believed as many as siz impossible things before
breakfast. — Lewis Carroll

Despite the fact that it has been known for over a century that it is im-
possible to devise a construction for dividing a given angle into three equal
parts using only straight-edge and compass, hopeful amateurs continue to
bring forth constructions that purport to do exactly that. It is as though the
word “impossible” is seen as a challenge. Although the laws of thermodynam-
ics have made it plain that the search for a perpetual motion machine is an
exercise in futility, inventors claiming to have constructed such a device still
besiege patent offices and manage to obtain financial support from gullible
investors ([16]).

Over the centuries, mathematicians had often found solutions to problems
in the form of procedures that could be carried out in a step-by-step fashion,
where each step was entirely mechanical, capable of being carried without
any creative thought; such procedures are called algorithms. During the
1930s, as a result of the work of a number of logicians, it became possible
to explain with full precision what it means to say for some given problem
that an algorithm exists providing a solution to that problem. Moreover it

! The word “algorithm” is derived from the twelfth century Arabic mathematician
al-Khwarizmi. Originally used to refer to the rules for calculating with the “Ara-
bic” numerals we use today (originating in India), the word gradually came to
refer to any mechanical procedure. In particular, the procedure due to Euclid for
finding the greatest common divisor of two integers by successive division has
been called the “Euclidean algorithm” at least since the nineteenth century. Go-
ing further back one can find the word (or its variant “algorism”) in the work of
Fibonacci, Leibniz (cf. [19]), and Euler. Today every serious university computer
science department offers courses in the design and analysis of algorithms.
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then became feasible to prove that for certain problems no such algorithm
exists, that it is impossible to specify an algorithm that provides a solution
to those problems. Because the computing machinery that became available
beginning in the 1950s were, in an important sense, physical realizations of the
idealized computational models that had been developed by the logicians, it
was generally held that it is impossible to construct a physical device capable
of solving these “unsolvable problems”. However in recent years a number of
researchers, marching under the banner of “hypercomputation”, unwilling to
accept as fact this impossibility, have been making proposals to overcome
this barrier. In assessing their claims, it will be important to be clear about
the relation between the abstract mathematical theory of computability and
modern computing machinery. A crucial and often ignored aspect of this
relation is that while the abstract theory is involved essentially with the
mathematical infinite, physical computers are necessarily finite objects.

Algorithms and Infinity

It is a fact of life that we are finite beings and that our calculations are
carried out on data that is not only finite, but is sufficiently limited in extent
to fit in the space available in such media as sheets of paper or computer
disks. Nevertheless, it has turned out that the appropriate way to formulate
algorithms is as though they are intended to apply to initial data of arbitrary
size. We can see this even in the simple algorithm for adding two numbers
that we all learned as children:

15 3456789234568921
+17 +8732198623456521
32 12188987858025442

The same algorithm applies in these two cases although the numbers being
added are of very different size. In fact it is clear that the same algorithm
will work regardless of the size of the addends. One can imagine applying it
to numbers so large that, written out, they would stretch from one end of our
galaxy to the other! Almost all known algorithms have this same property:
although intended to deal only with finite initial data, and always yielding
finite results, they will behave correctly regardless of the size of the data. In
fact one of the principal measures of the complexity of a given algorithm is
based on its “asymptotic” behavior — that is, its behavior as the size of the
initial data increases without limit.2

2 For example, the complexity of algorithms designed to sort data into numerical
or alphabetic order is usually measured in terms of the number of comparisons
required as a function of the number of items being sorted. Thus the crudest
algorithms for sorting n items require a number of comparisons proportional to
n? , whereas more sophisticated algorithms manage with a number proportional
to nlogn. For large n, this latter number is much smaller.
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The use of the word “mechanical” in explaining what an algorithm is,
suggests a machine, and indeed adding machines that may be said to imple-
ment the addition algorithm exhibited above were once a commonplace. But
it is worth noting that unlike the abstract algorithm that countenances no
limitation on the size of the numbers being added, a machine implementing
this algorithm, being a finite physical object, is constrained to accept only
numbers smaller than some definite amount.

