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1 Introduction

The ordinal calculator is a tool for learning about the ordinal hierarchy and ordinal nota-
tions. It is also a research tool. Its motivating goal is ultimately to expand the foundations
of mathematics by using computer technology to manage the combinatorial explosion in
complexity that comes with explicitly defining the recursive and larger contable ordinals
s implicitly defined by the axioms of Zermelo Frankel set theory[10, 4]. The underlying
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philosophy focuses on what formal systems tell us about physically realizable combinatorial
processes.[5]. Appendix A elaborates on this.

Appendix B “Using the ordinal calculator” is the user’s manual for the interactive mode
of this program. It describes how to download the program and use it from the command
line. It is available as a separate manual at: www.mtnmath.com/ord/ordCalc.pdf. This
document is intended for those who want to understand the theory on which the program is
based, understand the structure of the program or use and expand the program in C++.

All the source code and documentation (including this manual) is licensed for use and
distribution under the GNU General Public License, version 2. The executables link to some
libraries that are covered by the more restrictive version 3 of this license.

1.1 Intended audience

This document is targeted to mathematicians with limited experience in computer program-
ming and computer scientists with limited knowledge of the foundations of mathematics.
Thus it contains substantial tutorial material, often as footnotes. The ideas in this paper
have been implemented in the C++ programming language. C++ keywords and constructs
are in teletype font. This paper is both a top level introduction to this computer code
and a description of the theory that the code is based on. The C++ tutorial material in
this paper is intended to make the paper self contained for someone not familiar with the
language. However it is not intended as programming tutorial. Anyone unfamiliar with C++,
who wants to modify the code in a significant way, should consult one of the many tutorial
texts on the language. By using the command line interface described in Appendix B, one
can use most of the facilities of the program interactively with no knowledge of C++.

1.2 The Ordinals

The ordinals are the backbone of mathematics. They generalize induction on the integers1

in an open ended way. More powerful modes of induction are defined by defining larger
ordinals and not by creating new laws of induction.

The smallest ordinals are the integers. Other ordinals are defined as infinite sets2. The
smallest infinite ordinal is the set of all integers. Infinite objects are not subject to com-
putational manipulation. However the set of all integers can be represented by a computer

1Induction on the integers states that a property holds for every integer n ≥ 0, if it is true of 0 and if,
for any integer x, if it is true for x, it must be true for x+ 1.
[p(0) ∧ ∀x∈Np(x)→ p(x+ 1)]→ ∀x∈Np(x)

2In set theory 0 is the empty set. 1 is the set containing the empty set. 2 is the set containing 0 and
1. Each finite integer is the union of all smaller integers. Infinite ordinals are also constructed by taking
the union of all smaller ones. There are three types of Ordinals. 0 or the empty set is the smallest ordinal
and the only one not defined by operations on previously defined ordinals. The successor to an ordinal a is
the union of a and the members of a. In addition to 0 and successor ordinals, there are limit ordinals. The
smallest limit ordinal is the set of all integers or all finite successors of 0 called ω.

Ordinals are well ordered by the relation of set membership, ∈. For any two ordinals a and b either a ∈ b,
b ∈ a or a = b.

A limit ordinal consists of an infinite collection of ordinals that has no maximal or largest element. For
example there is no single largest integer. Adding one to the largest that has been defined creates a larger
integer.
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program that lists the integers. This is an abstraction. Real programs cannot run forever
error free. However the program itself is a finite object, a set of instructions, that a computer
program can manipulate and transform. Ordinals at or beyond ω may or may not exist as
infinite objects in some ideal abstract reality, but many of them can have their structure
represented by a computer program. This does not extend to ordinals that are not countable,
but it can extend beyond the recursive ordinals3.

Ordinal notations assign unique finite strings to a subset of the countable ordinals. As-
sociated with a notation system is a recursive algorithm to rank ordinal notations (<, >
and =). For recursive ordinals there is also an algorithm that, given an input notation for
some ordinal α, enumerates notations of all smaller ordinals. This latter algorithm cannot
exist for ordinals that are not recursive but an incomplete variant of it can be defined for
countable ordinals.

The ultimate goal of this research is to construct notations for large recursive ordinals
eventually leading to and beyond a recursive ordinal that captures the combinatorial strength
of Zermelo-Frankel set theory (ZF4) and thus is strong enough to prove its consistency.
Computers can help to deal with the inevitable complexity of strong systems of notations.
They allow experiments to tests ones intuition. Thus a system of notations implemented
in a computer program may be able to progress significantly beyond what is possible with
pencil and paper alone.

2 Ordinal notations

The ordinals whose structure can be enumerated by an ideal computer program are called
recursive. The smallest ordinal that is not recursive is the Church-Kleene ordinal ωCK1 . For
simplicity this is written as ω1

5. Here the focus is on notations for recursive ordinals and
larger countable ordinals in later sections. The set that defines a specific ordinal in set theory
is unique, but there are many different computer programs that can define a notation system
for the same recursive ordinal.

A notation system for a subset of the recursive ordinals must recursively determine the
relative size of any two notations. This is best done with a unique notation or normal form for
each ordinal represented. Thus it is desirable that an ordinal notation satisfy the following
requirements:

1. There is a unique finite string of symbols that represents every ordinal within the

3A recursive ordinal, α, is one for which there exists a recursive notation. This a recursive process that
enumerates notations for all ordinals ≤ α and a recursive process that decides the relative size of any two
of these notations. Larger countable ordinals cannot have a recursive notation, but they can be defined as
properties of recursive processes that operate on a partially enumerable domain. For more about this see
Section 10.

4 ZF is the widely used Zermelo-Frankel formulation of set theory. It can be thought of as a one page
computer program for enumerating theorems. See either of the references [10, 4] for these axioms. Writing
programs that define notations for the recursive ordinals definable in ZF can be thought of as an attempt to
make explicit the combinatorial structures implicitly defined in ZF.

5 ω1 is most commonly used to represent the ordinal of the countable ordinals (the smallest ordinal that
is not countable). Since this paper does not deal with uncountable sets (accept indirectly in describing an
existing approach to ordinal collapsing in Section 10.5) we can simplify the notation for ωCK1 to ω1.
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system. These are ordinal notations.

2. There is an algorithm (or computer program) that can determine for every two ordinal
notations a and b if a < b or a > b or a = b6. One and only one of these three must
hold for every pair of ordinal notations in the system.

3. There is an algorithm that, given an ordinal notation for a limit ordinal, a, will output
an infinite sequence of ordinal notations, bi < a for all integers i. These outputs must
satisfy the property that eventually a notation for every ordinal notation c < a will be
output if we recursively apply this algorithm to a and to every notation the algorithm
outputs either directly or indirectly.

4. Each ordinal notation must represent a unique ordinal as defined in set theory. The
union of the ordinals represented by the notations output by the algorithm defined in
the previous item must be equal to the ordinal represented by a.

By generalizing induction on the integers, the ordinals are central to the power of math-
ematics7. The larger the recursive ordinals that are provably definable within a system the
more powerful it is, at least in terms of its ability to solve consistency questions.

Set theoretical approaches to the ordinals can mask the combinatorial structure that the
ordinals implicitly define. This can be a big advantage in simplifying proofs, but it is only
through the explicit development of that combinatorial structure that one can fully under-
stand the ordinals. That understanding may be crucial to expanding the ordinal hierarchy.
Beyond a certain point this is not practical without using computers as a research tool.

2.1 Ordinal functions and fixed points

Notations for ordinals are usually defined with strictly increasing ordinal functions on the
countable ordinals. A fixed point of a function f is an ordinal a with f(a) = a. For example
f(x) = n + α has every limit ordinal, α, as a fixed point with n an integer. In contrast
f(x) = α + n is not a fixed point.

The Veblen hierarchy of ordinal notations is constructed by starting with the function
ωx. Using this function, new functions are defined as a sequence of fixed points of previous
functions[35, 27, 18]. The first of these functions, ϕ(1, α) enumerates the fixed points of ωα.
ϕ(1, α) = εα.

The range and domain of these functions are an expandable collection of ordinal notations
defined by C++ class, Ordinal. The computational analog of fixed points in set theory

6 In set theory the relative size of two ordinals is determined by which is a member, ∈, of the other.
Because notations must be finite strings, this will not work in a computational approach. An explicit
algorithm is used to rank the size of notations.

7 To prove a property is true for some ordinal, a, one must prove the following.

1. It is true of 0.

2. If it is true for any ordinal b < a it must be true of the successor of b or b+ 1.

3. If it is true for a sequence of ordinals ci such that
⋃
i ci = c and c ≤ a, then it is true of c.
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involves the extension of an existing notation system. A fixed point can be thought of
as representing the union of all notations that can be obtained by finite combinations of
existing operations on existing ordinal notations. To represent this fixed point ordinal, the
notation system must be expanded to include a new symbol for this ordinal. In addition the
algorithms that operate on notations must be expanded to handle the additional symbol. In
particular the recursive process that satisfies item 3 on page 10 must be expanded. The goal
is to do more than add a single new symbol for a single fixed point. The idea is to define
powerful expansions that add a rich hierarchy of symbolic representations of larger ordinals.

The simplest example of a fixed point is ω the ordinal for the integers. It cannot be
reached by any finite sequence of integer additions. Starting with a finite integer and adding
ω to it cannot get past ω. n + ω = ω for all finite integers n.8 The first fixed point for the

function, ωx, is the ordinal ε0 = ω + ωω + ω(ωω) + ω(ω(ωω)) + .... (The parenthesis in this
equation are included to make the order of the exponentiation operations clear. They will
sometimes be omitted and assumed implicitly from now on.) ε0 represents the union of the
ordinals represented by notations that can be obtained from finite sequences of operations
starting with notations for the ordinals 0 and ω and the ordinal notation operations of
successor (+1), addition, multiplication and exponentiation.

2.2 Beyond the recursive ordinals

The class Ordinal is not restricted to notations for recursive ordinals. Admissible ordinals
extend the concept of recursive ordinals by considering ordinal notations defined by Turing
Machines (TM) with oracles9[24]. There is an alternative way to extend the idea of recursive
notations for ordinals. The recursive ordinals can be characterized by recursive processes that
map integers to either processes like themselves or integers. That is a computer program
that accepts an integer as input and outputs either a computer program like itself or an
integer.

For such a computer program to represent the structure of an ordinal it must be well
founded10. This means, if one applies any infinite sequence of integer inputs to the base
program, it will terminate11 Of course it must meet all the other requirements for a notation
system.

A recursive process satisfying the requirements on page 10 is well founded and represents

8A fixed point for addition is called a principal additive ordinal. Any ordinal a > 0 such that a + b = b
for all a < b is an additive principle ordinal.

9A TM oracle is an external device that a TM can query to answer questions that are recursively unsolvable
like the computer halting problem. One can assume the existence of an infinite set (not recursive or recursively
enumerable) that defines a notation system for all recursive ordinals and consider what further notations are
definable by a recursive process with access to this oracle.

10In mathematics a well founded relationship is one with no infinite descending chains. Any collection of
objects ordered by the relationship must have a minimal element.

11The formulation of this property requires quantification over the reals and thus is considered impredica-
tive. (Impredicative sets have definitions that assume their own existence. Some reals can only be defined
by quantifying over the set of all reals and this makes them questionable for some mathematicians.) In a
computational approach one need not assume there is a set of all objects satisfying the property. Instead
one can regard it as a computationally useful property and build objects that satisfy it in an expanding
hierarchy. Impredictivity is replaced with explicit incompleteness.
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the structure of a recursive ordinal. It has been shown that the concept of recursive process
well founded for infinite sequences of integers can fully characterize the recursive ordinals[31].
One can generalize this idea to recursive processes well founded for an infinite sequences of
notations for recursive ordinals. And of course one can iterate this definition in simple and
complex ways. In this way one can define countable ordinals > ωCK1 as properties of recursive
processes. In contrast to recursive ordinal notations, notations for larger ordinals cannot be
associated with algorithms that fully enumerate the structure of the ordinal they represent.
However it is possible to define a recursive function that in some ways serves as a substitute
(see Section 10.3 on limitOrd).

2.3 Uncountable ordinals

The ordinal of the countable ordinals, Ω, cannot have a computational interpretation in
the sense that term is used here. Uncountable ordinals exist in a through the looking glass
reality. It is consistent to argue about them because mathematics will always be incomplete.
The reals provably definable within a formal system form a definite totality. The formulas
that define them are recursively enumerable. They are uncountable from within the system
that defines them but they are countable when viewed externally.

Building incompleteness into the system from the ground up in lieu of claiming cardinality
has an absolute meaning will, I believe, lead to a more powerful and more understandable
mathematics. That is part of the reason I suspect a computational approach may extend
the ordinal hierarchy significantly beyond what is possible by conventional proofs. Writing
programs that define ordinal notations and operations on them provides powerful tools to
help deal with combinatorial complexity that may vastly exceed the limits of what can be
pursued with unaided human intelligence. This is true in most scientific fields and there is no
reason to think that the foundations of mathematics is an exception. The core of this paper
is about C++ code that defines a notation system for an initial fragment of the recursive
ordinals and a subset of larger countable ordinals.

The development of this computational approach initially parallels the conventional ap-
proach through the Veblen hierarchy (described in Section 7). The C++ class Ordinal is
incompletely specified. C++ subclasses and virtual functions allow a continued expansion
of the class as described in the next section. The structure of the recursive ordinals defined
in the process are fully specified. Ordinals ≥ ωCK1 are partially specified.

