Conway Factors and the Carrez NFA

K. Sutner

2024/01/07 v.0.2

1 Conway Factorizations

Fix some alphabet Σ once and for all; all languages in the following will be subsets of Σ^* . We are mostly interested in regular languages, but if a notion makes sense in a the setting of all languages we will define it in full generality. The following definition is due to Conway [3].

Definition 1.1 A k-subfactorization of $L, k \geq 2$, (or subfactorization of order k) is a k-tuple of languages X_i , $1 \leq i \leq k$, such that

$$X_1 \cdot X_2 \cdot \dots X_{k-1} \cdot X_k \subseteq L$$

A k-factorization is a k-subfactorization where every term is maximal.

For emphasis, we write $X = X_1: X_2: \ldots: X_k$ for a subfactorization and refer to X_i as the *i*th term or *i*th component of X. As usual, we will mostly express concatenation by juxtaposition and write XY rather than $X \cdot Y$. Note that $\ldots: X: Y: \ldots$ is a subfactorization iff its contraction $\ldots: XY: \ldots$ is a subfactorization, albeit of order k-1. Alas, the corresponding claim for factorizations is wrong, in either direction.

There is a natural partial order on k-subfactorizations by pointwise set inclusion: $Y_1:Y_2:\ldots:Y_k \sqsubseteq X_1:X_2:\ldots:X_k$ if $Y_i\subseteq X_i$ for all i. So a factorization is a maximal element in this order. We write \mathcal{F}_k for the poset of all k-subfactorizations and $\widehat{\mathcal{F}}_k$ for all k-factorizations.

Definition 1.2 A factor of L is a term that appears in some place in some factorization. A left/right factor is one that appears in the first/last position of a factorization.

Contractions show that all left/right factors already appear in 2-factorizations, so it is natural to study $\hat{\mathcal{F}}_2$ first. For any subset X of Σ^* , consider X to be a term in a 2-subfactorization and saturate the other term to obtain a factor. More precisely, the corresponding left and right factors are

$$\lambda_L X = \{ u \in \Sigma^* \mid uX \subseteq L \} = \bigcup \{ Z \mid ZX \subseteq L \}$$
$$\rho_L X = \{ u \in \Sigma^* \mid Xu \subseteq L \} = \bigcup \{ Z \mid XZ \subseteq L \}$$

and we have subfactorizations $\lambda_L X: X, X: \rho_L X \subseteq L$. The maps λ_L and ρ_L are anti-monotonic by definition and can naturally be expressed in terms of left and right quotients:

$$\lambda X = \{ u \in \Sigma^* \mid X \subseteq u^{-1}L \}$$
$$\rho X = \{ u \in \Sigma^* \mid X \subseteq Lu^{-1} \}$$

The key property that we will use without further mention is

$$XY \subseteq L \iff X \subseteq \lambda Y, Y \subseteq \rho X$$

To lighten notation, we will omit the subscripts in ρ_L and λ_L whenever the language is clear from context.

For some simple examples, first let $L = \Sigma^*$. Then all factorizations have only terms Σ^* . Second, for $L = \emptyset$ every factorization must contain exactly one term 0, all others are Σ^* . Thus, there are exactly two 2-factorizations: $0:\Sigma^*$ and $\Sigma^*:0$. We have $\lambda\Sigma^* = \rho\Sigma^* = 0$ and $\lambda 0 = \rho 0 = \Sigma^*$. Lastly, for $L = a^+ \subseteq \{a,b\}^*$ we have $\lambda(0) = \Sigma^*$, $\lambda(\varepsilon) = a^+$, $\lambda(a^+) = a^*$ and $\lambda(\Sigma^*) = 0$, and these are all the left and right factors.

Writing op for the reversal of strings, the two operations are connected by $\lambda_L X = (\rho_{L^{op}} X^{op})^{op}$ and similarly the other way around. The following lemma shows that the language L itself appears as a left and as a right factor.