Over the centuries, many algorithms have been developed to solve vari-
ous problems, but until the 1930s mathematicians had no way to prove that
for certain problems an algorithmic solution is impossible. This option only
became available with the work of the logicians Godel, Church, Post, and
especially Turing who provided precise characterizations of algorithmic solv-
ability [7]. As Robin Gandy explained:

Both Church and Turing had in mind calculation by an abstract
human being using some mechanical aids (such as paper and pencil).
The word ’abstract’ indicates that the argument makes no appeal to
the existence of practical limits on time and space. ([14])

Although the various characterizations were superficially different, it turned
out that they were equivalent to one another. The assertion that these equiv-
alent notions provide a precise explication of the previously unanalyzed intu-
itive concept of algorithmic solvability has come to be called Church’s Thesis
or The Church-Turing Thesis. Making use of this work a considerable num-
ber of problems have been proved to be unsolvable — in the sense that no
algorithmic solution for them is possible. In Turing’s own classical paper [20]
he proved the unsolvability in this sense of a problem in mathematical logic
known as the Entscheidungsproblem.?

Turing introduced the term computable for his characterization of algo-
rithmic solvability which he developed by imagining a human being carrying
out a computation, and, by removing, one after another, successive layers of
irrelevant complication, arriving at his celebrated notion of what has come
to be called a Turing machine. These “machines” are mathematical abstrac-
tions that do not, and can not, exist in the physical world. Turing machines
accommodate inputs of arbitrary size on an infinite linear “tape” ruled into
individual cells on each of which a symbol can be written. At any instant
the machine is in one of a finite number of “states”, and is “scanning” one
of these cells. The tape contents is modified step-by-step by the moves of
the machine. These moves consist of changing the symbol on the currently
scanned cell, causing the scanned cell to be the one either to the immediate
right or to the immediate left of this cell, and finally entering a new state.

3 The Entscheidunsproblem is, in effect, the problem of providing a general algo-
rithm to determine whether some conclusion can be logically inferred from a given
finite set of premises using the rules of classical logic; it should be mentioned that
Church had also proved this problem to be unsolvable.
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The precise action depends only on the symbol in the scanned cell and the
machine’s current state. Turing, in effect, held that any algorithmic process
is equivalent to what some appropriate Turing machine can accomplish if
an appropriate input string of symbols is placed on its tape.* A first exam-
ple of an algorithmically unsolvable problem, the so-called halting problem,
was then readily obtainable. One form of this result is: There is no algorithm
which will determine of a given Turing machine whether it will ever halt when
started with a completely blank tape.’

Although Turing had been led to think along these lines by his desire to
show that the Entscheidungsproblem is unsolvable, he went on to obtain an
additional result of great importance. He realized that it is possible to design
a single “universal” Turing machine, which all by itself could do the work
of any other Turing machine. Here’s the idea: imagine placing on the tape
of a Turing machine a symbolic representation or “code” for some arbitrary
Turing machine M and in addition, an input to M as in the diagram below.

|Code of Turing machine M||Input to ./\/l|

The universal machine would then do exactly what M would have done if
presented with that same input. Turing wrote out in full the tables showing
the moves of his universal machine.® That such a single Turing machine could
execute, as it were, any algorithm whatever pointed the way to building a
genuine physical machine that would be all-purpose in this same way, subject
only to limitations of space and time. The universal machine opened other
vistas to be realized in practice only much later. As I wrote [10,11]:

Before Turing the ...supposition was that ...the three categories,
machine, program, and data, were entirely separate entities. The
machine was a physical object ...hardware. The program was the
plan for doing a computation ... The data was the numerical input.
Turing’s universal machine showed that the distinctness of these three
categories is an illusion. A Turing machine is initially envisioned as a
machine ..., hardware. But its code . .. functions as a program, detail-
ing the instructions to the universal machine . .. Finally, the universal

4 Tt is an unimportant detail that Turing’s paper was mainly written in terms of
algorithms for computing the successive Os and 1s in the binary expansion of a
real number.

An unimportant technical detail: I assume a tape infinite in both directions as
in my [6]. If, as with Turing, the tape is infinite in only one direction, one should
specify in addition that the initial scanned cell is the one at the end of the tape.
It is worth noting that given confidence in the success of Turing machines in
capturing the concept of algorithmic solvability, the existence of such a universal
machine is inevitable. This is because it is easy to provide an algorithm that
using the table defining any given Turing machine M will step-by-step perform
exactly like M. Thus, if one believes that any algorithm can be carried out by a
Turing machine, that would have to be the case for this algorithm as well.
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machine in its step-by-step actions sees the ...machine code as just
more data to be worked on. This fluidity .. . is fundamental to contem-
porary computer practice. A program ...is data to the ...compiler.