Mathematics is an inherently creative activity. God did not create the integers, they like
every other infinite set, are a human conceptual creation designed to abstract and generalize
the real finite operations that God, or at least the forces of nature, did create. The anthology,
God Created the Integers[20], collects the major papers in the history of mathematics. From
these and the commentary it becomes clear that accepting any infinite totalities easily leads
one to something like ZF. If the integers are a completed totality, then the rationals are
ordered pairs of integers with 1 as their only common denominator. Reals are partitions
of the rationals into those less than a given real and those greater than that real. This is
the Dedekind cut. With the acceptance of that, one is well on the way to the power set
axiom and wondering about the continuum hypothesis12 This mathematics is not false or

12The continuum hypothesis is the assertion that the reals have the smallest cardinality greater than the

12



even irrelevant, but it is only meaningful relative to a particular formal system. Thinking
such questions are absolute leads one down a primrose path of pursuing as absolute what is
not and cannot be objective truth beyond the confines of a particular formal system.

3 Generalizing Kleene’s O
This section gives the theoretical basis for the ordinal calculator. It is taken from the paper
“Generalizing Kleene’s O to ordinals ≥ ωCK

1 ”.

Abstract

This paper expands Kleene’s notations for recursive ordinals to larger countable
ordinals by defining notations for limit ordinals using total recursive functions on
nonrecursively enumerable domains such as Kleene’s O. This leads to a hierarchy
related to that developed with Turing Machine oracles or relative recursion. The
recursive functions that define notations for limit ordinals form a typed hierar-
chy. They are encoded as Turing Machines that identify the type of parameters
(labeled by ordinal notations) they accept as inputs and the type of input that
can be constructed from them. It is practical to partially implement these re-
cursive functional hierarchies and perform computer experiments as an aid to
understanding and intuition. This approach is both based on and compliments
an ordinal calculator research tool.

3.1 Objective mathematics

Kleene’s O is part of what I call objective mathematics. O is a set of recursive ordinal
notations defined using finite structures and recursive functions. ωCK

1 is the set of all recursive
ordinals. The recursive ordinal notations in Kleene’s O are constructed using computer
programs whose actions mirror the structure of the ordinal. Thus the ordinals represented
in O have an objective interpretation in an always finite but possibly potentially infinite
universe.

Part of the motivation for generalizing Kleene’s O to notations for larger countable
ordinals is to help to draw the boundaries of unambiguous mathematics that is physically
definable and physically meaningful in an always finite but potentially infinite universe.
Many others have attempted to draw related lines in various ways. Section 3.1.2 discusses
the objectivity of creative divergent processes with important properties that can only be
defined by quantification over the reals. Even so these properties are objective and important
in am always finite but potentially infinite universe.

The Lowenheim-Skolem theorem proves that the uncountable is ambiguous in any finite
or r. e. (recursively enumerable) formalization of mathematics. Any effective formal system,
that has a model, must have a countable model. Thus, in contrast to much of mathematics[5],

cardinality of the integers. This means that if the reals can be mapped onto a set (with a unique real for
every object in the set) and the the integers cannot then that set can be mapped onto the reals with a unique
object for every real.
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uncountable sets cannot be given an unambiguous objective definition by finite beings in a
finite universe. The uncountable is meaningful and useful as a reflection of mathematics that
has yet to be sufficiently explored to be seen as countable and as describing ways that ‘true’
mathematics can always be expanded. Platonic interpretations that see the uncountable as
absolute and open to human intuition are questionable13.

3.1.1 Avoiding the ambiguity of the uncountable

“I am convinced that the Continuum Hypothesis is an inherently vague problem
that no new axiom will settle in a convincingly definite way14. Moreover, I think
the Platonistic philosophy of mathematics that is currently claimed to justify set
theory and mathematics more generally is thoroughly unsatisfactory and that
some other philosophy grounded in inter-subjective human conceptions will have
to be sought to explain the apparent objectivity of mathematics.”
—Solomon Feferman, from “Does mathematics need new axioms?”[15]

Relationships between all elements of an infinite r. e. sequence are inter-subjective human
conceptions, yet they can be logically determined and thus objective. For example an infinite
r. e. sequence of finite statements may be all true, have at least one true and one false
statement or be all false. Two of these three properties are human inventions in the sense
that infinite sequences do not seem to exist physically. If at least one statement is true and
another false, this can be proven with a finite argument, but there can be no general way to
determine if all statements are true or all are false. Yet these two possibilities are objectively
true or false in the sense that every event that determines either statement can be (at least
in theory) physical.

Objective mathematics is logically determined by a r. e. sequence of events. ‘Logically
determined’ in this context is imprecise philosophy. Only fragments or what is intended can
be precisely defined. The definition’s power comes from recursively applying it to generate
a precisely defined fragment of mathematics. Consider the question: does a r. e. set of
Turing Machine (TM) Gödel numbers have an infinite subset, each element of which has
an infinite number of outputs? All the events that determine this statement are r. e. The
events are what each TM does at each time step. Generalizations of this question lead to
the hyperarithmetic hierarchy[5].

13The uncountable may have an objective countable model in a formal system and thus have a definite
interpretation relative to that formal system. It is not a definite thing in an absolute sense. I agree with
Weyl and Feferman:“To quote Weyl, platonism is the medieval metaphysics of mathematics; surely we can
do better”[14, p 248].

There is, however, an important element of truth in the idea of an abstract Platonic ideal that has become
a practical reality in the age of computers. We may not be able to construct a perfect circle but π has been
computed to more than a trillion decimal places with a very high probability that it is correct. The Platonic
ideal, for sufficiently simple combinatorial mathematics, is approachable to ever higher accuracy with ever
higher probability.

14Feferman’s note: “CH is just the most prominent example of many set-theoretical statements that I
consider to be inherently vague. Of course, one may reason confidently within set theory (e. g., in ZFC)
about such statements as if they had a definite meaning.”
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3.1.2 Objective mathematics beyond ωCK
1

One purpose of tying objective mathematics to an r. e. sequence of events is to insure that
it is meaningful in and relevant to an always finite put possibly potentially infinite universe.
Ideally this mathematics is more than indirectly relevant. For example large cardinal axioms
have been used to derive consistency results and theorems in game theory[23]. Such results
are usually arithmetic. Yet any arithmetic and even hyperarithmetic statement is decidable
from a single axiom of the form n is or is not a notation for a recursive ordinal in Kleene’s
O. This is true because O is a Π1

1 complete set. Using large cardinal axioms to decide these
problems may be clever and important, but it assumes far more than is required.

The phrase physically meaningful implies more than Feferman’s Q1: “Just which mathe-
matical entities are indispensable to current scientific theories?”[14, p 284]. Questions about
divergent evolution in an always finite but unbounded and potentially infinite universe can
require quantification over the reals to state yet they are physically meaningful and even im-
portant to finite beings in such a universe. Consider the question will a single species have
an infinite chain of descendant species. Assume a totally recursive and potentially infinite
universe. Since a single species can, in theory, have an unbounded number of direct descen-
dant species, it can have an unbounded sequence of finite chains of descendants without a
single upper bound on all chains. Yet there may be no single chain of unbounded length.
Thus this problem requires quantification over the reals to state.

For more about the mathematics and philosophy of creative divergent processes see:

• Gödel, Darwin and creating mathematics (FOM posting),

• Mathematical Infinity and Human Destiny (video)[6] and

• What is and what will be (book)[4].

3.2 Kleene’s O
Kleene’s O is a set of integers that encode effective notations for every recursive ordinal[22].
From one of these notations, notations for all smaller ordinals are r. e. and those notations
can be recursively ranked. However, there is no general way to decide which integers are
ordinal notation nor to rank an arbitrary pair of notations in O.

In the following italicized lower case letters (n) represent integers (with the exception
of ‘o’). Lower case Greek letters (α) represent ordinals. α = no indicates that the α is the
ordinal represented by integer n. The partial ordering of integers, ‘<o’, has the property that
(∀m,n ∈ O) ((n <o m) → (no < mo)). The reverse does not hold because not all ordinal
notations are ranked relative to each other.

Assume a Gödel numbering of the partial recursive function on the integers. If y is the
index of a function under this Gödel numbering, yn is its nth output. Then Kleene’s O is
defined as follows.

1. ordinal 0 = 1o. The ordinal 0 is represented by the integer 1.

2. (n ∈ O)→ (2n ∈ O ∧ (2n)o = no + ordinal 1 ∧ n <o 2n).
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If n is a notation in O then 2n is a notation in O for the ordinal no + ordinal 1 and
n <o 2n.

3. If y is total and (∀n) (yn ∈ O ∧ yn <o yn+1) then the following hold.

(a) 3 · 5y ∈ O.

(b) (
⋃{n : n ∈ ω} (yn)o) = (3 · 5y)o.

(c) (∀n) (yn <o 3 · 5y).

The above gives notations for every recursive ordinal. For infinite ordinals the notations
are not unique and there is no way to determine if an arbitrary integer is a notation. The
ability to decide this is limited by the strength of the formal system applied to the problem.

3.3 P an extension of Kleene’s O
The notations in O can be extended to larger countable ordinals with notations computed
from the Gödel numbers of recursive functions that are total on well defined domains that
are not r. e. The domains are labeled by ordinal notations. The extended notations are P
and the extended relationship between notations is ‘<p’. Notations for finite ordinals are
unchanged. Notations for successor ordinals are defined in the same way, but have different
values because notations for limit ordinals differ. This approach is related to the development
of countable admissible ordinals using TM oracles or relative recursion[33].

The domains or levels in P are denoted by ordinal notations as subscripts of P . Thus the
level subscripts start with the sequence 1, 2, 4, ..., 2n of ordinal notations for the integers. The
first level, P1, contains notations for the integers. The next level, P2, contains notations for
the recursive ordinals represented by notations in O. Levels with a subscript that denotes a
successor ordinal are defined with a generalization of O’s definition. Successor levels use total
recursive functions on the notations in the level with a subscript denoting the predecessor
ordinal. Limit levels are defined as the union of levels with a smaller (<p) level index.
Additional levels are defined by total recursive functions on defined domains that increase
so rapidly that the notation computed from them must be used in specifying the minimum
P level they all belong to. The levels are defined in Section 3.3.2.

It is convenient to base limit ordinal notations on the Gödel number of a TM rather
than a recursive function. These TMs accept inputs and compute outputs. The inputs and
outputs are ordinal notations. The first two outputs are prior to any input and specify the
type of parameter accepted (that the TM is total over) and the type of parameter that can
be defined using this TM. If n is limit ordinal notation in P , then the first output of the
associated TM is na designating the type of parameter accepted (any notation in Pna) and
the second output is nb designating the minimum level in P that n is in. For notations of
successor ordinals, the level index of valid inputs is meaningless. The parameter type or
input level of finite successor notations in P is defined to be 1. It is in P1. For infinite
successor notations, the input level index is the same as it is for the notation for the largest
limit ordinal from which this successor notation is computed.
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3.3.1 P conventions

The following conventions are used in defining P .

• A limit or successor notation is one that represents a limit or successor ordinal.

• Greek letters (α, β, γ, ...) denote countable ordinals.

• Italicized lower case letters (n,m, l, ...) (except a, b and p) denote integer ordinal nota-
tions. Base 10 integers (1,2,...,) are notations for ordinals and not ordinals themselves
except in a phrase like “the ordinal 0”. Thus, as in Kleene’s definition ofO, 1 represents
the ordinal 0 and 4 represents the ordinal 2.

• The subscript ‘p’ in np implies n ∈ P and np denotes the ordinal represented by n under
the assumed Gödel numbering of TMs and the map in Section 3.3.2 between TM Gödel
numbers and ordinal notations. Only notations for finite ordinals are independent of
this Gödel numbering.

• P is defined in levels indexed by members of P using subscripts as in Pr. Levels are
cumulative. Pr includes all members of Ps with s <p r. A level is an input domain for
TMs used in defining notations for a limit ordinals.

• If n is a notation for a limit ordinal then the first output of the TM whose Gödel
number was used in computing n is na and Pna is the domain or input level for this
TM. The second output, nb, labels the type of this notation as an input. All finite
ordinal notations, m, have a predefined value for nb = 1. The a subscript has no
meaning for successor notations in P . The notation for an infinite successor ordinal,
s, denotes the sum of a limit ordinal, l, and a finite ordinal. sb = lb by definition.

• The TM that defines limit notation n maps notations for ordinals in Pna to notations
for ordinals in Pnb . The union of all ordinals represented by notations in the range of
this TM, over the domain, Pna , is the ordinal represented by n.

• If m ∈ P , it is a valid input to the TM used to define the ordinal notation n iff
mb <p na.

• L(r) indicates that r is a notation for a limit ordinal.

• If L(n), then Tn is the Gödel number of the TM used in defining n.

• If k a valid input to Tn, then Tn(k) is the output of Tn for input k.

3.3.2 P definition

P and ‘<p’ are defined in levels, Pr, as described below.

1. ordinal 0 = 1p ∧ 1 ∈ P1.

The notation for the ordinal 0 is 1. It is a member of P1. the first level in the hierarchy.
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2. (s <p r ∧ n ∈ Ps)→ (n ∈ Pr).
A member of Ps also belongs to Pr if s <p r.

3. (n ∈ Pr ∧ β = np)→ (2n ∈ Pr ∧ β + ordinal 1 = (2n)p ∧ n <p 2n).

The notation for the successor of the ordinal represented by n is 2n. If n ∈ Pr then
2n ∈ Pr and n <p 2n.

4. (ordinal n ∈ ω) ≡ (ordinal n = (2n)p ∧ 2n ∈ P1).

P1 is the set of notations for the integers or finite ordinals. The notation 2n represents
the finite ordinal n.

5. The following defines a notation n for a limit ordinal in P2r using the Gödel number
of the TM, Tn. that accepts inputs in Pr.
Note n = 3 · 5Tn . This is the relationship between a limit ordinal notation and the
Gödel number used in constructing the notation.

(a) Before accepting inputs, Tn outputs the labels r and 2r.

(b) (∀m ∈ Pr) (Tn(m) ∈ P2r).

