
Conway Factors and the Carrez NFA

K. Sutner

2024/01/07 v.0.2

1 Conway Factorizations

Fix some alphabet Σ once and for all; all languages in the following will be subsets of Σ⋆.
We are mostly interested in regular languages, but if a notion makes sense in a the setting
of all languages we will define it in full generality. The following definition is due to Conway
[3].

Definition 1.1 A k-subfactorization of L, k ≥ 2, (or subfactorization of order k) is a k-tuple
of languages Xi, 1 ≤ i ≤ k, such that

X1 · X2 · . . . Xk−1 · Xk ⊆ L

A k-factorization is a k-subfactorization where every term is maximal.

For emphasis, we write X = X1:X2: . . . :Xk for a subfactorization and refer to Xi as the ith
term or ith component of X. As usual, we will mostly express concatenation by juxtaposition
and write XY rather than X ·Y . Note that . . . :X:Y : . . . is a subfactorization iff its contraction
. . . :XY : . . . is a subfactorization, albeit of order k − 1. Alas, the corresponding claim for
factorizations is wrong, in either direction.

There is a natural partial order on k-subfactorizations by pointwise set inclusion: Y1:Y2: . . . :Yk ⊑
X1:X2: . . . :Xk if Yi ⊆ Xi for all i. So a factorization is a maximal element in this order. We
write Fk for the poset of all k-subfactorizations and F̂k for all k-factorizations.

Definition 1.2 A factor of L is a term that appears in some place in some factorization. A
left/right factor is one that appears in the first/last position of a factorization.

1



Contractions show that all left/right factors already appear in 2-factorizations, so it is natural
to study F̂2 first. For any subset X of Σ⋆, consider X to be a term in a 2-subfactorization
and saturate the other term to obtain a factor. More precisely, the corresponding left and
right factors are

λLX = { u ∈ Σ⋆ | uX ⊆ L } =
⋃

{ Z | ZX ⊆ L }
ρLX = { u ∈ Σ⋆ | Xu ⊆ L } =

⋃
{ Z | XZ ⊆ L }

and we have subfactorizations λLX:X, X:ρLX ⊆ L. The maps λL and ρL are anti-monotonic
by definition and can naturally be expressed in terms of left and right quotients:

λX = { u ∈ Σ⋆ | X ⊆ u−1L }
ρX = { u ∈ Σ⋆ | X ⊆ Lu−1 }

The key property that we will use without further mention is

XY ⊆ L ⇐⇒ X ⊆ λY, Y ⊆ ρX

To lighten notation, we will omit the subscripts in ρL and λL whenever the language is clear
from context.

For some simple examples, first let L = Σ⋆. Then all factorizations have only terms Σ⋆.
Second, for L = ∅ every factorization must contain exactly one term 0, all others are Σ⋆.
Thus, there are exactly two 2-factorizations: 0:Σ⋆ and Σ⋆:0. We have λΣ⋆ = ρΣ⋆ = 0 and
λ0 = ρ0 = Σ⋆. Lastly, for L = a+ ⊆ {a, b}⋆ we have λ(0) = Σ⋆, λ(ε) = a+, λ(a+) = a⋆ and
λ(Σ⋆) = 0, and these are all the left and right factors.

Writing op for the reversal of strings, the two operations are connected by λLX =
(
ρLopXop

)op

and similarly the other way around. The following lemma shows that the language L itself
appears as a left and as a right factor.

Lemma 1.1 For all X ⊆ Σ⋆: X ⊆ ρλX and X ⊆ λρX. For X = L we have equality.

Proof. By definition, λX · X ⊆ L, so X ⊆ ρλX. When X = L and u ∈ ρλL, then
u ∈ L since ε ∈ λL. The second part follows immediately from the first and the observation
preceding the lemma. 2

Lemma 1.2 There is a one-one correspondence between all left factors and all right factors.
In fact, the correspondence is given by the maps λ and ρ.

Proof. Suppose X is a left factor and let X:Y be a corresponding factorization. Then
Y ⊆ ρX and, since Y is maximal, we must have Y = ρX. Similarly X = λY and we are
done. 2

2



Turning to arbitrary factors, suppose that Z is a factor that appears in the ith position
of some k-factorization, 1 < i < k. By merging the other components we obtain a 3-
subfactorization X ′:Z:Y ′ which can be extended to a 3-factorization X:Z:Y . Thus is suffices
to characterize the middle terms of 3-factorizations. To this end, let X be a left factor
and Y a right factor. Since X:0:Y is a subfactorization, there is a unique set Z such that
X:0:Y ⊑ X:Z:Y , which set we will denote Z(X, Y ).

Lemma 1.3 Let X ′ = λ(L) and Y ′ = ρ(L). Then all left factors are of the form Z(X ′, Y )
where Y is a right factor, and all right factors are of the form Z(X, Y ′) where X is a left
factor. Furthermore, Z(X ′, Y ′) = L.