Turing Machines, The Church-Turing Thesis, and
Modern Computers

Although no, necessarily finite, physical device can emulate a true univer-
sal Turing machine with its infinite tape and ability to deal with arbitrarily
large data, the existence, even as a mathematical abstraction, of Turing’s
universal “machine”, brought into focus the goal of building a machine that
could usefully approximate universality. In effect such a machine would “im-
plement” Turing’s universal machine in much the same way that an adding
machine implements the simple addition algorithm displayed above.” The
myriad tasks that the computers on our desktops routinely accomplish attest
to the great success in achieving that goal. But it was by no means clear ab
initio that an all-purpose machine could be built that could do useful work.
In the years just after the second world war, Turing and von Neumann each
produced plans for such a machine. Before anything was actually built, von
Neumann wrote a sophisticated sorting program for the EDVAC (a proposed
computer to be built at the University of Pennsylvania) to see whether a ma-
chine designed principally for heavy-duty number crunching could also handle
such an essentially logical task. Having succeeded, he stated with satisfaction
that the machine was acceptably “all-purpose”. A year later, in 1946, writing
with Arthur Burks and Herman Goldstine, von Neumann commented on the
relationship between Turing’s abstract universal machine and the practical
problem of designing a useful all-purpose computer:

It is easy to see by formal-logical methods that there exist codes that
are in abstracto adequate to control and cause the execution of any
sequence of operations which are individually available in the machine
and which are, in their entirety, conceivable by the problem planner.
The really decisive considerations from the present point of view, in
selecting a code, are of a more practical nature: simplicity of the
equipment demanded by the code, and the clarity of its application
to the actually important problems together with the speed of its
handling those problems.®

™ Of course, modern computers are not literally implementations of Turing’s uni-
versal computer. The stripped-down design of a Turing machine is excellent for
theoretical purposes, but would never do for practical computing. But of course
it is not difficult to write programs to run on modern computers that simulate
Turing machines. For example, see http://alexvn.freeservers.com/sl/turing.html
8 See [9] for references and further discussion.
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Nevertheless, there is no doubt that, from the beginning the logicians devel-
oping the theoretical foundations of computing were thinking also in terms
of physical mechanism. Thus, as early as 1937, Alonzo Church reviewing
Turing’s classic paper wrote:

[Turing] proposes as a criterion that an infinite sequence of digits 0
and 1 be 'computable’ that it shall be possible to devise a computing
machine, occupying a finite space and with working parts of finite
size, which will write down the sequence to any desired number of
terms if allowed to run for a sufficiently long time. As a matter of
convenience, certain further restrictions are imposed on the character
of the machine, but these are of such a nature as obviously to cause
no loss of generality ... [2]

Turing himself speaking to the London Mathematical Society in 1947 said:

Some years ago I was researching what now may be described as an
investigation of the theoretical possibilities and limitations of digital
computing machines. I considered a type of machine which had a cen-
tral mechanism, and an infinite memory which was contained on an
infinite tape. This type of machine seemed to be sufficiently general.
One of my conclusions was that the idea of 'rule of thumb’ process
and 'machine process’ were synonymous.

Referring to the machine he had designed for the British National Physics
Laboratory, Turing went on to say:

Machines such as the ACE (Automatic Computing Engine) may be
regarded as practical versions of this same type of machine.[22]

Hava Siegelmann Ventures “Beyond the Turing Limit”

It is natural to seek and investigate models of computation suggested by
the nervous systems, and especially the brains, of human beings and other
animals. The brain presents itself as an extremely complicated network of
intricately interconnected cells called neurons. Since the 1940s, investigators
have been studying mathematical structures consisting of networks of neuron-
like elements. The 1980s saw a resurgence of interest in this area after some
years of neglect, with the hope that artificial networks of this kind, so-called
neural nets, might lead to better understanding of our own brains.?