The output of Tn for a valid input is in P2r . Note P2r contains all elements in Pr
by Rule 2.

(c) (∀m ∈ Pr)(∃k ∈ Pr) (m <p Tn(k)).

The range of Tn is not bounded in Pr and thus its level index is greater than r.

(d) (∀u, v ∈ Pr) ((u <p v)→ (Tn(u) <p Tn(v))).

Tn must map notations for ordinals of increasing size to notations for ordinals of
increasing size.

If 5a, 5b, 5c and 5d above hold then 5e, 5f and 5g below are true.

(e) n = 3 · 5Tn ∧ n ∈ P2r .

The ordinal notation, n, based on the Gödel number Tn belongs to P2r .

(f) np =
⋃{s : s ∈ Pr}(Tn(s))p.

The ordinal represented by n is the union of the outputs of Tn for all valid inputs.

(g) (∀s ∈ Pr) (Tn(s) <p n).

The output of Tn for any element, m, in its range satisfies m <p n or mp < np.

6. L(r)→ (Pr =
⋃{s : s <p r}Ps).

If rp is a limit ordinal then Pr is the unions of of Ps for s <p r.

7. (P ′r = (
⋃{m : m ∈ Pr} m)) ∧ ((∀m ∈ Pr) m <p P ′r).

The notation for the union of all ordinals represented by notations in Pr is written as
P ′r. Every ordinal notation in Pr is <p P ′r. Note P2r contains a notation for the union
of ordinals represented in Pr. This notation is constructible from the Gödel number of
any TM that outputs r followed by 2r and then copies its input to its output.
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8. The limit of ordinal notations definable from the above is:
⋃P ′2,P ′P ′2 ,P ′P ′P′

2

, ...,. It is

straightforward to construct a TM that outputs this sequence of notations. However,
only rule 5 defines notations for limit ordinals and it only defines these in a specified
range, P2r . A rule is needed to define Pv from an r. e. set of ordinal notations where
v is not previously defined.

The second output of the TM used to construct a notation for the above sequence
must use its own Gödel number because the sequence includes all notations in levels
indexed with notations for smaller ordinals. It is possible to construct this, but a
simpler solution is to define that an initial second label output of 0 denotes the limit
ordinal represented by the notation constructed from this TM’s Gödel number.

If Tn meets the constraints listed below, this Gödel number can be used to construct
an ordinal notation as defined below.

(a) The first two outputs of Tn are r with r ∈ P followed by zero. The latter indicates
a self reference to notation n.

(b) (∀m ∈ Pr)(∀k <p m) (Tn(k) <p Tn(m)).

Tn is a strictly increasing function on its domain.

(c) (∀m ∈ Pr) (Tn(2m) ≥p P ′Tn(m)).

This puts a lower bound on the rate of increase of Tn. This rapid increase insures
that the ordinal notations computed from valid parameters of Tn is consistent
with a second output label of 0 from Tn.

If 8a, 8b and 8c above hold then 8d, 8e and 8f below hold.

(d) n = 3 · 5Tn ∧ n ∈ Pn.

The notation for the ordinal defined by Tn is 3 · 5Tn . n is the index of the range,
Pn, of the TM that defines n.

(e) np =
⋃{s : s ∈ Pr}(Tn(s))p.

The ordinal represented by n is the union of the outputs of Tn for all inputs in its
domain.

(f) (∀s ∈ Pr) (Tn(s) <p n).

The output, m, of Tn for any element in its range satisfies m <p n.

3.3.3 Summary of rules for P

The above definitions 1 through 8 define integer notations for ordinals as summarized below.

• The ordinal 0 has 1 as its notation (1).

• Notations in Ps are in Pr if s <p r (2).

• The successor notation for n is 2n (3).
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• P1 contains the notations for the integers (4).

• Limit notations in P2r can be constructed from recursive functions whose range is Pr
(5).

• P ′r is a notation for the union of all ordinal represented by notations in Pr (7).

• Pr with r a limit represents the union of all ordinals with notations in Ps for s <p r
(6).

• The union of P ′2,P ′P ′2 ,P
′
P ′
P′

2

, ..., and the union of other rapidly increasing TM outputs

for increasing inputs can be defined using a domain, Pr, and a TM, Tn, on that domain.
This rule defines both a notation v and a level Pv such that v ∈ Pv and v is not a
member of any level with a smaller subscript. (8).

Although based on Kleene’s approach, this notation system has different and weaker
properties to allow for notations of ordinals ≥ ωCK

1 . Perhaps the most important is the
logically required constraint that notations for ordinals ≥ ωCK

1 no longer allow the recursive
enumeration of notations for all smaller ordinals. Non unique notations are defined for all
smaller ordinals but there is no r. e. subset of these that represent all smaller ordinals. The
exceptions are P1 (the integers) and members of P2 (notations for the recursive ordinals).

3.4 Q an extension of O and P
P seems to exhaust the idea of a typed hierarchy of domains of ordinal notations labeled
and ordered by ordinal notations and defined by total recursive functions on those domains.
Of course one can always add notations for countable ordinals inaccessible in an existing
formalization, but more powerful extensions are desirable. This section develops the idea of
a hierarchy of hierarchies and its generalizations. Q, is based on O and P . It labels levels
with a sequence of ordinal notations supporting a hierarchy of hierarchies and beyond.

3.4.1 Hierarchies of ordinal notations

Kleene’s O and the Veblen hierarchy[35, 27, 18, 29] represent two complimentary ways in
which a hierarchy of ordinal notations can be developed. Techniques like the Veblen hierarchy
provide recursive ordinal notations for an initial segment of the recursive ordinals. In contrast
Kleene’s definition ofO assigns integer notations for all recursive ordinals with no general way
of determining which integers are notations or which notations represent the same ordinal.

The hierarchy of countable ordinals cannot be assigned notations as Kleene’s O assigns
notations for the recursive ordinals because the union of all countable ordinals is not count-
able. However the two ways of expanding the countable ordinal notations can extend past
ωCK

1 . Any r. e. set of notations that reaches ωCK
1 will have gaps and any non r. e. complete

set of notations will have a countable upper bound on the ordinals represented.
The first gap in the r. e. set of notations starts at the limit of the recursive ordinals

represented in the system and may end at ωCK
1 . In contrast P in Section 3.3.2 assigns

notations to all ordinals less than an ordinal much larger then ωCK
1 at the cost of not being
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able to decide in general which integers are ordinal notations. The ordinal calculator[7, 8]
defines a r. e. set of ordinal notations that go beyond ωCK

1 with gaps. The ordinal calculator
project was one motivation for the development of P . Q establishes a theoretical base for
expanding the ordinal calculator.

3.4.2 Q syntax

Many of the conventions in Section 3.3.1 are modified or augmented as described in Sec-
tion 3.4.3. The notations in Sections 3.3.2 are reformulated in a more general form and
expanded in Section 3.4.5.

Notations inQ are character strings that encode TM Gödel numbers and other structures.
This replaces the integer coding conventions used by Kleene. The strings can be translated
to integers using character tables like those for Unicode or ASCII.

‘lb’ is the syntactic element that labels a domain or level. Labels in Q play a similar role
as level indices such as r in Pr. However labels in Q are lists of ordinal notations usually
enclosed in square brackets. ‘od’ is the syntactic element for an arbitrary ordinal notation.
Either lb or od can be followed by x (as in od x) where x is a letter or digit to indicate a
particular instance of a label or ordinal notation.

3.4.2.1 Q label (lb) syntax The two labels output by TMs whose Gödel numbers are
used in notations for Q (Section 3.4.5) are lists of notations in Q separated by commas and
enclosed in square brackets. These labels implicitly define levels (or function domains) in Q.
The explicit syntax for a level with label lb is Q[lb]. (Multiple square brackets enclosing
the notation list in a label can be changed to 1.)

The label zero, used as a self reference in Rule 8 in Section 3.3.2, is replaced by the
character string ‘SELF’. A notations with a range level label with a list containing a single
notation ‘SELF’ is defined as the zero label is defined in P . The ordinal notation is its own
range level. The definition for other labels is in Rule 9 in Section 3.4.5.

Finite ordinal notations are base 10 integers starting with 0 for the empty set. They are
the only notations without at least one explicit label. (For infinite successor ordinals the
label of the type of input accepted is meaningless.) Some examples of levels in Q defined
using notations for finite ordinals are:

• Q[0] contains notations for finite ordinals, (those represented in P1),

• Q[1] contains notations for recursive ordinals (those represented in O and P2),

• Q[2] contains notations for ordinals represented in P4,

• Q[3] contains notations for ordinals represented in P8,

• Q[1, 0] contains notations for ordinals represented in P and

• Q[1, 0, 0] contains notations in a hierarchy of hierarchies (this is made precise in Sec-
tion 3.4.5).
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3.4.2.2 Q ordinal (od) syntax The notation for a finite ordinal is a base 10 integer.
The notation syntax for an infinite ordinal is ‘[lb 1][lb 2] n + m’. The ‘+ m’ is not used
for limit ordinal notations. m is a base 10 integer indicating the mth successor of the limit
ordinal represented by the part of the notation before ‘+’. n designates the TM with Gödel
number n. lb 1 is an input label. It designates the type of inputs that are legal for this
TM (they must be in Q[lb 1]) and lb 2 designates the type of this notation as a possible
input to a TM in other notations. Thus Q[lb 2] is the first level that contains the notation,
‘[lb 1][lb 2] n’.

The explicit labels are redundant because TM n must write out [lb 1][lb 2] before ac-
cepting input.

3.4.3 Q conventions

The following include modified versions of the conventions from Section 3.3.1 with ‘P ′ and
‘p’ replaced by ‘Q’ and ‘q’ and other changes. There are also new conventions.

• A limit or successor notation represents a limit or successor ordinal.

• Greek letters (α, β, γ, ...) denote countable ordinals.

• Bold face text is used for syntactic elements ‘lb’ and ‘od’ that can be expanded to a
string of characters. ‘lb’ (label) syntax is defined in Section 3.4.2.1 and ‘od’ (ordinal
notation) syntax is defined in Section 3.4.2.2. Instances of these syntactic elements are
represented as ‘lb x’ and ‘od x’ where x can be a letter or an integer.

• Tn is the TM whose Gödel number is n. If od x is a valid input to Tn then Tn(od x)
is the ordinal notation computed from this input.

This is defined differently in Section 3.3.1 where the n in Tn is the ordinal notation
constructed from the TM Gödel number. In that section T3·5n is the TM with Gödel
number n if 3 · 5n is an ordinal notation.

• Italicized lower case letters (n,m, l, ... except a, b, q, s and t) denote integers.

• If od 1 = [lb 1][lb 2]n+m with the ‘+m’ is omitted if m = 0, then the following are
defined.

od 1a = [lb 1].
od 1b = [lb 2].
od 1t = n.
od 1s = m.
od 1q = the ordinal represented by this notation.

• Finite ordinals are represented as base 10 integers. Their labels are both defined to be
zero.

• od 1 <q od 2 indicates the relative ranking of the two notations in Q. It implies that
od 1q < od 2q. The reverse is not always true since not all pairs of notations in Q are
ordered by <q.

22



• od 1 is a valid input to Tod 2t iff od 1b <q od 2a.

• The subscript ‘q’ in od 1q implies od 1 ∈ Q and od 1q denotes the ordinal represented
by od 1 under an assumed Gödel numbering of TMs.

• Q is defined in labeled levels written as Q[lb]. These levels define valid inputs for a
TM whose Gödel number is part of an ordinal notation. Such a TM maps notations for
ordinals to notations for ordinals. The union of all ordinals represented by notations
in the range of this TM, over the domain of valid inputs, is the ordinal represented by
the notation.

• lb 1+m is a modified version of lb 1 withm added to its least significant notation. This
is used in Rule 7 in Section 3.4.5, which is a relative version of Rule 5 in Section 3.3.2.

• SELF signifies an ordinal notation that uses its own Gödel number in the second output
label. SELF can only occur in the second label as the least significant notation. The
rest of the second label must be the same as the first label as in:
[od 1, ...,od m,od x][od 1, ...,od m,SELF]n.

• od 1 + k is the kth successor of od 1.

• The notation for the union of all ordinal notations in [lb 1] is ‘Q[lb 1]’. A notation
for this ordinal is also given by [lb 1][lb 1 + 1]n where Tn outputs the two labels and
computes and outputs the identity function on any inputs.

• L(od 1) indicates that od 1 is a notation for a limit ordinal.

• If od 1b <q od 2a ∧ L(od 2) then Tod 2t(od 1) is the notation output from the TM
encoded in od 2 with input notation od 1. This can also be written as od 2(od 1).

• [lb x]m is the notation in the mth position of lb x. The least significant position is 0.

• L(n, [lb x]) means the nth least significant notation in lb x denotes a limit ordinal.
Note the least significant notation in a label is at position n = 0.

• L([lb x]) = L(0, [lb x]) and means the least significant notation in lb x denotes a limit
ordinal.

• S(n, [lb x]) means the nth least significant notation in lb x represents a successor
ordinal and all less significant notations in lb x are 0.

• R(n, [lb x],od y) is the syntactic substitution of the nth least significant notation in
[lb x] with od y.

• R([lb x],od y) = R(0, [lb x],od y) and is the syntactic substitution of the least sig-
nificant notation in [lb x] with od y

• [lb x]n is the nth least significant notation in lb x. The least significant position is
[lb x]0.
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• ‖lb x‖ is the maximum number of notations that occur as text in the notation fragment
lb x (including notations equal to zero) or, if it is greater, the value of ‖lb y‖ where
lb y ranges over all the labels in the notations contained in lb x. Thus it is applied
recursively down to finite labels.

• Z([lb x]) is the number of consecutive zeros in lb x starting at the least significant
notation. Following are some examples.

