Conway Factors and the Carrez NFA

K. Sutner

2024/01/07 v.0.2

1 Conway Factorizations

Fix some alphabet Y’ once and for all; all languages in the following will be subsets of X*.
We are mostly interested in regular languages, but if a notion makes sense in a the setting
of all languages we will define it in full generality. The following definition is due to Conway

3]-

Definition 1.1 A k-subfactorization of L, k > 2, (or subfactorization of order k) is a k-tuple
of languages X;, 1 < i < k, such that

Xy Xo- o X1 Xy CL

A k-factorization is a k-subfactorization where every term is maximal.

For emphasis, we write X = X;:Xs:...: X} for a subfactorization and refer to X; as the ith
term or ith component of X. As usual, we will mostly express concatenation by juxtaposition
and write XY rather than X-Y. Note that ...:X:Y:...is a subfactorization iff its contraction

. XY: ... is a subfactorization, albeit of order k — 1. Alas, the corresponding claim for
factorlzatlons is wrong, in either direction.

There is a natural partial order on k-subfactorizations by pointwise set inclusion: Y7:Y5:...:Y, C
Xi:Xq: X, ifY; C X, for all i. So a factorization is a maximal element in this order. We
write JF}, for the poset of all k-subfactorizations and Fk for all k-factorizations.

Definition 1.2 A factor of L is a term that appears in some place in some factorization. A
left /right factor is one that appears in the first/last position of a factorization.

Contractions show that all left /right factors already appear in 2-factorizations, so it is natural
to study F, first. For any subset X of X*, consider X to be a term in a 2-subfactorization
and saturate the other term to obtain a factor. More precisely, the corresponding left and
right factors are

MX ={ueX|uXCL}y=|\J{Z|ZXCL}
ppX ={ueX | XuCL}=|}{Z|XZCL}

and we have subfactorizations A\; X: X, X:p, X C L. The maps A\, and py, are anti-monotonic
by definition and can naturally be expressed in terms of left and right quotients:

M ={ueX | XCu'L}
pX={ueX*| X CLu'}

The key property that we will use without further mention is
XYCL <= XCM)Y CpX

To lighten notation, we will omit the subscripts in p; and A;, whenever the language is clear
from context.

For some simple examples, first let L = X*. Then all factorizations have only terms X™*.
Second, for L = () every factorization must contain exactly one term 0, all others are X*.
Thus, there are exactly two 2-factorizations: 0:3* and X*:0. We have \X* = pXl* = (0 and
A0 = p0 = X*. Lastly, for L = a™ C {a,b}" we have A(0) = X*, A(e) = a™, A(a™) = a* and
A(X*) =0, and these are all the left and right factors.

Writing op for the reversal of strings, the two operations are connected by A\ X = (p Lop X OP)op

and similarly the other way around. The following lemma shows that the language L itself
appears as a left and as a right factor.

Lemma 1.1 For all X C Y*: X C pAX and X C M\pX. For X = L we have equality.

Proof. By definition, AX - X C L, so X C pAX. When X = L and u € pAL, then
u € L since ¢ € AL. The second part follows immediately from the first and the observation
preceding the lemma. O

Lemma 1.2 There is a one-one correspondence between all left factors and all right factors.
In fact, the correspondence is given by the maps A and p.

Proof. Suppose X is a left factor and let X:Y be a corresponding factorization. Then
Y C pX and, since Y is maximal, we must have Y = pX. Similarly X = A\Y and we are
done. 0

Turning to arbitrary factors, suppose that Z is a factor that appears in the ith position
of some k-factorization, 1 < ¢ < k. By merging the other components we obtain a 3-
subfactorization X’:Z:Y” which can be extended to a 3-factorization X:Z:Y. Thus is suffices
to characterize the middle terms of 3-factorizations. To this end, let X be a left factor
and Y a right factor. Since X:0:Y is a subfactorization, there is a unique set Z such that
X:0:Y C X:Z:Y, which set we will denote Z(X,Y).

Lemma 1.3 Let X' = \(L) and Y' = p(L). Then all left factors are of the form Z(X',Y)
where Y is a right factor, and all right factors are of the form Z(X,Y’) where X is a left
factor. Furthermore, Z (X' Y') = L.