In 1995 an article by Hava Siegelmann appeared in Science, the entirely
respectable journal of the American Association for the Advancement of Sci-
ence, entitled “Computation beyond the Turing Limit” [17]. Presenting her

® The monograph [18] has an extensive bibliography of this field. The paper [15]
suggests that these so-called “connectionist” models are unlikely to provide much
speed-up compared to conventional computers.
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own perfectly reasonable version of a neural net, she claimed that her nets
could indeed achieve what had been thought to be impossible: among the
things that they could compute were some that had been proved to be not
Turing computable. A few years later she published a monograph [18] in
which she studied her neural nets in some detail. Again the same claim was
showcased: the book is subtitled “Beyond the Turing Limit.” Shall we con-
clude that Siegelmann is indeed a pioneer of hypercomputation? Actually, as
we shall see, there is much less to her claim than meets the eye.

Fortunately, to understand what is involved, it is not necessary to deal
with the full technical definition of Siegelmann’s neural nets. But it is neces-
sary to understand what mathematicians mean when they speak of real num-
bers. In fact the crucial thing for our purposes is that each of Siegelmann’s
nets is associated with a finite number of real numbers called weights.'°
Among the data objects in which she frames her discussion are the so-
called languages on an alphabet of two symbols, which we may conveniently
take to be {a,b}. By such a “language” all that is meant is some set, fi-
nite or infinite, of strings of these two letters. For example, the language
{ab, abb, abbb, abbbb, . . .} is the collection of all strings consisting of the letter
a followed by some number of bs. To say that such a language is computable
is just to say that there exists a Turing machine which, when a particular
string on the alphabet {a,b} is placed on its tape initially, will eventually
halt and will reveal by what is then written on the tape, whether or not the
given string belonged to the language in question. Siegelmann defines pre-
cisely what it means to say that such a language is recognized by one of her
nets.

Siegelmann begins by restricting the numbers that are permitted to serve
as weights, first to integers, and then to rational numbers.'! She proves that
when her weights are restricted to be rational numbers the languages recog-
nized are precisely the computable languages. Next she considers what hap-
pens when arbitrary real numbers are permitted as weights. Lo and behold!
For every language, there is now one of Siegelmann’s nets that recognizes it!
To understand why this is less remarkable than it may appear to be, it is
necessary to understand the computational relationship between real num-
bers and languages on our two-letter alphabet. A computationally transparent
encoding can be used to represent each of these languages by a correspond-
ing real number. Here’s how. First, by arranging all strings on the alphabet

10 They are called weights because they participate in a weighted average that
determines each successive step in the evolution of a neural net.

1A rational number is one like 7/11 that can be written as a fraction with integers
as numerator and denominator. Rational numbers are also characterized by the
fact that their decimal expansions either consist of only a finite number of digits,
or eventually begin repeating the same pattern over and over again. This is by
contrast with irrational numbers like v/2 or 7.
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{a, b} in alphabetic order, we obtain the following coding that enables us to
represent each such language as a set of positive integers:'?

aa ab ba bb aaa aab aba abb baa bab bba bbD . . .

ab
A A A A A A A R e
123 4

56 7 8 9 10 11 12 13 14 ...

Finally any given set S of positive integers can be coded by the following real
number written as an infinite decimal

0, C1C2C3C4 - - .

where

. 4ifne S
™ 7 1 5 otherwise.

Let us see how this works out with an example. We begin with the language
{a, ab, abb, abbd, ...} consisting of the strings with an initial a followed by a
block of bs. The corresponding integers are {1,4,10,22,...}.13 So the real
number that encodes this language is 0,45545555545555555555545.. .14 Al-
though this number is irrational (because there is no repeating pattern), it is
computable. Siegelmann doesn’t consider what happens when all the weights
in one of her nets are computable, but her proof that nets with rational
weights recognize only computable languages readily extends to nets with
computable weights. It’s worth noting (as Turing already did in his classic
[20]) that all the standard real numbers of mathematical analysis, includ-
ing 7, e, zeros of Bessel functions, etc. are computable. And the only way
Siegelmann’s nets can hope to recognize a non-computable language is to use
non-computable weights. The neural nets can only go “beyond the Turing
limit” if they are provided with weights that are already not computable!
Siegelmann is perfectly aware that languages can be coded by real num-
bers. In fact, her proof that when arbitrary real weights are permitted every
language can be recognized works precisely by coding the desired language
into a weight.'® And she says in so many words, “...systems with infinitely
precise constants cannot be built”. Since the non-computability that Siegel-
mann gets from her neural nets is nothing more than the non-computability

2 Although it is not necessary for understanding the encoding, readers may be
interested to know that the string corresponding to a given integer in this listing
is a kind of binary representation of the integer in which a represents 1 and
b represents 2. So, for example, the string aba is associated with the number
1-2242-2'41-2°=09.