Z([m, 0]) = 1.
Z([12, 0, 0, 11, 1, 0, 0, 0, 0]) = 4.
Z([76, 0, 0, 0, 0, 0, 0, 1]) = 0.

• A(n, [lb 1], [lb 2]) means lb 1 and lb 2 have the same most significant notations start-
ing at position n. A(0, [lb 1], [lb 2]) means they agree on all positions.

• M([lb 1]) is the position (the least significant position is 0) of the most significant
nonzero notation in lb 1.

• V (m, [lb 1]) ≡ (Z([lb 1]) = m ∧M([lb 1]) = m ∧ [lb 1]m = 1).

V (m, [lb 1]) means [lb 1] is of the form [1, 0, ..., 0] with m consecutive least significant
notations of zero and a most significant notation of 1 at position m.

• QL, the set of all labels used in Q. Thus it contains all finite sequences of notations,
every element of which is ranked (<q) against every other element.

3.4.4 Ranking labels (lb) in Q

The level labels in P are ordinal notations ranked by <p. In Q, level labels are a list of
ordinal notations. These labels are ranked using <q augmented by other constraints. For
example all members of O represent ordinals < ωCK

1 . This constraint is generalized in Rule 1
below.

The following rules determine when the relationship [lb 1] <q [lb 2] is defined and, if
defined, what its truth value is.

1. V (m, [lb 1])→ (∀lb 2 ∈ QL)((‖lb 2‖ ≤ m)→ ([lb 2] <q [lb 1]))

Every label of the form [1, 0, ..., 0] with m + 1 notations is greater than (>q) every
notation that has at most m notations such that each of these ordinal notations has
at most m notations in their two labels and this is true recursively down to integer
notations.

2. If lb 1 and lb 2 agree except for the the mth position and [lb 1]m <q [lb 2]m then
[lb 1] <q [lb 2].

3. ([lb 1] <q [lb 2] ∧ [lb 2] <q [lb 3])→ ([lb 1] <q [lb 3]).

<q on labels is transitive.

4. [lb 1] <q [lb 2] if all four of the following conditions hold.
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(a) Z(m, [lb 2])

The least significant m notations in lb 2 are zero.

(b) A(m+ 1, [lb 1], [lb 2]).

lb 1 and lb 2 have the same notations at position m+ 1 and all more significant
positions.

(c) [lb 1]m <q [lb 2]m.

The notations in position m in lb 1 is less than the notation in position m in
lb 2.

(d) (∀{k : 0 ≤ k < m}) [[lb 1]k] <q [lb 2].

For all consecutive least significant zero notations in lb 2, the label containing
the single notation in the same position in lb 1 is [[lb 1]k], and [[lb 1]k] <q [lb 2].

3.4.5 Q definition

The definition of Q is based in part on the rules for P in Section 3.3.2. Q and ‘<q’ are
defined in stages, Q[lb x]. Q[0] contains base 10 integer notations for the finite ordinals.
The ordinals represented by notations in O are those with notations in Q[1]. The ordinals
represented by notations in P are those with notations in Q[1, 0].
Q contains the notations defined below.

1. Notations for finite ordinals, starting with the empty set, are base 10 integers. Q[0]
contains these notations.

2. The syntax for level labels (lb) and ordinal notations (od) are in sections 3.4.2.1 and
3.4.2.2. The ‘<q’ partial relationship between labels is given in Section 3.4.4. An
additional requirement for a limit ordinal notation od 1 is od 1a <q od 1b.

3. QL is the set of all labels used in defining Q. QL contains all finite sequences of ordinal
notations such that for any two labels in a sequence, lb 1 and lb 2, the relationship
lb 1 <q lb 2 is defined.

4. (∀lb x ∈ QL)(∀od 1 ∈ Q[lb x]) ((od 1 + 1) ∈ Q[lb x] ∧ od 1 <q (od 1 + 1)).

An ordinal is <q its successor and they both belong to the same level.

5. The notation for the union of all ordinals represented in Q[lb 1] is Q[lb 1]′. A notation
for this ordinal is also given by [lb 1][lb 1 + 1]n where Tn outputs [lb 1][lb 1 + 1]
and then copies each input as output. This is similar to the definition in Rule 7 in
Section 3.3.2.

6. ([lb 1] <q [lb 2] ∧ od n ∈ Q[lb 1])→ (od n ∈ Q[lb 2]).

If [lb 1] <q [lb 2], any member of Q[lb 1] belongs to Q[lb 2].

7. The following defines limit ordinal notations inQ[lb 1+1] using notations inQ[lb 1]. It
is a relativized version of Rule 5 in Sections 3.3.2. If Tn meets the following constraints
it can be used to define ordinal notation [lb 1][lb 1 + 1]n in Q[lb 1 + 1].
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(a) Tn must output labels ‘[lb 1][lb 1 + 1]’ before accepting input.

(b) (∀od x ∈ Q[lb 1]) (Tn(od x) ∈ Q[lb 1 + 1]).

The output of Tn for valid input is an ordinal notation in Q[lb 1 + 1].

(c) (∀od x ∈ Q[lb 1])(∃od y ∈ Q[lb 1]) (od x <q Tn(od y)).

The range of Tn is not bounded in Q[lb 1] and thus its level label is greater than
lb 1.

(d) (∀od x,od y ∈ Q[lb 1]) (od x <q od y)→ (Tn(od x) <q Tn(od y)).

Tn must map notations for ordinals of increasing size to notations for ordinals of
increasing size.

If 7a, 7b, 7c and 7d above hold then 7e, 7f and 7g below are true.

(e) [lb 1][lb 1 + 1]n ∈ Q[lb 1 + 1].

(f) (∀od x ∈ Q[lb 1]) (Tn(od x) <q [lb 1][lb 1 + 1]n).

The output of Tn for any element in its range is <q [lb 1][lb 1 + 1]n.

(g) ([lb 1][lb 1 + 1]n)q =
⋃{od x : od x ∈ Q[lb 1]}(Tn(od x))q.

[lb 1][lb 1 + 1]n represents the union of the ordinals with notations that are
output from Tn from inputs in its domain.

8. (Z([lb x]) = m ∧ L(m, [lb x]))→
(Q[lb x] =

⋃{od x : od x <q [lb x]m} Q[R(m, [lb x],od x)])

If the least significant non zero notation in lb x is od y in the mth position and it
represents a limit ordinal, then Q[lb x] is the union of levels in which od y in the mth
position is replaced by all notations od x <q od y.

9. A relative version of Rule 8 in Section 3.3.2 is needed. There is no restriction on the
first label. The second label must agree with the first label except the least significant
notation is replaced with SELF. This use of SELF requires that the function that
defines this notation increase rapidly enough that its Gödel number can be used to
label its output.

If an ordinal notation of the form od 1 = [lb 1][R([lb 1],SELF)]n meets the condi-
tions listed below than it is an ordinal notation in Q[od 1] as defined below.

(a) Tn outputs [lb 1][R([lb 1],SELF)] before accepting input.

(b) (∀od x,od y ∈ Q[lb 1])((od x <q od y)→ (Tn(od x) <q Tn(od y)))

Tn is strictly increasing over its domain.

(c) (∀od x ∈ Q[lb 1]) (Tn(od x + 1) ≥q Q[Tn(od x)]′)

The insures that Tn increased fast enough that the SELF label applies.

If 9a, 9b and 9c above hold then 9d, 9e and 9f below hold.
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(d) od 1 ∈ Q[od 1].

The notation for od 1 labels the level it belongs to.

(e) od 1q =
⋃{od x : od x ∈ Q[lb 1]}(Tn(od x))q.

od 1 represents the union of the ordinals represented by notations Tn(od x) for
od x in Q[lb 1].

(f) (∀od x ∈ Q[lb 1]) (Tn(od x) <q od 1).
For all ordinal notations, od (x), in Q[lb 1] the notation Tn(od x) <q od 1.

10. (S(m, [lb 1]) ∧m > 0)→ (Q[lb 1] =
⋃{lb x : [lb x] <q [lb 1]}Q[lb x])

If lb 1 is a label with one or more consecutive least significant notations of zero and
a least significant nonzero notation that is a successor then Q[lb 1] is the union of all
levels Q[lb x] with [lb x] <q [lb 1].

3.4.6 Summary of rules for Q

• Q[0] contains notations for the finite ordinals (1).

• The syntax for ordinal notations and labels is referenced. The rules for label ranking
are referenced. The rule that in every notation od x, od xa <q od xb is added. (2).

• QL, the set of all labels used in Q, contains all finite sequences of notations, every
element of which is ranked (<q) against every other element (3).

• An ordinal is <q its successor and they both belong to the same level (4).

• Q[lb 1]′ is the union of notations in Q[lb 1] (5).

• Levels inherit notations from all lower levels. (6).

• Limit ordinal notations in levels with a label whose least significant notation is a
successor are defined using recursive functions on the predecessor level. (7).

• Levels with a label whose least significant nonzero notation represents a limit ordinal
are defined (8).

• Notations with labels that reference themselves and the corresponding levels are defined
(9).

• Levels with a label that has one or more least significant zeros and a least significant
nonzero successor notation are defined. (10).
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3.5 Conclusions

In set theory infinite ordinals are treated as objects. However infinite sets do not seem
to exist in our universe. They are Platonic abstractions that have long been questioned
perhaps from the dawn of mathematical thinking about the unbounded. In our universe
even the countable infinite appears to be unreachable and the uncountable is irreducibly
ambiguous as shown by the Lowenheim-Skolem theorem. By expanding the ordinal hierarchy
as computable notations on non recursive but objectively defined domains, the ambiguity of
the uncountable is avoided. The Gödel numbers of TMs with a well defined property must
form a countable set. Of course the properties can be defined in ways that are ambiguous
or inconsistent. There is no way to guarantee against such mistakes, but they are mistakes
not philosophical issues.

Mathematicians can use whatever formalism and whatever intuitive abstractions help as
long as the results are derivable in a widely accepted formalism. Currently such formalisms
include ZFC set theory. This is not likely to change until and unless a more philosophically
conservative formalism is more powerful than ZFC at least in deciding arithmetical questions.

One advantage of ordinal notations, as developed here, is that they can be explored with
computer code. This allows the manipulation of combinatorial structures of complexity well
beyond the capabilities of the unaided human mind. This differs from the substantial efforts
at automated theorem proving and computer verification of existing proofs. Both efforts are
important, but they focus on automating and verifying the work that mathematicians do
now.

I conjecture that all mathematics that is unambiguous in an always finite but potentially
infinite universe can be modeled by recursive processes on a logically determined domain.
Here recursive processes include single path and divergent recursive processes that explore
all possible paths. If this is true than, to some degree, the foundation of mathematics can
become an experimental science.

4 Ordinal Calculator Overview

This section is taken from a paper that gives an overview of the ordinal calculator.

Abstract

An ordinal calculator has been developed as an aid for understanding the countable
ordinal hierarchy and as a research tool that may eventually help to expand it. A GPL
licensed version is available in C++. It is an interactive command line calculator and can
be used as a library. It includes notations for the ordinals uniquely expressible in Cantor
normal form, the Veblen hierarchies and a form of ordinal projection or collapsing
using notations for countable admissible ordinals and their limits. The calculator does
addition, multiplication and exponentiation on ordinal notations. For a recursive limit
ordinal notation, α, it can list an initial segment of an infinite sequence of notations such
that the union of the ordinals represented by the sequence is the ordinal represented
by α. It can give the relative size of any two notations and it determines a unique
notation for every ordinal represented. Input is in plain text. Output can be plain
text and/or LATEX math mode format. This approach is motivated by a philosophy of
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mathematical truth that sees objectively true mathematics as connected to properties
of recursive processes. It suggests that computers are an essential adjunct to human
intuition for extending the combinatorially complex parts of objective mathematics.

Introduction

An ordinal calculator has been developed as an aid for understanding the countable ordinal
hierarchy and as a research tool that may eventually help to expand it. A GPL licensed
version is available in C++15. It is an interactive command line calculator and can be used as
a library. It includes notations for the ordinals uniquely expressible in Cantor normal form
(that are < ε0), the Veblen hierarchies and a form of ordinal projection or collapsing using
notations for countable admissible ordinals and their limits (see section 4.5).

The calculator does addition, multiplication and exponentiation on ordinal notations.
For a recursive limit ordinal notation, α, it can list an initial segment of an infinite sequence
of notations such that the union of the ordinals represented by the sequence is the ordinal
represented by α. It can give the relative size of any two notations and it determines a
unique notation for every ordinal represented. Input is in plain text. Output can be plain
text and/or LATEX math mode format.

Loosely speaking there are two dimensions to the power of axiomatic mathematical sys-
tems: definability and provability. The former measures what structures can be defined and
the latter what statements about these structures are provable. Provability is usually ex-
panded by extending definability, but there are other ways to expand provability. In arguing
for the necessity of large cardinal axioms a number of arithmetic statements have been shown
to require such axioms to decide[17]. This claim is relative to the linear ranking of generally
accepted axiom systems. However any arithmetic (or even hyperarithmetic) statement can
be decided by adding to second order arithmetic a finite set of axioms that say certain inte-
gers do or do not define notations for recursive ordinals in the sense of Kleene’s O[22]16 This
follows because Kleene’s O is a Π1

1
17 complete set18[31] and a TM (Turing machine) with an

oracle that makes a decision must do so after a finite number of queries.
Large cardinal axioms are needed to decide some questions because it has not been

possible to construct a sufficiently powerful axiom system about notations for recursive
ordinals. This can change. Any claim that large cardinal axioms are needed to decide
arithmetic statements is relative to the current state of mathematics.

Large cardinal axioms seem to implicitly define large recursive ordinals that may be be-
yond the ability of the unaided human mind to define explicitly. Thus the central motivation

15The source code and executable can be downloaded from https://sourceforge.net/projects/ord.
The downloads include a users manual and a document describing the underlying mathematics and docu-
menting the code.