Proof. By our choice of X', X":A\(Y):Y is a factorization for all right factors Y. There
argument for right factors is analogous. Since X":L:Y" is a factorization, we have Z(X', Y') =
L. O

Theorem 1.1 The number of factors of L is finite if, and only if, L is regular. Moreover,

the number of left /right factors is fi(L) in this case.

Proof. By lemma 1.3 it suffices to consider only left /right factors. Accordingly, let X:Y" be
any factorization of L. Then

Y=pX=(u'L=X"'L

ueX

But L is regular iff L is regular iff the number of quotients, word or language, is finite. We
are done by lemma 1.1. O

Note, though, that fi(L) # fi(L) in general, in distinction to words quotients. It follows
that for regular L there are at most 2*(/) many left /right pairs. We will consider a direct
construction of a finite state machine for L based on left factors in the next section.

Not let L be regular, say, there are m left/right factors and we have chosen some linear
ordering of these languages. This affords a coordinate system and we can organize the
collection of all factors into a m x m matrix § with entries Z;; = Z(X;,Y;).

Example 1.1 The star-free language L = a*b*c* has 5 left /right factors:

left X* L a*b* a* 0
right 0 ¢ ber L X~

and the corresponding factor matrix § = (Z;;) looks like so:

0 ¢ b L X*
2020 0 0 0
L XY 0 0 0
ab* | X* ber b 0 0
a* ¥ L a*b* a* 0
0 DD VD F D H P

Theorem 1.2 Consider the m x m factor matrix § = (Z;;) of some regular language L.
Then

1. ZijZi C Zi,
2. X1:Xq:...: X, is a subfactorization iff there is an index sequence 1 < ig,..., iy, < m
such that io =)\(L), Xj Q Zij.l i and is = p(L)

Proof. By definition, X;Z;;Y; C L, so that X;Z;; C X;. Hence X,Z,;Z;;;Y}, C X,;Z;;,Y, C L,
and our claim follows.

For the second part, it suffices to prove the binary case: XY C 7. iff there is some j such
that X C Z;; and Y C Zj;.. To see this, note that (X;X)(YY) C L, so that X; X C X, and
YY; CY; for some j. But then X; XY, C L and X ;YY) C L, and the claim follows. O

Back to our original complaint: the lack of invariance of state complexity under string
reversal.

Theorem 1.3 (Conway) Let L be a regular language. Then [i(L) = ji(L°P).

Proof. Consider all 2-factorizations X:Y of L. As we have just seen, there are ji(L) choices
for X. By symmetry, there are fi(L°P) choices for Y. But we already know that these two
numbers agree. O

1.1 Computation

Let L be a regular language and M = (Q, X, §; qo, F') it’s minimal DFA, so the state com-
plexity of M is p(L). We write § as a right semigroup action p - x = d(p,). All behaviors
and cobehaviors below are with respect to M. Suppose we have m left/right factor pairs
X:Y. From the proof of theorem 1.1 we have

Y=pX=)u'L

ueX

Similarly we can express A as follows. The quotient map z — z~'L induces an equivalence
relation on X*; write [u] for the equivalence class of u. Hence [u] = [§(qo, u)]*° and

X=\x= U [

YCu-1L
In terms of the minimal DFA this means
V= {lg-u]|ueX}
X =U{IpI° Y S pl}

Letting P = {qo-u |u e X} C Q we have Y = N,cp[p]. We call P critical if P produces
Y in this manner, and P is maximal such (and thus actually maximum). Given P critical
we have X = [P]®. Hence we can construct a list

XY, XYy, XY,
of all left /right pairs by computing the critical state sets P C Q.

Suppose Py, P, C @ are critical, and let X be the left factor for P;, and Y the right factor
for P,. To determine the middle factor Z = Z(X,Y), note that

u¢ Z < JreXyeY (zuy ¢ L)
e 3dgePLyeY(q-uy ¢ F)
& Jdge A (Y £ q-u)
S dqe P (qg-ué Py)

But then Z is the language of M(Py, P,) and Z = Npep, [M(p, P2)].

2 The Carrez Automaton

For any NFA A and state p, write [p]4 for the behavior of p (i.e., the language of A(p, F))
and write [p]% for the co-behavior of p (i.e., the language of A(I,p)). We omit subscripts
when the automaton in question is obvious. A homomorphism of NFAs is any map that
preserves transitions, initial and final states. Hence, for any homomorphism h : A — B,
[pla € [h(p)]s and [p]% C [h(p)]E. As a consequence, L(A) C L(B). We may safely
assume that all NFA are trim.