'3 The nth number in this sequence is 1 + 3n(n — 1)/2.

14 The comma is used in Europe for the decimal point; in the U.S. and Britain it’s
a period. Obviously there’s nothing special about the digits 4 and 5; their use is
just a matter of convenience.

5 The particular coding scheme she uses is different from the one we used above,
but that is of no significance.
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she has built into them, it is difficult to see in what sense she can claim to
have gone “beyond the Turing limit”.

For someone familiar with computability theory (also called recursion
theory), it is clear that the language recognized by such a neural net is sim-
ply a computable function of the real weights. The well-developed theory of
degrees of unsolvability makes it possible to classify such languages in var-
ious ways, depending on the degrees of unsolvability of the particular real
weights used.1® Siegelmann seems not to know (or not to care) about such
fine distinctions. She observes that with rational weights, it is the computable
languages that are recognized and that with arbitrary real weights all lan-
guages are recognized, and seems uninterested in the fact that between the
rationals and arbitrary reals lie a complex taxonomy of subsets of the real
numbers with a corresponding variety of resulting languages recognized when
the weights are restricted to one of these subsets.

Siegelmann’s only attempt in her monograph to connect neural nets with
arbitrary real weights to the actual physical world is the following curious
paragraph:

In nature, the fact that the constants are not known to us, or cannot
even be measured, is irrelevant for the true evolution of the system.
For example, the planets revolve according to the exact values of G,
w, and their masses.'”

This statement presumably is referring to Newton’s law of gravitation in
which the force of attraction between two bodies is given by the formula

1M
22

where m1, mo are the masses of the two bodies and d is the distance sep-
arating them. It is hard to know where to begin in criticizing this view of
“nature”. Ignoring the fact that Newtonian gravitation has been superceded
by Einstein’s General Theory of Relativity, we have to wonder what could
possibly be meant by the “exact value” of the mass of a planet whose chang-
ing boundary is necessarily vague, and why Dr. Siegelmann imagines that
(presumably in appropriate units) it is represented by an infinite precision
(and uncomputable?) real number. In addition, if one were to propose mea-
suring gravitational forces in the solar system to, say, 50 significant digits,
one would have to take account of the masses of “nearby” stars.

F=G

16 For example one, may use as a weight a real number that encodes the halting
problem for Turing machines. If this is done, it can be proved that the languages
recognized will be precisely those for which a Turing machine can be designed
that provided with a string as input, will never halt, but will reach a final stable
configuration that will reveal whether or not that string belongs to the given
language. (However, an observer would in general have no way to know, at any
point, whether that final configuration had actually been attained.)

17 118] p. 59.
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The hope that physical theory will somehow lead to a non-computable real
number appears to underlie much of the hypercomputation movement. More
will be said about this later. But it may be worth noting that, if anything,
physical science seems to be moving in the opposite direction. Chemists in
the nineteenth century devoted much energy to computing the atomic weights
of the elements to greater and greater precision. However, it has turned out
that the atoms of which one of these elements consist typically come in a
variety of “isotopes” each of which has a weight given by an integer number
of protons and neutrons. What the chemists were measuring was an artifact
of the proportion in which the different isotopes of a given element happen
to occur in nature.

Turing’s O-Machines

Jack Copeland, with his collaborator Diane Proudfoot has been an enthusias-
tic proponent of “hypercomputation”; indeed he is the person who baptized
the movement with this name [3,5,4]. Copeland has based himself largely on a
concept from Alan Turing’s doctoral dissertation at Princeton University. It
was on discovering that Alonzo Church in Princeton had found results similar
to his own that the young Turing decided to spend some time in Princeton.
Mainly for bureaucratic reasons, it seemed best that he enroll as a graduate
student at the university. With Church as his advisor, Turing completed a
doctoral dissertation that turned out to be an important and influential piece
of work [21].