16Kleene’s O is a set of notations for all recursive ordinals. It obtains this completeness by a definition that
requires quantifying over the reals and thus these notation are not recursively enumerable. Notations for
any initial segment of these ordinals ≤ α, a recursive ordinal, are recursively enumerable from any member
of O which is a notation for α.

17A Πn statement starts with a universal quantifier (∀) and contains n− 1 alternations between universal
and existential (∃) quantifiers. A Π1

n statement has a similar definition for quantifiers over the reals.
18A Π1

1 complete set, if it is encoded as a TM oracle, allows the TM to decide any Π1
1 statement.

29



of this work is to use the computer as a research tool to augment human intuition with the
enormous combinatorial power of today’s computers.

There is the outline of a theory of objective mathematical truth that underlies this ap-
proach in Section 4.7. This theory sees objective mathematics as logically determined by
a recursive enumerable sequence of events. (The relationship between these events may be
complex19, but these events, by themselves, must decide the statement.) Objective mathe-
matics includes arithmetic and hyperarithmetic statements and some statements requiring
quantification over the reals.

This paper’s intended readership is anyone with an interest in the recursive ordinals or the
foundations of mathematics that has a basic understanding of programming (at least knows
what a TM is and how it can be programmed) and a basic understanding of set theory and
ordinal numbers such as might be obtained in an introductory course in set theory or its
equivalent.

4.1 Program structure and interactive mode

This section gives a brief overview of aspects of object oriented programming in C++ and how
they are used to structure the program. It then gives a brief description of the interactive
mode of the calculator. It is intended to keep this article self contained for those with a
limited knowledge of programming and to introduce the interactive calculator.

4.1.1 Program structure

C++ connects data and the procedures that operate on that data by defining a class20.
Both data structures and member functions that operate on those structures are declared
within a class. Instances of a class are created with a special member function called a
constructor. This helps to insure that all instances of a class are properly initialized.

C++ classes can form a hierarchy with one class derived from another. The first or
base class has only the operations defined in it. A derived class has both the base class

operations and its own operations. In the ordinal calculator there is a base class Ordinal

for notations less than ε0. Larger ordinals are derived in a hierarchy that has Ordinal as its
base class. All members of this hierarchy can be referenced as Ordinals. Some procedures,
like compare that determines the relative size of two notations, must be rewritten for each
new derived class. By using virtual functions with the same name, compare, the correct
version will always be called even though the class instance is only referenced as an Ordinal

in the code. Programs which call Ordinal member functions like compare are written with an
instance of the Ordinal class followed by dot and the member function and its parameters.
For example ord1.compare(ord2) compares Ordinals ord1 and ord2. This example returns
-1,0 or 1 if ord1 is <,= or > ord2.

19The valid relationships cannot be precisely defined without limiting the definition beyond what is
intended.

20C++ constructs and plain text calculator input and output are in typewriter font.
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4.1.2 Interactive mode

The ordinal calculator has a command line interactive mode that supports most functions
without requiring C++ coding. In this mode one can assign ordinal expressions to a variable.
These expressions can include ordinal notation variables. Aside from reserved words21, all
names starting with a letter are variables that can be assigned notations. Typing a name
assigned to a notation will display the notation in plain text format (the default) and/or
LATEX format22.

The calculator includes symbols for addition ‘+’, multiplication ‘*’, exponentiation ‘^’ and
parentheses to group subexpressions. To compare the relative size of two ordinal expressions
use the operators, <, <=, >, >= and ==. To list the first n notations for ordinals in an infinite
sequence that have the ordinal represented by α as there union write α.listElts(n)23. The
help command provides online documentation.

4.2 Recursive ordinal notations and the Cantor normal form

The ordinal calculator assigns strings as notations to an initial fragment of the recursive
ordinals. It contains a recursive process for deciding the relative size (<,=, or >) of the
ordinals represented by each string and a recursive process for deciding if a given string
represents an ordinal. Section 4.5 describes an expansion of this recursive ordinal notation
system that represents ωCK

1 (the Church-Kleene ordinal, the ordinal of the recursive ordi-
nals) and larger countable ordinals. There are gaps in the ordinals with notations in this
expanded structure although the set of all notations in the system is recursively enumerable
and recursively ranked.

Greek letters represent both notations, the finite strings that represent ordinals, and the
ordinals themselves. The relative size of notations is the relative size of the ordinals they
represent. Notations are successors or limits if the ordinal they represent are.

There is a virtual Ordinal member function limitElement(n) on the integers that
outputs an increasing sequence of ordinal notations with increasing n. If notation α represents
recursive ordinal, the union of the ordinals represented by the outputs of α.limitElement(n)
is the ordinal represented by α. Every ordinal, α, can be represented as shown in expression 1

α1 > α2 > α3 > ... > αk

The αk are ordinal notations and the nk are integers > 0.

ωα1n1 + ωα2n2 + ωα3n3 + ...+ ωαknk (1)

21The reserved words in the calculator are help and the commands listed by typing “help cmds”, w and
omega representing ω, epsilon representing ε, gamma representing Γ, psi representing ϕ, w1CK representing
ωCK

1 (the ordinal of the recursive ordinals) and eps0 representing ε0.
22The command opts followed by text, tex or both controls the output format. In addition there is a

member function, .cpp, that outputs an ordinal notation as C++ code and command cppList that outputs
all user defined notations in C++ code. These are useful in writing C++ code using the calculator C++ classes
directly.

23Sometimes mathematical notation is combined with C++ code. In this example the C++ definition of a
member function is combined with a Greek letter to represent the C++ object (an Ordinal notation) that
the subroutine is called from.
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The calculator input format represents ω as w. The above expression is written as:
a=w^a1*n1+w^a2*n2+w^a3*n3+...+w^ak*nk. The n1...nk are integers and the a1...ak

are variables for previously defined ordinal notations or notations in parenthesis. The equal
sign assigns the specified notation to variable a.

ε0 =
⋃
ω, ωω, ωω

ω
ωω

ωω

... and cannot be reached with ωα, the integers and ω. The Cantor
normal form gives unique representation only for ordinals < ε0. Each term in expression 1 is
represented by a member of class CantorNormalElement. The terms are linked in decreas-
ing order in class Ordinal. This base class can represent any ordinal < ε0. The integers
used to define finite ordinals24 are scanned and processed with a library that supports arbi-
trarily large integers25. The Ordinal instance representing ω is predefined. Larger ordinals
in the base class are constructed using the integers, ω and three ordinal operators, +,× and
exponentiation.

4.3 The Veblen hierarchy

The Veblen hierarchy[35, 27, 18, 29] extends the Cantor normal form by defining functions
that grow much faster than ordinal exponentiation. These define ordinal notations much
larger than ε0. The Veblen hierarchy is developed in two stages. The first involves expressions
of a fixed finite number of parameters. The second involves functions definable as limits of
sequences of functions of an increasing number of parameters.

4.3.1 Two parameter Veblen function

The Veblen hierarchy starts with a function of two parameters, ϕ(α1, α2) based on ϕ(α) = ωα.
ϕ(1, α2) is defined as the α2 fixed point of ωα and is written as εα2 .

ϕ(2, 0) =
⋃
ε1, εε1+1, εεε1+1+1, ...

and

ϕ(2, α2 + 1) =
⋃
ϕ(2, α2), ϕ(1, ϕ(2, α2) + 1), ϕ(1, ϕ(1, ϕ(2, α2) + 1) + 1), ...

Each element of the sequence, past the first, takes the previous element as the second pa-
rameter. If limitElement computes a limit ordinal as a parameter, it often adds 1 to that
parameter to avoid fixed points. This is reflected in the examples.

The ordinal calculator plain text format for ϕ(α1, α2) is psi(a1,a2). The calculator uses
three common substitutions in expressions in the Veblen hierarchy. These are: ωα = ϕ(α),
ε(α) = ϕ(1, α) and Γ(α) = ϕ(1, 0, α). These substitutions are used in tables 2, 3, 4 and 6.
The plain text versions are w^a for ωα, epsilon(a) for ε(α) and gamma(a) for Γ(α).

Table 1 defines the two parameter Veblen function. In some cases the table gives an
inductive definition on the integers. It defines ϕ(...)0 and then ϕ(...)n+1 using ϕ(...)n. Finally
ϕ(...) is defined as an infinite union over the integers.

24The syntax for defining the ordinal 12 named ‘a’ is ‘Ordinal a(12);’ in C++ and ‘a=12’ in the interactive
ordinal calculator.

25The package used is MPIR, (Multiple Precision Integers and Rationals) based on the package GMP
(GNU Multiple Precision Arithmetic Library). Either package can be used, but only MPIR is supported on
Microsoft operating systems.
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Definition of ϕ(α1, α2)
L is lines in Table 2. X is an exit code (see Note 26). L X

ϕ(α2) = ωα2 . 1 C
ϕ(1, α2) = εα2 . α2 a successor 3 FD

α2 a limit 4 FL
If α1 and α2 are successors, define
ϕ(α1, α2)0 = ϕ(α1, α2 − 1) and define
ϕ(α1, α2)n+1 = ϕ(α1 − 1, ϕ(α1, α2)n) + 1 then by induction on n
ϕ(α1, α2) =

⋃
n∈ω ϕ(α1, α2)n which expands to

ϕ(α1, α2) =
⋃
ϕ(α1, α2 − 1), ϕ(α1 − 1, ϕ(α1, α2 − 1) + 1) + 1,

ϕ(α1 − 1, ϕ(α1 − 1, ϕ(α1, α2 − 1) + 1) + 1) + 1, ...,. 10 FD
If α2 is a limit, then
ϕ(α1, α2) =

⋃
β∈α2

ϕ(α1, β). 8 FL
If α1 is a limit and α2 is a successor then
ϕ(α1, α2) =

⋃
β∈α1

ϕ(β, ϕ(α1, α2 − 1) + 1). 12 FN

Table 1: Two parameter Veblen function definition

If α2 a limit in ϕ(α1, α2) then the limit of the expression is expanded by expanding the
limit α2. If the least significant nonzero parameter is a limit, then it must be expanded first
by limitElement and related functions. Consider ϕ(ω, ω). ∀n∈ωϕ(n + 1, 0) > ϕ(n, ω) and
thus

⋃
n∈ω ϕ(n, ω) =

⋃
n∈ω ϕ(n + 1, 0) = ϕ(ω, 0). With this in mind, if the least significant

parameter is a successor and the the next least significant parameter is a limit, one must
exercise care to make sure both parameters affect the result. Examples of the two parameter
Veblen function are in in Table 226.

4.3.2 Finite parameter Veblen functions

The finite parameter Veblen function generalizes the two parameter Veblen function to n
parameters for all integers n. This section defines how it is computed. The definition of
a notation for a recursive limit ordinal must define a recursively enumerable sequence of
notations such that the union of ordinals they represent is the ordinal represented by the
original notation. This sequence uses the original notation modified by replacing parameters.
The replacement can use the previous notation in the sequence. One or two parameters are
replaced and they are usually the least significant parameters and/or the least significant
nonzero parameters. For the Veblen hierarchy the most significant parameters always occur
first in reading from left to right.

Following are the rules that apply to the finite parameter Veblen hierarchy.

1. The hierarchy starts with ϕ(α) = ωα and ϕ(1, α) = εα.

26In the ordinal calculator an exit code is assigned to all code fragments that compute the sequences that
define the value of a limit ordinal. These are included in some tables as the right most column labeled X.
These are documented in [9] and used to verify that the regression tests include all cases. They are available
in the interactive calculator using member function lec. They are included here to connect examples of
sequences that define limit notations with the rules they come from and to insure the tables are complete.
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α α.limitElement(n)
n=1 n=2 n=3 X

1 ωω
2

ωω ωω2 ωω3 C

2 ε1 ε0 ωε0+1 ωω
ε0+1

FD

3 ε2 ε1 ωε1+1 ωω
ε1+1

FD
4 εω ε1 ε2 ε3 FL
5 ϕ(2, 1) ϕ(2, 0) εϕ(2,0)+1 εεϕ(2,0)+1+1 FD

6 ϕ(2, 2) ϕ(2, 1) εϕ(2,1)+1 εεϕ(2,1)+1+1 FD

7 ϕ(2, 5) ϕ(2, 4) εϕ(2,4)+1 εεϕ(2,4)+1+1 FD

8 ϕ(2, ω) ϕ(2, 1) ϕ(2, 2) ϕ(2, 3) FL
9 ϕ(3, 1) ϕ(3, 0) ϕ(2, ϕ(3, 0) + 1) ϕ(2, ϕ(2, ϕ(3, 0) + 1) + 1) FD

10 ϕ(3, 2) ϕ(3, 1) ϕ(2, ϕ(3, 1) + 1) ϕ(2, ϕ(2, ϕ(3, 1) + 1) + 1) FD
11 ϕ(ω, 1) εϕ(ω,0)+1 ϕ(2, ϕ(ω, 0) + 1) ϕ(3, ϕ(ω, 0) + 1) FN
12 ϕ(ω, 9) εϕ(ω,8)+1 ϕ(2, ϕ(ω, 8) + 1) ϕ(3, ϕ(ω, 8) + 1) FN
13 ϕ(ω, ω) ϕ(ω, 1) ϕ(ω, 2) ϕ(ω, 3) FL
14 ϕ(ω, ω + 2) εϕ(ω,ω+1)+1 ϕ(2, ϕ(ω, ω + 1) + 1) ϕ(3, ϕ(ω, ω + 1) + 1) FN

Table 2: Two parameter Veblen function exanples

2. In some of the substitutions, when the substituted parameter is a limit, 1 is added to
avoid fixed points.

3. If notation α has least significant nonzero parameter β, a limit, then α represents the
union of a sequence of ordinals with the same notation as α except β is replaced by a
sequence of notations that have β as their limit. See lines 7 and 11 in Table 4 (exit
code FL).