Proof. By our choice of X ′, X ′:λ(Y ):Y is a factorization for all right factors Y . There
argument for right factors is analogous. Since X ′:L:Y ′ is a factorization, we have Z(X ′, Y ′) =
L. 2

Theorem 1.1 The number of factors of L is finite if, and only if, L is regular. Moreover,
the number of left/right factors is µ̂(L) in this case.

Proof. By lemma 1.3 it suffices to consider only left/right factors. Accordingly, let X:Y be
any factorization of L. Then

Y = ρX =
⋂

u∈X

u−1L = X−1L

But L is regular iff L is regular iff the number of quotients, word or language, is finite. We
are done by lemma 1.1. 2

Note, though, that µ̂(L) ̸= µ̂(L) in general, in distinction to words quotients. It follows
that for regular L there are at most 2µ(L) many left/right pairs. We will consider a direct
construction of a finite state machine for L based on left factors in the next section.

Not let L be regular, say, there are m left/right factors and we have chosen some linear
ordering of these languages. This affords a coordinate system and we can organize the
collection of all factors into a m × m matrix F with entries Zij = Z(Xi, Yj).

Example 1.1 The star-free language L = a⋆b⋆c⋆ has 5 left/right factors:

left Σ⋆ L a⋆b⋆ a⋆ 0
right 0 c⋆ b⋆c⋆ L Σ⋆

3



and the corresponding factor matrix F = (Zij) looks like so:

0 c⋆ b⋆c⋆ L Σ⋆

Σ⋆ Σ⋆ 0 0 0 0
L Σ⋆ c⋆ 0 0 0
a⋆b⋆ Σ⋆ b⋆c⋆ b⋆ 0 0
a⋆ Σ⋆ L a⋆b⋆ a⋆ 0
0 Σ⋆ Σ⋆ Σ⋆ Σ⋆ Σ⋆

Theorem 1.2 Consider the m × m factor matrix F = (Zij) of some regular language L.
Then

1. ZijZjk ⊆ Zik

2. X1:X2: . . . :Xs is a subfactorization iff there is an index sequence 1 ≤ i0, . . . , is ≤ m
such that i0 = λ(L), Xj ⊆ Zij-1 ij

and is = ρ(L).

Proof. By definition, XiZijYj ⊆ L, so that XiZij ⊆ Xj. Hence XiZijZjkYk ⊆ XjZjkYk ⊆ L,
and our claim follows.

For the second part, it suffices to prove the binary case: XY ⊆ Zik iff there is some j such
that X ⊆ Zij and Y ⊆ Zjk. To see this, note that (XiX)(Y Yk) ⊆ L, so that XiX ⊆ Xj and
Y Yj ⊆ Yj for some j. But then XiXYj ⊆ L and XJY Yk ⊆ L, and the claim follows. 2

Back to our original complaint: the lack of invariance of state complexity under string
reversal.

Theorem 1.3 (Conway) Let L be a regular language. Then µ̂(L) = µ̂(Lop).

Proof. Consider all 2-factorizations X:Y of L. As we have just seen, there are µ̂(L) choices
for X. By symmetry, there are µ̂(Lop) choices for Y . But we already know that these two
numbers agree. 2

1.1 Computation

Let L be a regular language and M = ⟨Q, Σ, δ; q0, F ⟩ it’s minimal DFA, so the state com-
plexity of M is µ(L). We write δ as a right semigroup action p · x = δ(p, x). All behaviors
and cobehaviors below are with respect to M. Suppose we have m left/right factor pairs
X:Y . From the proof of theorem 1.1 we have

Y = ρX =
⋂

u∈X

u−1L

4



Similarly we can express λ as follows. The quotient map x 7→ x−1L induces an equivalence
relation on Σ⋆; write [u] for the equivalence class of u. Hence [u] = Jδ(q0, u)Kco and

X = λY =
⋃

Y ⊆u−1L

[u]

In terms of the minimal DFA this means

Y =
⋂

{ Jq0 · uK | u ∈ X }
X =

⋃
{ JpKco | Y ⊆ JpK }

Letting P = { q0 · u | u ∈ X } ⊆ Q we have Y = ⋂
p∈P JpK. We call P critical if P produces

Y in this manner, and P is maximal such (and thus actually maximum). Given P critical
we have X = JP Kco. Hence we can construct a list

X1:Y1, X2:Y2, . . . , Xm:Ym

of all left/right pairs by computing the critical state sets P ⊆ Q.

Suppose P1, P2 ⊆ Q are critical, and let X be the left factor for P1, and Y the right factor
for P2. To determine the middle factor Z = Z(X, Y ), note that

u /∈ Z ⇔ ∃ x ∈ X, y ∈ Y (xuy /∈ L)

⇔ ∃ q ∈ P1, y ∈ Y (q · uy /∈ F )

⇔ ∃ q ∈ P1 (Y ̸⊆ Jq · uK)

⇔ ∃ q ∈ P1 (q · u /∈ P2)

But then Z is the language of M(P1, P2) and Z = ⋂
p∈P1JM(p, P2)K.