Godel had made the somewhat paradoxical discovery that not only would
every formal logical system (satisfying a few simple requirements) gives rise
to a proposition U about the natural numbers that can not be decided within
that system, but also, this very proposition U could be seen to be true from
a perspective external to the system. A strengthened system in which U is
provable can be obtained by simply adjoining U as a new axiom. But this
new formal logical system will have its own undecidable proposition, and the
whole process can be carried out over and over again. This leads naturally
to the idea of progressions of stronger and stronger formal logical systems
in which true propositions undecidable at a given place in the progression
become provable in subsequent systems. The study of such progressions was
the topic of Turing’s dissertation.

Turing’s 68 page paper contains a number of interesting digressions, and it
is one of these that Copeland has enlisted in his cause. Turing introduced what
he called “O-machines”; these were to be like the machines from his classic
paper on computability, equipped with a linear tape and moving one square
at a time, but with one significant difference. These new machines were to be
provided access to the correct answers to problems known to be unsolvable,
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in particular to a kind of problem Turing called “number-theoretic”.'® As
Turing put it:

Let us suppose that we are supplied with some unspecified means of
solving number-theoretic problems; a kind of oracle as it were. We
shall not go any further into the nature of this oracle apart from
saying that it cannot be a machine.

Turing introduced these O-machines to solve a technical problem, specifically
to produce an example of a problem that is mot number-theoretic. He did
this by carrying out for O-machines the same proof that in his classic paper
on computability led to unsolvable problems. This was accomplished in one
page, and except for a few sentences in a later part of the paper, was the only
mention of O-machines in the entire 68 page paper.

It is perfectly plain in the context of Turing’s dissertation, that O-machines
were introduced simply to solve a specific technical problem about definabil-
ity of sets of natural numbers. There is not the faintest hint that Turing was
making a proposal about a machine to be built. In fact in 1938 when he was
writing his dissertation, it required remarkable vision to see in his abstract
universal machine, the prospect of actual all-purpose computers that could
(subject to limitations of space and time) compute whatever is computable.
It makes no sense to imagine that he was thinking about actual machines to
compute the uncomputable. Turing advisedly used the term “oracle”, a word
redolent of the supernatural, as though to underline the purely abstract na-
ture of his conception. Yet Copeland and Proudfoot, referring to O-machines
insist that “Even among experts, Turing’s pioneering theoretical concept of a
hypermachine has largely been forgotten.” This cooption of Turing to the fold
of hypercomputation on the basis of these O-machines is without the slightest
justification. The plain fact is that if one truly had an “oracle” that provided
answers for an unsolvable problem, that, for example, specified for any given
Turing machine whether or not it would eventually halt, then of course we
could solve unsolvable problems. As with Siegelmann’s nets, of course, if you
imagine yourself provided with a solver of an unsolvable problem, you could
solve unsolvable problems, that very one, for starters. One didn’t need Turing
to tell us that.

But Turing did show us how to make precise the notion of one prob-
lem being computable relative to a second: imagine solutions to that second
problem provided by an “oracle” and study just what problems now become

18 What Turing called “number-theoretic” were problems of the form “Does n be-
long to S7” where n is a natural number and S is a set that can be defined
as consisting of those numbers n for which an equation f(n,z) = 0, with f a
computable function, has infinitely many solutions in natural numbers z. Equiv-
alently, these are the sets that can be defined as consisting of those n such that
(Vz)(3y)[g(n,z,y) = 0] where g is computable. Today, such sets are called T3
sets, and they are seen as part of a hierarchy determined by the number and
arrangement of the “quantifiers” V, 3.
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“solvable” with its aid. This idea gave rise to the fruitful study of what are
called degrees of unsolvability or (in homage to Turing’s dissertation) Turing
degrees. These degrees have an intricate structure that researchers have spent
decades uncovering. The notion of oracle has also played an important role in
the theory of computational complexity, where it is not a question of comput-
ing the uncomputable, but rather of finding a scale for measuring the relative
complexity of algorithms needed to solve different problems. So far from the
truth is it that this work of Turing’s “has largely been forgotten”.