4. If notation α has least significant parameter γ which is a successor and the next most
significant nonzero parameter, β, is a limit, then the sequence replaces β with a se-
quence that has β as its limit and the parameter to its immediate right with α with
one subtracted from the γ parameter. See lines 5 and 6 in Table 4 (exit code FN).

5. If notation α has least significant nonzero notation β, a successor, and one or more
less significant parameters of 0, then α represents the ordinal that is the limit of the
sequence starting with the notation for α with 1 subtracted from β and the next (to
the right) parameter changed from 0 to 1 to support the special case of a subtraction
result of 0. Subsequent sequence values have a similar replacement with the next (to
the right) parameter replaced with the previous element in the sequence. See lines 8
and 12 in Table 4 (exit code FB). Line 12 is the special case when the only nonzero
parameter is 1 and all members of the sequence that define α have one less parameter
than α.

6. If notation α’s least significant parameter, β, is a successor, the next to the least
most significant parameter is zero and the next to the least most significant nonzero
parameter, γ, is a successor, then the first element in the sequence that defines α is
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α α.limitElement(n)
n=1 n=2 n=3

ϕ(1, 1, 0) Γ1 ΓΓ1+1 ΓΓΓ1+1+1

ϕ(1, 1, 1) ϕ(1, 1, 0) Γϕ(1,1,0)+1 ΓΓϕ(1,1,0)+1+1

ϕ(1, 1, 2) ϕ(1, 1, 1) Γϕ(1,1,1)+1 ΓΓϕ(1,1,1)+1+1

ϕ(1, 1, ω) ϕ(1, 1, 1) ϕ(1, 1, 2) ϕ(1, 1, 3)
ϕ(1, 2, 1) ϕ(1, 2, 0) ϕ(1, 1, ϕ(1, 2, 0) + 1) ϕ(1, 1, ϕ(1, 1, ϕ(1, 2, 0) + 1) + 1)
ϕ(1, 2, 2) ϕ(1, 2, 1) ϕ(1, 1, ϕ(1, 2, 1) + 1) ϕ(1, 1, ϕ(1, 1, ϕ(1, 2, 1) + 1) + 1)
ϕ(1, 2, 5) ϕ(1, 2, 4) ϕ(1, 1, ϕ(1, 2, 4) + 1) ϕ(1, 1, ϕ(1, 1, ϕ(1, 2, 4) + 1) + 1)
ϕ(1, ω, 0) ϕ(1, 1, 0) ϕ(1, 2, 0) ϕ(1, 3, 0)
ϕ(1, ω, 1) ϕ(1, 1, ϕ(1, ω, 0) + 1) ϕ(1, 2, ϕ(1, ω, 0) + 1) ϕ(1, 3, ϕ(1, ω, 0) + 1)
ϕ(2, 2, ω) ϕ(2, 2, 1) ϕ(2, 2, 2) ϕ(2, 2, 3)
ϕ(3, 1, 1) ϕ(3, 1, 0) ϕ(3, 0, ϕ(3, 1, 0) + 1) ϕ(3, 0, ϕ(3, 0, ϕ(3, 1, 0) + 1) + 1)
ϕ(4, 3, 2) ϕ(4, 3, 1) ϕ(4, 2, ϕ(4, 3, 1) + 1) ϕ(4, 2, ϕ(4, 2, ϕ(4, 3, 1) + 1) + 1)
ϕ(ω, 3, 2) ϕ(ω, 3, 1) ϕ(ω, 2, ϕ(ω, 3, 1) + 1) ϕ(ω, 2, ϕ(ω, 2, ϕ(ω, 3, 1) + 1) + 1)

Table 3: Three parameter Veblen function examples

α α.limitElement(n)
n=1 n=2 n=3

1 ϕ(1, 0, 0, 0) Γ0 ϕ(Γ0 + 1, 0, 0) ϕ(ϕ(Γ0 + 1, 0, 0) + 1, 0, 0)
2 ϕ(1, 0, 0, 1) ϕ(1, 0, 0, 0) ϕ(ϕ(1, 0, 0, 0) + 1, 0, 1) ϕ(ϕ(ϕ(1, 0, 0, 0) + 1, 0, 1) + 1, 0, 1)
3 ϕ(ω, 0, 0, 0) ϕ(1, 0, 0, 0) ϕ(2, 0, 0, 0) ϕ(3, 0, 0, 0)
4 ϕ(ω, 0, 0, 1) ϕ(1, ϕ(ω, 0, 0, 0) + 1, 0, 1) ϕ(2, ϕ(ω, 0, 0, 0) + 1, 0, 1) ϕ(3, ϕ(ω, 0, 0, 0) + 1, 0, 1)
5 ϕ(ω, 0, 0, 4) ϕ(1, ϕ(ω, 0, 0, 3) + 1, 0, 4) ϕ(2, ϕ(ω, 0, 0, 3) + 1, 0, 4) ϕ(3, ϕ(ω, 0, 0, 3) + 1, 0, 4)
6 ϕ(ω, 0, 0, 5) ϕ(1, ϕ(ω, 0, 0, 4) + 1, 0, 5) ϕ(2, ϕ(ω, 0, 0, 4) + 1, 0, 5) ϕ(3, ϕ(ω, 0, 0, 4) + 1, 0, 5)
7 ϕ(ω, 0, 0, ω) ϕ(ω, 0, 0, 1) ϕ(ω, 0, 0, 2) ϕ(ω, 0, 0, 3)
8 ϕ(ω, 5, 0, 0) ϕ(ω, 4, 1, 0) ϕ(ω, 4, ϕ(ω, 4, 1, 0) + 1, 0) ϕ(ω, 4, ϕ(ω, 4, ϕ(ω, 4, 1, 0) + 1, 0) + 1, 0)
9 ϕ(ω, 5, 0, 1) ϕ(ω, 5, 0, 0) ϕ(ω, 4, ϕ(ω, 5, 0, 0) + 1, 1) ϕ(ω, 4, ϕ(ω, 4, ϕ(ω, 5, 0, 0) + 1, 1) + 1, 1)

10 ϕ(ω, 5, 0, 9) ϕ(ω, 5, 0, 8) ϕ(ω, 4, ϕ(ω, 5, 0, 8) + 1, 9) ϕ(ω, 4, ϕ(ω, 4, ϕ(ω, 5, 0, 8) + 1, 9) + 1, 9)

11 ϕ(ω, ε0, 0, 0) ϕ(ω, ω, 0, 0) ϕ(ω, ωω , 0, 0) ϕ(ω, ωω
ω
, 0, 0)

12 ϕ(1, 0, 0, 0, 0) ϕ(1, 0, 0, 0) ϕ(ϕ(1, 0, 0, 0) + 1, 0, 0, 0) ϕ(ϕ(ϕ(1, 0, 0, 0) + 1, 0, 0, 0) + 1, 0, 0, 0)

Table 4: More than three parameter Veblen function examples

similar to α with 1 subtracted from β. Subsequent members of the sequence have
one subtracted from γ and the parameter to the immediate right is replaced with the
previous element in the sequence. See lines 9 and 10 in Table 4 (exit code FD).

7. Items 4 and 6 above include cases where the least significant nonzero parameter has
no effect on the limit that defines the sequence. Those parameters are left unchanged
in the ordinal calculator for the cases that do not matter. Examples include lines 5, 6
and 10 in Table 4.

Three parameter Veblen function examples are shown in Table 3 and larger examples in
Table 4.
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4.3.3 Transfinite Veblen functions

The limit of the finite parameter Veblen functions is the union of the sequence ϕ(1), ϕ(1, 0), ϕ(1, 0, 0), ...,.
To represent this and larger ordinals, the notation for finite parameter Veblen functions is
expanded with the ordinal notation subscript γ in the following expression.

ϕγ(α1, α2, ..., αn) (2)

The ordinal calculator plain text format for this is psi_{g}(a1,a2,...,an). The above
sequence is defined to be ϕ1.

The transfinite Veblen function is built on the finite parameter Veblen function. If ζ
is a transfinite Veblen notation, then the rules for defining ζ.limitElement(n) include
the numbered rules in Section 4.3.2. When those rules are applicable, the γ parameter is
unchanged and copied from ζ to ζ.limitElement(n). γ is changed only if the single nonzero
α parameter is a successor and the least significant α parameter. The rules for this are given
in in Table 5. The right column, X, gives the exit code described in Note 26. Table 6 gives
examples of the transfinite Veblen function, the associated first 3 values of limitElement(n)
and the corresponding exit code. These codes each refer to either Table 5 or the enumerated
list in Section 4.3.2.

The C++ coding of limitElement when the same rules are used for two classes of no-
tations (like the finite and transfinite Veblen functions) involves two steps. First the higher
level limitElement explicitly calls the lower class version to handle some cases. In C++ this
is done by explicitly referencing the lower class as in lower class name::limitElement(n).
The second step, in the lower class function, creates an output Ordinal of the required
class. This is done by calling a virtual function of the Ordinal instance that limitElement
was originally called from. The creating virtual function calls the constructor for the
Ordinal derived subclass being generated Before calling this constructor. it fills in pa-
rameters defined only at the higher class level and that are not modified in computing
limitElement(n). As the ordinal calculator was expanded to define more ordinal notation
classes, this approach was increasingly helpful.

Finally it is worth noting that the constructor is not called directly. The constructor is
called from a function that evaluates possible fixed points generated by the parameters of
the notation to creates a unique notation for each ordinal represented in the system. Direct
calls to the constructor can create non unique notations.

4.4 Limitations of ordinal notations

There are at least two ways one can develop and extend the recursive ordinal hierarchy.
One is with a recursively enumerable set of ordinal notations and a recursive function that
determines the ranking of any two notations in the system. This ranking can be used to
recursively compute a unique notation for every ordinal represented in the system. The
Veblen hierarchy[35] and its extensions, that includes ordinal collapsing (see Section 4.5.2),
are examples. This type of notation is used in the ordinal calculator.

Kleene’s O, defines a notation for every recursive ordinal. However the set of all these
notations is not recursively enumerable. Every infinite recursive ordinal has multiple no-
tations in O and no recursive algorithm can determine the relative size of all notations in
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Definition of ϕγ(α)
L is lines in Table 6. X is an exit code (see Note 26). L X

ϕ1 =
⋃
ϕ(1), ϕ(1, 0), ϕ(1, 0, 0), ..., . 1 IG

ϕγ+1 =
⋃
ϕγ(ϕγ + 1), ϕγ(ϕγ + 1, 0), ϕγ(ϕγ + 1, 0, 0), ..., 9 IG

If γ is a limit and α = 0 then
ϕγ =

⋃
β∈γ ϕβ. 7 IJ

If γ and α are successors then
ϕγ(α) =

⋃
ϕγ(α− 1) + 1, ϕγ−1(ϕγ(α− 1) + 1, 0), ϕγ−1(ϕγ(α− 1) + 1, 0, 0), ...,. 5 II

If γ is a limit and α is a successor then
ϕγ(α) =

⋃
β∈γ ϕβ(ϕγ(α− 1) + 1). 10 IK

Table 5: Definition of ϕγ(α)

α α.limitElement(n)
n=1 n=2 n=3 X

1 ϕ1 ω ε0 Γ0 IG
2 ϕ1(1, 0, 0) ϕ1(1, 0) ϕ1(ϕ1(1, 0) + 1, 0) ϕ1(ϕ1(ϕ1(1, 0) + 1, 0) + 1, 0) FB
3 ϕ1(1, 0, 1) ϕ1(1, 0, 0) ϕ1(ϕ1(1, 0, 0) + 1, 1) ϕ1(ϕ1(ϕ1(1, 0, 0) + 1, 1) + 1, 1) FD
4 ϕ3(1) ϕ3 + 1 ϕ2(ϕ3 + 1, 0) ϕ2(ϕ3 + 1, 0, 0) II
5 ϕ3(2) ϕ3(1) + 1 ϕ2(ϕ3(1) + 1, 0) ϕ2(ϕ3(1) + 1, 0, 0) II
6 ϕ5(ω) ϕ5(1) ϕ5(2) ϕ5(3) FL
7 ϕω ϕ1 ϕ2 ϕ3 IJ
8 ϕω(1) ϕ1(ϕω + 1) ϕ2(ϕω + 1) ϕ3(ϕω + 1) IK
9 ϕω+5 ϕω+4(ϕω+4 + 1) ϕω+4(ϕω+4 + 1, 0) ϕω+4(ϕω+4 + 1, 0, 0) IG

10 ϕωω (8) ϕω(ϕωω (7) + 1) ϕω2(ϕωω (7) + 1) ϕω3(ϕωω (7) + 1) IK

Table 6: Transfinite Veblen function examples
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O. Both notation systems, the Veblen hierarchy and Kleene’s O, have a limit on effective
notation systems for recursive ordinals. In the first case the limit is of the notations defined
in the system. In the case of Kleene’s O it is the limit of unique notations in recursive and
hyperarithmetical progressions of notations in O[28].

One cannot construct a recursive system of recursively ranked notations for all recursive
ordinals. The ordinal calculator constructs notations for an initial segment of the recursive
ordinals and for the ordinal of the recursive ordinal, ωCK

1 , and many larger ordinals. Such a
system must be incomplete with many gaps starting with the gap between the limit of the
recursive ordinals defined in the system and ωCK

1 .
The ordinal calculator notations ≥ ωCK

1 are based in part on generalizing the idea in O
of indexing the notation for a limit ordinals with the integers or finite ordinals. For any α,
a limit ordinal notation in O, one can construct a recursive function on the integers that
enumerates an infinite sequence of notations, such that the union of the ordinals represented
by notations in the sequence is the ordinal α represents. The ordinal calculator generalizes
this idea by defining levels of ordinals indexed by notations at a lower level. The first level is
the integers or finite ordinals. The next level is the recursive ordinals. The first level beyond
the recursive ordinals has both limits indexed by all recursive ordinal notations and limits
indexed by the integers. The notations for limit ordinals must encode the type or parameter
they are indexed with. The idea of recursive functions defined on a hierarchy of types is a
bit reminiscent of the typed hierarchy of Principia Mathematica[36].