Lemma 1.1 For all $X \subseteq \Sigma^*$: $X \subseteq \rho \lambda X$ and $X \subseteq \lambda \rho X$. For X = L we have equality.

Proof. By definition, $\lambda X \cdot X \subseteq L$, so $X \subseteq \rho \lambda X$. When X = L and $u \in \rho \lambda L$, then $u \in L$ since $\varepsilon \in \lambda L$. The second part follows immediately from the first and the observation preceding the lemma.

Lemma 1.2 There is a one-one correspondence between all left factors and all right factors. In fact, the correspondence is given by the maps λ and ρ .

Proof. Suppose X is a left factor and let X:Y be a corresponding factorization. Then $Y \subseteq \rho X$ and, since Y is maximal, we must have $Y = \rho X$. Similarly $X = \lambda Y$ and we are done.

Turning to arbitrary factors, suppose that Z is a factor that appears in the ith position of some k-factorization, 1 < i < k. By merging the other components we obtain a 3-subfactorization X':Z:Y' which can be extended to a 3-factorization X:Z:Y. Thus is suffices to characterize the middle terms of 3-factorizations. To this end, let X be a left factor and Y a right factor. Since X:0:Y is a subfactorization, there is a unique set Z such that $X:0:Y \sqsubseteq X:Z:Y$, which set we will denote Z(X,Y).

Lemma 1.3 Let $X' = \lambda(L)$ and $Y' = \rho(L)$. Then all left factors are of the form Z(X', Y) where Y is a right factor, and all right factors are of the form Z(X, Y') where X is a left factor. Furthermore, Z(X', Y') = L.

Proof. By our choice of X', $X':\lambda(Y):Y$ is a factorization for all right factors Y. There argument for right factors is analogous. Since X':L:Y' is a factorization, we have Z(X',Y')=L.

Theorem 1.1 The number of factors of L is finite if, and only if, L is regular. Moreover, the number of left/right factors is $\widehat{\mu}(\overline{L})$ in this case.

Proof. By lemma 1.3 it suffices to consider only left/right factors. Accordingly, let X:Y be any factorization of L. Then

$$Y = \rho X = \bigcap_{u \in X} u^{-1} L = \overline{X^{-1} \overline{L}}$$

But L is regular iff \overline{L} is regular iff the number of quotients, word or language, is finite. We are done by lemma 1.1.

Note, though, that $\widehat{\mu}(L) \neq \widehat{\mu}(\overline{L})$ in general, in distinction to words quotients. It follows that for regular L there are at most $2^{\mu(L)}$ many left/right pairs. We will consider a direct construction of a finite state machine for L based on left factors in the next section.

Not let L be regular, say, there are m left/right factors and we have chosen some linear ordering of these languages. This affords a coordinate system and we can organize the collection of all factors into a $m \times m$ matrix \mathfrak{F} with entries $Z_{ij} = Z(X_i, Y_j)$.

Example 1.1 The star-free language $L = a^*b^*c^*$ has 5 left/right factors:

left
$$\Sigma^*$$
 L a^*b^* a^* 0 right 0 c^* b^*c^* L Σ^*

and the corresponding factor matrix $\mathfrak{F} = (Z_{ij})$ looks like so:

	0	c^{\star}	$b^{\star}c^{\star}$	L	Σ^{\star}
Σ^{\star}	Σ^{\star}	0	0	0	0
L	Σ^{\star}	c^{\star}	0	0	0
$a^{\star}b^{\star}$	Σ^{\star}	$b^{\star}c^{\star}$	b^{\star}	0	0
a^{\star}	Σ^{\star}	L	$a^{\star}b^{\star}$	a^{\star}	0
0	Σ^{\star}	Σ^{\star}	Σ^{\star}	Σ^{\star}	Σ^{\star}

Theorem 1.2 Consider the $m \times m$ factor matrix $\mathfrak{F} = (Z_{ij})$ of some regular language L. Then

- 1. $Z_{ij}Z_{jk} \subseteq Z_{ik}$
- 2. $X_1:X_2:\ldots:X_s$ is a subfactorization iff there is an index sequence $1 \leq i_0,\ldots,i_s \leq m$ such that $i_0 = \lambda(L), X_j \subseteq Z_{i_{j-1}i_j}$ and $i_s = \rho(L)$.