Copeland and Proudfoot have also been tempted by Siegelmann’s infinite
precision real numbers. Noting that the halting problem can be encoded by
a real number (along the lines suggested above), they propose, as a possible
“oracle”, a physical device that makes the successive digits of the decimal
representation of this number available. Without a clue as to what sort of
physical device could actually serve in this connection, they visualize a ca-
pacitor that would hold this number in the form of electric charge. Although
they are evidently not seriously proposing any such thing, the example serves
to underline one of the pitfalls in attempting to make an infinite precision
real number physically available: according to well established physical the-
ory, electric charge in a capacitor consists of a difference in the number of free
electrons present in its two plates. Since all electrons have the same charge,
the Copeland-Proudfoot infinite precision real number is actually an inte-
ger!'? Of course, there’s not much point in harping on what was just meant
as an illustrative example, but it does serve to remind us that twentieth cen-
tury physics has tended to see physical quantities as made up of discrete
units.

Of course physical theory is in constant flux. Can we really utterly exclude
the possibility of some new development leading to a physical realization of
an uncomputable quantity? Of course not. In 1958 T wrote:

For how can we can we ever exclude the possibility of our being
presented, some day (perhaps by some extraterrestrial visitor) with a
... device or "oracle” that ”computes” a noncomputable function?2°

For that matter can we really and definitively rule out perpetual motion
machines? Isn’t it possible that some future development in physical theory
will give us access to unlimited energy from some other universe? Well, one
would have to say, “Possible but most unlikely.” However that may be, such
a development will not be the result of someone tinkering in a garage. It
could only happen as the result of a revolutionary transformation of physical

theory. One would surely look askance at philosophers proclaiming that “the

19 'm indebted to Andrew Hodges for reminding me of this fact.

20 See [6], p. 11. In view of the Copeland-Proudfoot suggestion that Turing’s O-
machines had been forgotten, it may not be amiss to mention that this book
(which has been called a “classic”) remains in print, and that Turing machines
with oracle are treated in its first chapter.
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search is on” for a perpetual motion machine. Yet Copeland-Proudfoot use
those very words referring to the quest for an oracle.

Until now, all physical theory has been content with predictions that can
be verified to within less than, say, 50 significant digits. A physical theory
leading to uncomputable quantities, is certainly not out of the question. But
such a revolutionary development will not come from exhortations assuring us
that “the search is on”; if at all, it could only arise from the work of theoretical
physicists seeking, not an “oracle”, but deeper understanding of the universe.
Moreover, even if such uncomputable physics were to be developed, making
use of it for computational purposes would hardly be automatic. As Dana
Scott has remarked:

70 years of research on Turing degrees has shown the structure to
be extremely complicated. In other words, the hierarchy of oracles is
worse than any political system. No one oracle is all powerful.

Suppose some quantum genius gave you an oracle as a black box.
No finite amount of observation would tell you what it does and why
it is non-recursive. Hence, there would be no way to write an algo-
rithm to solve an understandable problem you couldn’t solve before!
Interpretation of oracular statements is a very fine art - as they found
out at Delphi!?!

Consider what would be involved in harnessing a putative noncomputable
physics. What is usually taken to be the ultimate test of a physical theory,
agreement with measurements to the extent that instruments permit, would
be of no use, because no finite amount of information can verify the value of
an infinite precision real number. All experience suggests that every physical
theory is accepted only provisionally with every expectation of its eventual
replacement. But for a useable oracle to be obtainable, one would require
absolute certainty that a real number provided by a particular theory will
not have its value changed if and when the theory is upgraded. Finally, even
if one knew that some such number is not computable, in order to use it as
an oracle, one would also have to know its degree of unsolvability. If indeed
“the search is on” for such a number, one can only pity those engaged in this
misguided enterprise.

Computing with Randomness and Quantum
Computation

There has been considerable success in using randomness to find more efficient
algorithms for solving various problems. In recent years, the use of quantum
mechanical principles in computation has been shown to lead to efficiency.
One might be led to wonder whether one or both of these might not lead to
“hypercomputation” after all.

2! personal correspondence.
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The computing power of Turing machines provided with a random num-
ber generator was studied in the classic paper [12]. It turned out that such
machines could compute only functions that are already computable by or-
dinary Turing machines.

The case of quantum computers is similar. Quantum algorithms can pro-
vide an exponential speed-up. However, they can only compute computable
functions.??