Although a domain that includes notations for all recursive ordinals cannot be recursively
enumerable, recursive functions operating on that domain can use its properties to insure
the output for any valid input will have the required properties. This imposes constraints
on virtual functions, such as limitElement and compare to insure new classes can be
added to expand the notation. For example the compare function must check to see if its
argument comes from a derived class27 which may not have been defined when this version
of compare was written. In this case, if term1 and term2 are CantorNormalElements in an
Ordinal expression, then term1.compare(term2) returns -term2.compare(term1) calling
compare in the higher level derived class.

4.5 Notations for the Church-Kleene ordinal and beyond

The countable admissible ordinals are the staring point for extending the ordinal calculator
to and beyond ωCK

1 . The first two admissible ordinals are ω and ωCK
1 . Subsequent countable

admissible ordinals are defined as Kleene’s O is, but using a TM with an oracle for previously
defined notations[33, 34]. There are limits of sequences of admissible ordinals that are not
themselves admissible. For example this is true of the first ω admissible ordinals. These
limit ordinals are part of the hierarchy of admissible ordinals in the calculator.

27The kernel version of compare, which does most of the work, acts on the terms that make up the Cantor
normal form expression of an Ordinal. These terms belong to the base class CantorNormalElement. The
kernel version of compare is a member function of this class. As the Ordinal class is expanded so is
CantorNormalElement. As new classes are derived from this base class they are assigned an incremented
integer level which can be accessed with term.codeLevel where term is a CantorNormalElement. This
facility is used by compare to check if its argument is at a higher class level.
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4.5.1 Notations for countable admissible ordinals

The notation for countable admissible ordinals in the ordinal calculator is ωκ. κ is the index
in the admissible hierarchy starting with ω0 = ω and ω1 = ωCK

1 . The notation is extended
to ωκ,γ(α1, α2, ..., αn) to define some of the values between admissible ordinals. The ordinal
calculator plain text format is w_{k,g}(a1,a2,...,an)28. The γ and αi parameters have
a definition based in part on the Veblen hierarchy. Thus, for example, ω1(ω) and ω1(1, 2)
use rules 3 and 6 with exit codes FL and FD in the list in Section 4.3.2. Having the same
exit code means they are computed by the same code fragment as described in Section 4.3.3.
New rules and code are required only for some instances of ωκ,γ(α). If there is more than
one α parameter, αn is a limit or γ > 0 then the existing rules apply. The new rules are in
Table 7.

If there are no parameters except κ (γ and all α are 0) then new rules and an ex-
panded approach to defining notations for limit ordinals is required. The smallest example
is ω1. It is the first limit ordinal notation that cannot be fully indexed by the integers. It
must be indexed by notations for recursive ordinals. The Ordinal virtual member func-
tion limitOrd(α) is defined to support this. This is used to expand limits somewhat as
limitElement(n) is29.

Notations have an associated limit type. For example the limit type of ω1 is the recursive
ordinals, however the limit type of ωw is the integers since it is the union of ω1, ω2, ω3, ...,. If
the least significant nonzero parameter β of an ordinal ζ is a limit, then the limit type of ζ
is the limit type of β.

The value of ωκ.limitOrd(η) for κ a successor is expressed in the notation ωκ[η]. The
plain text format for this is w_{k}[e]. This is the first case where the presence of a parameter
in an Ordinal definition leads to a smaller Ordinal than if it were absent. This holds for all
square bracketed parameters. This syntax with a square bracketed suffix is only meaningful
(and accepted in the ordinal calculator) if all previously described parameters except κ are
0 and κ represents a successor. In addition η must meet constraints on limit type.

Limit type is implemented primarily through the member functions limitType and
maxLimitType. limitType is determined by the least significant (nonzero sometimes) one
or two parameters. maxLimitType is determined by the maximum limit type of all pa-
rameters and the value of κ30. α.limitOrd(β) is a valid expression if α.limitType() >
β.maxLimitType(). In addition parameters with a square bracketed suffix (either single or
double as described in Section 4.5.2) are allowed if α.limitType() = β.maxLimitType() and
β < α.

By definition ωκ =
⋃
η<ωκ ωκ[η]. Many values of η will not be defined in a recursive

system of notations, but the system should be expandable to support any of them. This
is an example of explicit incompleteness. ωκ[η] and thus ωκ.limitOrd(η) could be defined

28The calculator plain text output format expands ‘w ’ to ‘omega ’. Either version can be input.
29limitElement(n) is defined for limits that require limitOrd(α) but it can only compute an initial

fragment of the defining notations. Like limitElement, limitOrd has its own exit codes (see Note 26).
These codes are not listed here. They are documented in [9] and are important in insuring that the set of
regression tests is complete.

30The limit type of ωκ is κ+1 if κ is finite and κ otherwise. The limit type of the integers and all successor
notations is 0. Limit ordinals < ω1 have a limit type of 1. These limits have integer indices. The limitType

and maxLimitType member functions are available in the interactive calculator.
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Definition of ωκ(α) for α a successor

L is lines in Table 9. X is an exit code (see Note 26). L X

If κ = 1 and α is a successor define

ω1(α)0 = ω1(α− 1) and define

ω1(α)n+1 = ϕω1(α)n+1(α− 1) then

ω1(α) =
⋃
n∈ω ω1(α)n which expands to

ω1(α) = ω1(α− 1), ϕω1(α−1)+1(α− 1), ...,. 5 LCCI

If κ and α are successors and κ > 1 then define

ωκ(α)0 = ωκ(α− 1) and define

ωκ(α)n+1 = ωκ−1,ωκ(α)n+1(α− 1) then

ωκ(α) =
⋃
n∈ω ωκ(α)n which expands to

ωκ(α) =
⋃
ωκ(α− 1), ωκ−1,ωκ(α−1)+1(α− 1), ...,. 7, 9 LCDP

If κ is a limit and α is a successor

ωκ(α) =
⋃
ζ∈κ ωζ,ωκ(α−1)+1. 11 12 LCEL

Section 4.3.2 defines ωκ,γ(α1, α2, ..., αn) if γ > 0 ∨ n > 1 ∨ αn a limit.

Table 7: Definition of ωκ(α) for α a successor
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to be η. This is the identity function. However the goal is to define notations for as many
ordinals as possible. Thus the function diagonalizes what has previously been defined. In
doing so it must make sure that (η < ωκ)→ (ωκ.limitOrd(η) < ωκ). This rules for this are
in Table 8.

There are three classes of notations that require ζ.limitOrd(β).

1. If the least significant nonzero parameter of ζ is υ a limit notation with limit type
greater than the integers, then the parameter υ is replaced with υ[β].

2. If the least significant nonzero parameter of ζ, αm, (one of the αn in expression 2)
represents a successor and the next least significant nonzero parameter, υ (either γ or
one of the αn in expression 2) represents an ordinal with limit type greater than the
integers, then υ is replaced with υ[β]. In addition the most significant parameter (zero
or nonzero) less significant than υ is replaced with the original value of α except 1 is
subtracted from αm.

3. If κ is the least significant nonzero parameter of ζ then ζ.limitOrd(β) = ζ[β].

For notations for ordinals ≥ ωCK
1 , the compare virtual member function works as defined

in Section 4.1.1. As a consequence the incomplete ordinal notation hierarchy defined at any
point in this process has a recursive well ordering implemented in the ordinal calculator.
Thus the hierarchy and/or parts of it can be embedded within itself to fill some of the gaps
between already defined notations. This is a bit like the Mandelbrot set[26] which repeatedly
embeds its entire structure within itself. The embeddings of parts of ordinal notation within
itself to fill in the gaps are a form of ordinal projection or collapsing.

4.5.2 Admissible ordinals and projection

Projection or collapsing uses the names of uncountable cardinals[27, 29] or countable admis-
sible ordinals ≥ ωCK

1 [30] to extend the recursive ordinal hierarchy. A similar approach can
both expand recursive ordinal notations and partially fill some of the gaps that must occur
in a recursive system of notations that represents ordinals ≥ ωCK

1 . This section describes an
approach to ordinal projection used in the calculator.

This version of ordinal projection prepends a notation, δ, in double square brackets as
in [[δ]]ωκ. The plain text for this is [[d]]w_{k}. δ must be a successor ≤ κ. The δ prefix
imposes a limiType of δ if δ is finite and δ − 1 otherwise31. Recall that the limitType of
ωκ is κ + 1 if κ is finite and κ otherwise. The δ prefix also requires that any output from
limitElement or limitOrd that is ≥ ωδ must have the same δ prefix prepended to it. In
addition a double bracketed suffix is defined such that [[δ]]wκ.limitOrd(β) = [[δ]]wκ[[β]].
The plain text for this is [[d]]w_{k}[[b]]. The double bracketed suffix diagonalizes the
ordinals definable with a single bracketed suffix. See tables 10 and 11 for the double bracketed
prefix and suffix definitions that require new rules.

The ordinal notations in the calculator reference ordinals ≥ ωCK
1 but the notations defined

within a specific recursive system are recursively well ordered and thus can be used to expand
the recursive ordinal hierarchy as well as the gaps between notations for lager ordinals. The

31Note the δ prefix can never be a limit.
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Definition of ωκ and ωκ[η]

L is lines in Table 9. X is an exit code (see Note 26). L X

If κ is a successor then

ωκ =
⋃
β<ωκ ωκ[β]. 4 LEDC

ω1[1] =
⋃
ω, ϕω, ϕϕω+1, ϕϕϕω+1+1, ϕϕϕϕω+1+1+1, ...,. 1 DDBO

If η > 1 and a successor and κ = 1 then define

ω1[η]0 = ω1[η − 1] and define

ω1[η]n+1 = ϕω1[η]n+1 then

ω1[η] =
⋃
n∈ω ω1[η]n which expands to

ω1[η] =
⋃
ω1[η − 1], ϕω1[η−1]+1, ϕϕω1[η−1]+1+1, ...,. 2 DDCO

If η = 1 and κ > 1 is a successor then define

ωκ[1]0 = ωκ−1 and define

ωκ[1]n+1 = ωκ−1,ωκ[1]n+1 then

ωκ[1] =
⋃
n∈ω ωκ[1]n which expands to

ωκ[1] =
⋃
ωκ−1, ωκ−1,ωκ−1+1, ωκ−1,ωκ−1,ωκ−1+1+1, ...,. 8 DCDO

If κ and η are successors > 1 define

ωκ[η]0 = ωκ[η − 1] and define

ωκ[η]n+1 = ωκ−1,ωκ[η]n+1 then

ωκ[η] =
⋃
n∈ω ωκ[η]n which expands to

ωκ[η] =
⋃
ωκ[η − 1], ωκ−1,ωκ[η−1]+1, ...,. 6 DCES

If η is a limit then

ωκ[η] =
⋃
ζ<η ωκ[ζ ]. 3 DCAL

If κ is a limit then η must be 0 and

ωκ =
⋃
ζ<κ ωζ . 14 LCBL

Table 8: Definition of ωκ and ωκ[η]
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α α.limitElement(n)

n=1 n=2 n=3 X

1 ω1[1] ω ϕω ϕϕω+1 DDBO

2 ω1[3] ω1[2] ϕω1[2]+1 ϕϕω1[2]+1+1 DDCO

3 ω1[ω] ω1[1] ω1[2] ω1[3] DCAL

4 ω1 ω1[1] ω1[2] ω1[3] LEDC

5 ω1(12) ω1(11) ϕω1(11)+1(11) ϕϕω1(11)+1(11)+1(11) LCCI

6 ω3[3] ω3[2] ω2,ω3[2]+1 ω2,ω2,ω3[2]+1+1 DCES

7 ω3(5) ω3(4) ω2,ω3(4)+1(4) ω2,ω2,ω3(4)+1(4)+1(4) LCDP

8 ω5[1] ω4 ω4,ω4+1 ω4,ω4,ω4+1+1 DCDO

9 ω5(8) ω5(7) ω4,ω5(7)+1(7) ω4,ω4,ω5(7)+1(7)+1(7) LCDP

10 ω5,8 ω5,7(ω5,7 + 1) ω5,7(ω5,7 + 1, 0) ω5,7(ω5,7 + 1, 0, 0) IG

11 ωω(5) ω1,ωω(4)+1 ω2,ωω(4)+1 ω3,ωω(4)+1 LCEL

12 ωω(8) ω1,ωω(7)+1 ω2,ωω(7)+1 ω3,ωω(7)+1 LCEL

13 ωω,8 ωω,7(ωω,7 + 1) ωω,7(ωω,7 + 1, 0) ωω,7(ωω,7 + 1, 0, 0) IG

14 ωεωω ωεω+1 ωε
ω2+1 ωε

ω3+1 LCBL

Table 9: Example notations ≥ ω1[1]
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δ prefix allows the use of notations with any value of κ to index smaller ordinals. Note
[[δ]]ωκ < ωδ < [[δ + 1]]ωδ+1 for all κ ≥ δ.