Proof. By definition, $X_i Z_{ij} Y_j \subseteq L$, so that $X_i Z_{ij} \subseteq X_j$. Hence $X_i Z_{ij} Z_{jk} Y_k \subseteq X_j Z_{jk} Y_k \subseteq L$, and our claim follows.

For the second part, it suffices to prove the binary case: $XY \subseteq Z_{ik}$ iff there is some j such that $X \subseteq Z_{ij}$ and $Y \subseteq Z_{jk}$. To see this, note that $(X_iX)(YY_k) \subseteq L$, so that $X_iX \subseteq X_j$ and $YY_j \subseteq Y_j$ for some j. But then $X_iXY_j \subseteq L$ and $X_JYY_k \subseteq L$, and the claim follows. \square

Back to our original complaint: the lack of invariance of state complexity under string reversal.

Theorem 1.3 (Conway) Let L be a regular language. Then $\widehat{\mu}(L) = \widehat{\mu}(L^{op})$.

Proof. Consider all 2-factorizations X:Y of \overline{L} . As we have just seen, there are $\widehat{\mu}(L)$ choices for X. By symmetry, there are $\widehat{\mu}(L^{op})$ choices for Y. But we already know that these two numbers agree.

1.1 Computation

Let L be a regular language and $\mathcal{M} = \langle Q, \Sigma, \delta; q_0, F \rangle$ it's minimal DFA, so the state complexity of \mathcal{M} is $\mu(L)$. We write δ as a right semigroup action $p \cdot x = \delta(p, x)$. All behaviors and cobehaviors below are with respect to \mathcal{M} . Suppose we have m left/right factor pairs X:Y. From the proof of theorem 1.1 we have

$$Y = \rho X = \bigcap_{u \in X} u^{-1} L$$

Similarly we can express λ as follows. The quotient map $x \mapsto x^{-1}L$ induces an equivalence relation on Σ^* ; write [u] for the equivalence class of u. Hence $[u] = [\![\delta(q_0, u)]\!]^{\mathsf{co}}$ and

$$X=\lambda Y=\bigcup_{Y\subseteq u^{-1}L}[u]$$

In terms of the minimal DFA this means

$$Y = \bigcap \{ [q_0 \cdot u] \mid u \in X \}$$
$$X = \bigcup \{ [p]^{co} \mid Y \subseteq [p] \}$$

Letting $P = \{q_0 \cdot u \mid u \in X\} \subseteq Q$ we have $Y = \bigcap_{p \in P} \llbracket p \rrbracket$. We call P critical if P produces Y in this manner, and P is maximal such (and thus actually maximum). Given P critical we have $X = \llbracket P \rrbracket^{co}$. Hence we can construct a list

$$X_1:Y_1, X_2:Y_2, \ldots, X_m:Y_m$$

of all left/right pairs by computing the critical state sets $P \subseteq Q$.

Suppose $P_1, P_2 \subseteq Q$ are critical, and let X be the left factor for P_1 , and Y the right factor for P_2 . To determine the middle factor Z = Z(X, Y), note that

$$u \notin Z \Leftrightarrow \exists x \in X, y \in Y (xuy \notin L)$$

 $\Leftrightarrow \exists q \in P_1, y \in Y (q \cdot uy \notin F)$
 $\Leftrightarrow \exists q \in P_1 (Y \not\subseteq \llbracket q \cdot u \rrbracket)$
 $\Leftrightarrow \exists q \in P_1 (q \cdot u \notin P_2)$

But then \overline{Z} is the language of $\mathcal{M}(P_1, \overline{P_2})$ and $Z = \bigcap_{p \in P_1} [\![\mathcal{M}(p, \overline{P_2})]\!]$.