Mechanism

The role of mechanism in human cognition was much discussed in the 17th
century, in particular by Descartes, Hobbes , and La Mettrie. The question
has been the subject of renewed interest in the context of the possibility
of machine intelligence. Of course one is very far from understanding the
workings of the human mind, but there is every reason to believe that one
of the things our brains do is to execute algorithms. Whether that is all that
they do remains unknown although Okham’s razor does suggest that as a
parsimonious thesis.

In [4], Jack Copeland discusses these matters in the context of the theo-
retical adequacy of Turing computability. He proposes that one should permit
a “wide” mechanism that allows for hypercomputation, and he minimizes the
relevance of computability theory. A detailed discussion of these questions is
beyond the scope of this article. However, it is strange that despite his exten-
sive references, he fails to mention Judson Webb’s outstanding monograph
[25].

Algorithms: Universality vs. Complexity

I well remember writing code for vacuum tube (British: “valve”) computers
in the early 1950s. We early programmers found it delightful to see that we
could “code” any algorithm to run on our machines. And indeed it is this
application of Turing’s discovery of universality that underlies the enormous
range of tasks that computers are asked to perform in the contemporary
world. It didn’t take very long for the realization to sink in that care was
needed in the allocation of resources if calculations were to be completed in
an acceptable time period using the available data storage. At one point I had
undertaken to run a program that had been written by a physics graduate
student to compute the moments of a function that occurred in the theory
of cosmic ray “showers”. The first three moments were obtained in an hour.
The fourth required that the machine run all night devoted exclusively to
this task. It was clear that the fifth moment was unobtainable.

22 See for example, [13] p. 210.
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Early work on automated theorem proving ran into exponential explo-
sions. There seemed to be no way to find an algorithm avoiding such blowups
for the simple problem of testing a logical expression in the connectives
=, V, A for the existence of a truth-value assignment that would evaluate
the given expression as “true”. This satisfiability problem eventually assumed
the role of a paradigmatic “hard” problem — one for which no really feasible
algorithm was to be expected. While there is still no proof that this is indeed
the case, the important subject of computational complexity has developed
around this question. A proof of the “million dollar” proposition P # NP
would settle the matter.?

All of this is to point out that the enthusiasts for “hypercomputation”
have quite ignored questions of complexity. Copeland’s supposed oracles not
only store information regarding unsolvable problems, but apparently spew
out the information with no significant delay. Of course, in reality, even if,
despite all that has been said above, an actual oracle materializes, it will be
quite useless if, for example, the time needed for the answer to a query to
the oracle is an exponential function of the size of the query.

We may summarize: the positive evidence provided by enthusiasts for
hypercomputation amounts to no more than the trivial remark that given a
physical “oracle” that somehow makes uncomputable information available,
it will become possible to compute other uncomputable functions as well. The
great success of modern computers as all-purpose algorithm-executing engines
embodying Turing’s universal computer in physical form, makes it extremely
plausible that the abstract theory of computability gives the correct answer
to the question “What is a computation?” and, by itself, makes the existence
of any more general form of computation extremely doubtful. In any case, a
useable physical representation of an uncomputable function, would require
a revolutionary new physical theory, and one that it would be impossible to
verify because of the inherent limitations of physical measurement. Finally,
the real problems in learning to carry out computations currently regarded
as unfeasible lie in a quite different direction — overcoming the exponential
explosions in the straightforward algorithms for such problems. It is in this
direction that quantum computation may make a real contribution.

23 Certain problems that are algorithmically solvable, nevertheless have resisted
every attempt to find an algorithm that is feasible in practical terms. The propo-
sition P # NP may be thought of as asserting that no such feasible algorithms
exist. A prize of one million dollars will be awarded by the Clay Mathematics In-
stitute for a proof of this proposition. In an important paper [1], Baker, Gill, and
Solovay discussed the “relativization” of this question to an oracle. They showed
that depending on which particular oracle was used the relativized proposition
could be made to be true or to be false, so that no method of proof that continued
to work when relativized to an oracle could possibly resolve this question. It is
worth noting that the oracles used in this work are computable. In any case,
this example can serve to emphasize how far from the truth it is that Turing’s
notion of oracle “has been largely forgotten”.
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