2 The Carrez Automaton

For any NFA A and state p, write JpKA for the behavior of p (i.e., the language of A(p, F ))
and write JpKco

A for the co-behavior of p (i.e., the language of A(I, p)). We omit subscripts
when the automaton in question is obvious. A homomorphism of NFAs is any map that
preserves transitions, initial and final states. Hence, for any homomorphism h : A → B ,
JpKA ⊆ Jh(p)KB and JpKco

A ⊆ Jh(p)Kco
B . As a consequence, L(A) ⊆ L(B). We may safely

assume that all NFA are trim.

The following definition is due to Christian Carrez [2] and dates back to 1970; the description
here is based on [1].

Definition 2.1 For any language L, define the Carrez automaton for L, in symbols CL, as
follows:

5



1. states: Q = { λX | X ⊆ Σ⋆, X, λX ̸= ∅ }
2. initial: I = { Z ∈ Q | ε ∈ Z }
3. final: F = { Z ∈ Q | Z ⊆ L }
4. transitions: Z

a→ Z ′ ⇐⇒ Z · a ⊆ Z ′

By induction, X
u−→ Y ⇔ X · u ⊆ Y , so that ∅ u−→ Z

u−→ Σ⋆.

Lemma 2.1 The Carrez automaton CL accepts the language L.

Proof.

From the definitions, λL is initial and λρL = L is final. But (λL) · L ⊆ L, so λL
u−→ L is

an accepting computation in CL for all u ∈ L. On the other hand, whenever CL accepts u,
we have a computation X

u−→ Y where ε ∈ X and Y ⊆ L. But u ∈ Y and we are done. 2

Another way to show that L ⊆ L(CL) is to note that there are transitions of the form
λX

a→ λ a−1X. Hence an accepting computation in the quotient automaton for L translates
into a computation λL

u→ λu−1L in CL. But λL is initial, and ε ∈ u−1L, whence λu−1L ⊆ L
is final, and we have an accepting computation in CL. More generally, the states of CL are
closely related to their own behaviors and cobehaviors.

Lemma 2.2 Consider any state Z in the Carrez automaton CL. Then JZKco = Z = λJZK.
Similarly JZK = ρJZKco.

Proof. u ∈ JZKco implies that there is a computation from some initial state ε ∈ λY to Z,
hence u ∈ Z. Conversely, if u ∈ Z = λX, consider the initial state λL. Since λL · L ⊆ L
and uX ⊆ L, we have (λL) · (uX) ⊆ L. But then (λL) · u ∈ λX, hence u ∈ JZKco.

By the definition of CL, Z · JZK ⊆ L, so Z ⊆ λJZK. But λX · X ⊆ L, so X ⊆ JλXK = JZK,
whence λJZK ⊆ λX = Z.

The second claim is entirely similar. 2

As a consequence of the last lemma, CL is rigid in the sense that it admits no non-trivial
endomorphisms.

Corollary 2.1 The only endomorphism of CL is the identity.

Proof. Let h be an endomorphism of CL and h(X) = Y , so that JXK ⊆ JY K. By anti-
monotonicity, Y = λJY K ⊆ λJXK = X. A similar argument with co-behaviors shows X ⊆ Y .

2

6



The following result is now a direct consequence of theorem 1.1.

Theorem 2.1 (Carrez) L is regular iff CL has a finite number of states.
Moreover, if n is the state complexity of L, then the state complexity of CL is at most 2n.

Example 2.1 If L = a+ and Σ = {a}, then the number of states in CL is the same as the
number of states in the minimal DFA for L, namely 2. If Σ = {a, b} and L is the set of
words with an even number of both a’s and b’s, then CL has 5 states.

Now let A = ⟨Q, Σ, τ ; I, F ⟩ be any trim NFA which accepts a sublanguage of L, and define
a map h from A to CL by:

h(p) = λJpKA

We assume that A is trim to avoid rogue states.

Lemma 2.3 The function h is a homomorphism from A to CL.

Proof. Let p
a→ q be a transition in A and u ∈ h(p) = λJpK. Then uJpK ⊆ L. Since

aJqK ⊆ JpK, we have ua ∈ λJqK. Thus CL has a transition λJpK a→ λJqK. If p is initial in A,
then JpKA ⊆ L and therefore ε ∈ λJpKA; hence h(s) is initial in CL. Lastly, suppose p is final
in A, whence ε ∈ JpKA. But then u ∈ λJpKA implies u ∈ L and h(p) = λJpKA is also final in
CL. 2

Combining the last two results produces the theorem in [1]: no proper homomorphic image
of CL can accept L, or even a subset thereof.

Theorem 2.2 Let A be and NFA accepting a subset of L and g : CL → A an epimorphism.
Then g is already an isomorphism.

Proof. We have seen that the behavioral map provides a homomorphism h : A → CL .
Hence g ◦h is an endomorphism of CL, and thus the identity. Hence g is an isomorphism. 2

References

[1] André Arnold, Anne Dicky, and Maurice Nivat. A note about minimal non-deterministic
automata. Bulletin of the EATCS, 47:166–169, 01 1992.

[2] Christian Carrez. On the minimalization of non-deterministic automaton, 1970.

[3] John Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

7