2 The Carrez Automaton

For any NFA \mathcal{A} and state p, write $\llbracket p \rrbracket_{\mathcal{A}}$ for the behavior of p (i.e., the language of $\mathcal{A}(p,F)$) and write $\llbracket p \rrbracket_{\mathcal{A}}^{\mathbf{co}}$ for the co-behavior of p (i.e., the language of $\mathcal{A}(I,p)$). We omit subscripts when the automaton in question is obvious. A homomorphism of NFAs is any map that preserves transitions, initial and final states. Hence, for any homomorphism $h: \mathcal{A} \to \mathcal{B}$, $\llbracket p \rrbracket_{\mathcal{A}} \subseteq \llbracket h(p) \rrbracket_{\mathcal{B}}$ and $\llbracket p \rrbracket_{\mathcal{A}}^{\mathbf{co}} \subseteq \llbracket h(p) \rrbracket_{\mathcal{B}}^{\mathbf{co}}$. As a consequence, $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})$. We may safely assume that all NFA are trim.

The following definition is due to Christian Carrez [2] and dates back to 1970; the description here is based on [1].

Definition 2.1 For any language L, define the Carrez automaton for L, in symbols C_L , as follows:

- 1. states: $Q = \{ \lambda X \mid X \subseteq \Sigma^*, X, \lambda X \neq \emptyset \}$
- 2. initial: $I = \{ Z \in Q \mid \varepsilon \in Z \}$
- 3. final: $F = \{ Z \in Q \mid Z \subseteq L \}$
- 4. transitions: $Z \stackrel{a}{\rightarrow} Z' \iff Z \cdot a \subseteq Z'$

By induction, $X \xrightarrow{u} Y \Leftrightarrow X \cdot u \subseteq Y$, so that $\emptyset \xrightarrow{u} Z \xrightarrow{u} \Sigma^{\star}$.

Lemma 2.1 The Carrez automaton C_L accepts the language L.

Proof.

From the definitions, λL is initial and $\lambda \rho L = L$ is final. But $(\lambda L) \cdot L \subseteq L$, so $\lambda L \xrightarrow{u} L$ is an accepting computation in \mathcal{C}_L for all $u \in L$. On the other hand, whenever \mathcal{C}_L accepts u, we have a computation $X \xrightarrow{u} Y$ where $\varepsilon \in X$ and $Y \subseteq L$. But $u \in Y$ and we are done. \square

Another way to show that $L \subseteq \mathcal{L}(\mathcal{C}_L)$ is to note that there are transitions of the form $\lambda X \stackrel{a}{\to} \lambda a^{-1}X$. Hence an accepting computation in the quotient automaton for L translates into a computation $\lambda L \stackrel{u}{\to} \lambda u^{-1}L$ in \mathcal{C}_L . But λL is initial, and $\varepsilon \in u^{-1}L$, whence $\lambda u^{-1}L \subseteq L$ is final, and we have an accepting computation in \mathcal{C}_L . More generally, the states of \mathcal{C}_L are closely related to their own behaviors and cobehaviors.

Lemma 2.2 Consider any state Z in the Carrez automaton \mathcal{C}_L . Then $[\![Z]\!]^{\mathsf{co}} = Z = \lambda[\![Z]\!]$. Similarly $[\![Z]\!] = \rho[\![Z]\!]^{\mathsf{co}}$.

Proof. $u \in \llbracket Z \rrbracket^{\mathsf{co}}$ implies that there is a computation from some initial state $\varepsilon \in \lambda Y$ to Z, hence $u \in Z$. Conversely, if $u \in Z = \lambda X$, consider the initial state λL . Since $\lambda L \cdot L \subseteq L$ and $uX \subseteq L$, we have $(\lambda L) \cdot (uX) \subseteq L$. But then $(\lambda L) \cdot u \in \lambda X$, hence $u \in \llbracket Z \rrbracket^{\mathsf{co}}$.