The following definition is due to Christian Carrez [2] and dates back to 1970; the description
here is based on [1].

Definition 2.1 For any language L, define the Carrez automaton for L, in symbols Cp, as
follows:

states: Q ={AX | X CX* X A\X £0}
initial: [={Z e€Q|ee€Z}

final: F={Ze€Q|ZCL}
transitions: 7 = 7' <= Z-a C 7'

L N =

By induction, X Y < X -u C Y, so that) % 7 %5 X*.

Lemma 2.1 The Carrez automaton Cj, accepts the language L.

Proof.

From the definitions, AL is initial and ApL = L is final. But (AL)- L C L, so AL — L is
an accepting computation in Cy, for all w € L. On the other hand, whenever C; accepts wu,
we have a computation X — Y where e € X and Y C L. But v € Y and we are done. 0O

Another way to show that L C £(Cp) is to note that there are transitions of the form
AX % Ma"'X. Hence an accepting computation in the quotient automaton for L translates
into a computation AL = A\u~'L in C;. But AL is initial, and ¢ € v~ 'L, whence \u='L C L
is final, and we have an accepting computation in C;. More generally, the states of Cy are
closely related to their own behaviors and cobehaviors.

Lemma 2.2 Consider any state Z in the Carrez automaton Cr. Then [Z]*° = Z = \[Z].
Similarly [Z] = p[Z].

Proof. w € [Z]° implies that there is a computation from some initial state € € A\Y to Z,
hence u € Z. Conversely, if u € Z = A\X, consider the initial state AL. Since AL - L C L
and uX C L, we have (AL) - (uX) C L. But then (AL) - u € AX, hence u € [Z].

By the definition of Cr,, Z - [Z] C L, so Z C A[Z]. But AX - X C L, so X C [AX] = [~Z],
whence \[Z] C A\ X = Z.

The second claim is entirely similar. O

As a consequence of the last lemma, Cy, is rigid in the sense that it admits no non-trivial
endomorphisms.

Corollary 2.1 The only endomorphism of Cy, is the identity.

Proof. Let h be an endomorphism of C;, and h(X) = Y, so that [X] C [Y]. By anti-
monotonicity, Y = A[Y] € A[X] = X. A similar argument with co-behaviors shows X C Y.
O

The following result is now a direct consequence of theorem 1.1.

Theorem 2.1 (Carrez) L is regular iff C;, has a finite number of states.
Moreover, if n is the state complexity of L, then the state complexity of Cy, is at most 2.

Example 2.1 If L = ot and X' = {a}, then the number of states in Cy, is the same as the
number of states in the minimal DFA for L, namely 2. If X = {a,b} and L is the set of
words with an even number of both a’s and b’s, then C;, has 5 states.

Now let A = (Q, X, 7;I, F) be any trim NFA which accepts a sublanguage of L, and define
a map h from A to Cp, by:

h(p) = Alp] 4

We assume that A is trim to avoid rogue states.

Lemma 2.3 The function h is a homomorphism from A to Cy,.

Proof. Let p <% ¢ be a transition in A and u € h(p) = A[p]. Then ufp] € L. Since
alq] C [p], we have ua € A[g]. Thus C, has a transition A\[p] < A[q]. If p is initial in A,
then [p]a4 C L and therefore € € A\[p]4; hence h(s) is initial in Cr. Lastly, suppose p is final
in A, whence € € [p]4. But then u € A[p]4 implies u € L and h(p) = A[p] 4 is also final in
Cr.]

Combining the last two results produces the theorem in [1]: no proper homomorphic image
of C;, can accept L, or even a subset thereof.

Theorem 2.2 Let A be and NFA accepting a subset of L and g : C;, — A an epimorphism.
Then g is already an isomorphism.

Proof. We have seen that the behavioral map provides a homomorphism h : A — Cj,.
Hence goh is an endomorphism of Cr, and thus the identity. Hence g is an isomorphism. O

References

[1] André Arnold, Anne Dicky, and Maurice Nivat. A note about minimal non-deterministic
automata. Bulletin of the FATCS, 47:166-169, 01 1992.

[2] Christian Carrez. On the minimalization of non-deterministic automaton, 1970.

[3] John Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