By the definition of C_L , $Z \cdot [\![Z]\!] \subseteq L$, so $Z \subseteq \lambda[\![Z]\!]$. But $\lambda X \cdot X \subseteq L$, so $X \subseteq [\![\lambda X]\!] = [\![Z]\!]$, whence $\lambda[\![Z]\!] \subseteq \lambda X = Z$.

The second claim is entirely similar.

As a consequence of the last lemma, C_L is rigid in the sense that it admits no non-trivial endomorphisms.

Corollary 2.1 The only endomorphism of C_L is the identity.

Proof. Let h be an endomorphism of \mathcal{C}_L and h(X) = Y, so that $[\![X]\!] \subseteq [\![Y]\!]$. By antimonotonicity, $Y = \lambda[\![Y]\!] \subseteq \lambda[\![X]\!] = X$. A similar argument with co-behaviors shows $X \subseteq Y$.

The following result is now a direct consequence of theorem 1.1.

Theorem 2.1 (Carrez) L is regular iff C_L has a finite number of states. Moreover, if n is the state complexity of L, then the state complexity of C_L is at most 2^n .

Example 2.1 If $L = a^+$ and $\Sigma = \{a\}$, then the number of states in \mathcal{C}_L is the same as the number of states in the minimal DFA for L, namely 2. If $\Sigma = \{a, b\}$ and L is the set of words with an even number of both a's and b's, then \mathcal{C}_L has 5 states.

Now let $\mathcal{A} = \langle Q, \Sigma, \tau; I, F \rangle$ be any trim NFA which accepts a sublanguage of L, and define a map h from \mathcal{A} to \mathcal{C}_L by:

$$h(p) = \lambda [\![p]\!]_{\mathcal{A}}$$

We assume that A is trim to avoid rogue states.

Lemma 2.3 The function h is a homomorphism from A to C_L .

Proof. Let $p \stackrel{a}{\to} q$ be a transition in \mathcal{A} and $u \in h(p) = \lambda \llbracket p \rrbracket$. Then $u \llbracket p \rrbracket \subseteq L$. Since $a \llbracket q \rrbracket \subseteq \llbracket p \rrbracket$, we have $ua \in \lambda \llbracket q \rrbracket$. Thus \mathcal{C}_L has a transition $\lambda \llbracket p \rrbracket \stackrel{a}{\to} \lambda \llbracket q \rrbracket$. If p is initial in \mathcal{A} , then $\llbracket p \rrbracket_{\mathcal{A}} \subseteq L$ and therefore $\varepsilon \in \lambda \llbracket p \rrbracket_{\mathcal{A}}$; hence h(s) is initial in \mathcal{C}_L . Lastly, suppose p is final in \mathcal{A} , whence $\varepsilon \in \llbracket p \rrbracket_{\mathcal{A}}$. But then $u \in \lambda \llbracket p \rrbracket_{\mathcal{A}}$ implies $u \in L$ and $h(p) = \lambda \llbracket p \rrbracket_{\mathcal{A}}$ is also final in \mathcal{C}_L .

Combining the last two results produces the theorem in [1]: no proper homomorphic image of C_L can accept L, or even a subset thereof.

Theorem 2.2 Let \mathcal{A} be and NFA accepting a subset of L and $g: \mathcal{C}_L \to \mathcal{A}$ an epimorphism. Then g is already an isomorphism.

Proof. We have seen that the behavioral map provides a homomorphism $h: \mathcal{A} \to \mathcal{C}_L$. Hence $g \circ h$ is an endomorphism of \mathcal{C}_L , and thus the identity. Hence g is an isomorphism. \square

References

- [1] André Arnold, Anne Dicky, and Maurice Nivat. A note about minimal non-deterministic automata. *Bulletin of the EATCS*, 47:166–169, 01 1992.
- [2] Christian Carrez. On the minimalization of non-deterministic automaton, 1970.
- [3] John Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.