4.6 Ordinal projection with nested embedding

The embedding described in Section 4.5.2 is nested by expanding the single ordinal notation
prefix, δ to a sequence of paired notations written as δ︷σ32. The ︷σ is optional. The full
syntax is in Figure 1. The first δ must be ≤ κ it has the same effect as the single δ prefix
did in limiting the parameters for limitOrd. The remaining prefix parameters support
nested embedding. The idea is to embed previously defined notations inside themselves to
expand the recursive ordinals notations in the system and fill other gaps between notations.
The notations in the prefix index this embedding. Thus the prefix, going from left (most
significant) to right, contains the most significant parameters in the notation. Both the finite
parameter Veblen function and the notation prefix have significance going from left to right
but there is an important difference. The most significant parameter for the Veblen function
is the number of parameters. ϕ(1, 0, 0) > ϕ(99, 99). This is not true with nested embedding.
The most significant parameter is the leftmost value of the prefix. The next most significant
parameter is the number of δs in the prefix. Then the remainder of the prefix values going
from left to right, followed by κ and the remaining parameters.

In describing these notations, the cases for which there are new rules are those in which
the prefix of ζ differs from the prefix in ζ.limitOrd(β). This only occurs if κ = δm in the
notation ζ and one of the following three conditions are met.

1. κ is a limit and the only nonzero parameter not in the prefix.

2. The only nonzero parameters not in the prefix are κ and the single bracketed suffix [η]
which is a successor.

3. The only nonzero parameters not in the prefix are κ and the least significant α which
is a successor.

In all other cases computing υ = ζ.limitOrd(β) uses rules described in previous sections.
When new rules are needed to define limitElement and limitOrd, there are multiple

conditions that require the prefix to be decremented and multiple states it may be in that
require different algorithms to change it. Both the code and its documentation matches this
structure. For example several code fragments with different exit codes call the same subrou-
tines to manipulate the prefix. This documentation has a similar functional structure. The
exit codes no longer have a nearly one to one correspondence with rules. Table 13 gives some
conventions used in tables 14, 15 and 16. Table 14, describes the conditions that determine
when and how a prefix is decremented. Table 15 describes the new rules that involve prefix
changes defined in Table 14. These two tables together provide all inductive definitions of
sequences that define a limit ordinal notation with prefix changes. Table 15 gives the new
rules for prefix changes defined by functions on an ordinal parameter. Examples of all the

32The character ‘︷’ (\lmoustache in LATEX math mode) was chosen to indicate that the two parameters
are connected as a pair.
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Definition of [[δ]]ωκ, [[δ]]ωκ[[η]] and [[δ]]ωκ[η]

δ must be a successor with δ ≤ κ.

If δ = κ in [[δ]]ωκ[η] then the δ prefix is dropped.

L is example line(s) in Table 12. X is an exit code (see Note 26).

L X

If κ is a successor then

[[δ]]ωκ =
⋃
η<[[δ]]ωκ[[δ]]ωκ[[η]]. 3, 8 LEDE

If κ is a limit then

[[δ]]ωκ =
⋃
α<κ∧α>δ[[δ]]ωα 13 LEEE

If κ = δ and η = 1 define

[[δ]]ωδ[[1]]0 = ω and define

[[δ]]ωδ[[1]]n+1 = ωδ[ωδ[[1]]n + 1] then

[[δ]]ωδ[[1]] =
⋃
n∈ω[[δ]]ωδ[[1]]n which expands to

[[δ]]ωδ[[1]] =
⋃
ω, ωδ[ω], ωδ[ωδ[ω], ωδ[ωδ[ωδ[ω]], ...,. 1, 9 DCBO

If κ > δ, κ a successor and η = 1 define

[[δ]]ωκ[[1]]0 = [[δ]]ωκ−1 and define

[[δ]]ωκ[[1]]n+1 = ωκ−1,[[δ]]ωκ[[1]]n+1 then

[[δ]]ωκ[[1]] =
⋃
n∈ω[[δ]]ωκ[[1]]n which expands to

[[δ]]ωκ[[1]] =
⋃
[[δ]]ωκ−1, ωκ−1,[[δ]]ωκ−1+1,

ωκ−1,ωκ−1,[[δ]]ωκ−1+1
, ...,. 11 DCDO

If η > 1 is a successor then

[[δ]]ωκ[[η]]0 = [[δ]]ωκ[[η − 1]] and define

[[δ]]ωκ[[η]]n+1 = [[δ]]ωκ[[[δ]]ωκ[[η]]n + 1] then

[[δ]]ωκ[[η]] =
⋃
n∈ω[[δ]]ωκ[[η]]n which expands to

[[δ]]ωκ[[η]] =
⋃
[[δ]]ωκ[[η − 1]],

[[δ]]ωκ[[[δ]]ωκ[[η − 1]] + 1],

[[δ]]ωκ[[[δ]]ωκ[[[δ]]ωκ[[η − 1]] + 1] + 1], ...,. 2, 5 DCCS

If η is a limit then

[[δ]]ωκ[[η]] =
⋃
β<η[[δ]]ωκ[[β]] and 14 DCAL

[[δ]]ωκ[η] =
⋃
β<η[[δ]]ωκ[β]. 10 DCAL

Table 10: Definition of [[δ]]ωκ, [[δ]]ωκ[[η]] and [[δ]]ωκ[η]
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Nested embedding syntax in LATEX

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]]

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η]

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ,λ(α1, α2, ..., αn)

The ︷σk k = 1, 2, ...,m are optional.

Nested embedding syntax in plain text

[[d1/s1,d2/s3,...,dm/sm]]w_{k}

[[d1/s1,d2/s3,...,dm/sm]]w_{k}[[e]]

[[d1/s1,d2/s3,...,dm/sm]]w_{k}[e]

[[d1/s1,d2/s3,...,dm/sm]]w_{k,g}(a1,a2....,am)

The “/sk” k=1,2,...,m are optional.

There are several restrictions on these expressions.

1. ∀k<m{(δk < δk+1) ∨ ((δk = δk+1) ∧ (σk < σk+1))}.

2. κ ≤ δm.

3. If κ is a limit then no η parameter is allowed.

4. The most significant δ cannot be a limit.

5. If any other δ is a limit, then the associated σ must be 0.

6. If σm is a limit, then no η parameter is allowed.

7. [[δ]]ωδ[η] = ωδ[η] and thus the [[δ]] prefix is deleted if δ = κ in a notation with a
single bracketed suffix.

Figure 1: Nested embedding syntax and constraints
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Definition of [[δ]]ωκ(α)

δ must be a successor with δ ≤ κ.

L is example line(s) in Table 12. X is an exit code (see Note 26).

L X

[[1]]ω1(1) =
⋃
[[1]]ω1, ϕ[[1]]ω1+1, ϕϕ[[1]]ω1+1+1, ...,. 4 LECK

If κ = δ ∧ κ > 1 then

[[κ]]ωκ(1) =
⋃
[[κ]]ωκ, ωκ−1,[[κ]]ωκ+1, ωκ−1,ωκ−1,[[κ]]ωκ+1+1, ...,. 6 LECK

If κ > 1 ∧ κ > δ ∧ α = 1 define

[[δ]]ωκ(1)0 = [[δ]]ωκ and define

[[δ]]ωκ(1)n+1 = [[δ]]ωκ−1,[[δ]]ωκ(1)n+1 then

[[δ]]ωκ(1) =
⋃
n∈ω[[δ]]ωκ(1)n which expands to

[[δ]]ωκ(1) =
⋃
[[δ]]ωκ, [[δ]]ωκ−1,[[δ]]ωκ+1,

[[δ]]ωκ−1,[[δ]]ωκ−1,[[δ]]ωκ+1+1, ...,. 7 LCDP

Table 11: Definition of [[δ]]ωκ(α)

rules are shown in Table 17. The rules for parameters that leave the prefix unchanged have
been defined previously. They are in Section 4.3.2 and tables 5, 7, 8 and 10.

The strength of nested embedding comes in part from appending a large value of σ
when the least significant nonzero δ parameter is decremented and making κ much larger
when the least significant σ is decremented. Doing this requires first decrementing a non
prefix parameter and the resulting notation is limitElement(1). If δm is decremented,
limitElement(n+1) contains the decremented prefix with limitElement(n) appended as
σm and the rest of the notation is the same as limitElement(1). If σm is decremented,
limitElement(n+1) contains the decremented prefix. κ in limitElement(n+1) is set equal
to limitElement(n). These cases are fully described in Table 15.

Figure 2 with notations in LATEX format and Figure 3 in plain text each summarize the
syntax in version 0.3.2 of the ordinal calculator. These figures are references with links to
the sections and tables that describe all parts of the syntax. The figures contain the same
information except for the notation format.

4.7 Mathematical truth

A recursive formal mathematical system, such as ZF (Zermelo Frankel set theory), is a
recursive process for enumerating theorems. Thus it is subject to analysis with the tools of
computer science. However the mathematical content of ZF includes the uncountable and far
beyond it. This would seem to be outside of the reach of computer science. The Löwenheim-
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Cantor normal form (See Section 4.2).

α1 > α2 > α3 > ... > αk

α and the αi are ordinal notations, ni are nonzero integers

ωα1n1 + ωα2n2 + ωα3n3 + ...+ ωαknk (3)

Finite parameter Veblen functions (See sections 4.3.1, 4.3.2 and tables 1, 2, 3 and 4.)
ϕ(α1, α2, ..., αk) (4)

Transfinite Veblen functions (See Section 4.3.3 and tables 5 and 6.)
ϕγ(α1, α2, ..., αm) (5)

Countable admissible ordinals (See Section 4.5.1 and tables 7, 8 and 9.)
ωκ (6)
ωκ[η] (7)

ωκ,γ(α1, α2, ..., αm) (8)

Projection on countable admissible ordinals (See Section 4.5.2 and tables 10, 11 and 12.)
[[δ]]ωκ (9)

[[δ]]ωκ[[η]] (10)
[[δ]]ωκ[η] (11)

[[δ]]ωκ,γ(α1, α2, ..., αm) (12)

Nested ordinal projection (See Section 4.6, tables 13, 14, 15, 16, 17 and Figure 1.)
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ (13)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η] (14)
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]] (15)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ,γ(α1, α2, ..., αk) (16)

The ︷σk k = 1, 2, ...,m are optional.

Figure 2: Ordinal calculator notation LATEX format
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Cantor normal form (See Section 4.2).

α1 > α2 > α3 > ... > αk

α and the αi are ordinal notations, ni are nonzero integers
w^a1*n1+w^a2*n2+w^a3*n3+...+w^ak*nk (3)

Finite parameter Veblen functions (See sections 4.3.1, 4.3.2 and tables 1, 2, 3 and 4.)
psi(al1,al3,...,alk) (4)

Transfinite Veblen functions (See Section 4.3.3 and tables 5 and 6.)

psi_{g}(al1,al2,...,alk) (5)

Countable admissible ordinals (See Section 4.5.1 and tables 7, 8 and 9.)

w_{k} (6)

w_{k}[e] (7)

w_{k,g}(al1,al2,...,alk) (8)

Projection on countable admissible ordinals (See Section 4.5.2 and tables 10, 11 and 12.)

[[d]]w_{k} (9)

[[d]]w_{k}[[e]] (10)

[[d]]w_{k}[e] (11)

[[d]]w_{k,g}(al1,al2,...,alk) (12)

Nested ordinal projection (See Section 4.6, tables 13, 14, 15, 16, 17 and Figure 1.)

[[d1/s1,d2/s2,...,dm/sm]]w_{k} (13)

[[d1/s1,d2/s2,...,dm/sm]]w_{k}[[e]] (14)

[[d1/s1,d2/s2,...,dm/sm]]w_{k}[e] (15)

[[d1/s1,d2/s2,...,dm/sm]]w_{k,g}(al1,al2,...,alk) (16)

The “/sk” k=1,2,...,m are optional.

Figure 3: Ordinal calculator notation plain text format
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α α.limitElement(n)

n=1 n=2 n=3 X

1 [[1]]ω1[[1]] ω ω1[ω] ω1[ω1[ω]] DCBO

2 [[1]]ω1[[2]] [[1]]ω1[[1]] ω1[[[1]]ω1[[1]]] ω1[ω1[[[1]]ω1[[1]]]] DCCS

3 [[1]]ω1 [[1]]ω1[[1]] [[1]]ω1[[2]] [[1]]ω1[[3]] LEDE

4 [[1]]ω1(1) [[1]]ω1 ϕ[[1]]ω1+1 ϕϕ[[1]]ω1+1+1 LECK

5 [[1]]ω5[[3]] [[1]]ω5[[2]] [[1]]ω5[[[1]]ω5[[2]]] [[1]]ω5[[[1]]ω5[[[1]]ω5[[2]]]] DCCS

6 [[2]]ω2(1) [[2]]ω2 ω1,[[2]]ω2+1 ω1,ω1,[[2]]ω2+1+1 LECK

7 [[2]]ω3(1) [[2]]ω3 [[2]]ω2,[[2]]ω3+1 [[2]]ω2,[[2]]ω2,[[2]]ω3+1+1 LCDP

8 [[2]]ω8 [[2]]ω8[[1]] [[2]]ω8[[2]] [[2]]ω8[[3]] LEDE

9 [[3]]ω3[[1]] ω ω3[ω] ω3[ω3[ω]] DCBO

10 [[4]]ω8[ω] [[4]]ω8[1] [[4]]ω8[2] [[4]]ω8[3] DCAL

11 [[5]]ω6[1] [[5]]ω5 [[5]]ω5,[[5]]ω5+1 [[5]]ω5,[[5]]ω5,[[5]]ω5+1+1 DCDO

12 [[5]]ω7[4] [[5]]ω7[3] [[5]]ω6,[[5]]ω7[3]+1 [[5]]ω6,[[5]]ω6,[[5]]ω7[3]+1+1 DCES

13 [[5]]ωω [[5]]ω6 [[5]]ω7 [[5]]ω8 LEEE

14 [[8]]ω8[[ω]] [[8]]ω8[[1]] [[8]]ω8[[2]] [[8]]ω8[[3]] DCAL

Table 12: Example notations using projection

Skolem theorem proved that a first order formal system, such as ZF, that has a model
must have a countable model. This raises questions about the nature of the uncountable
in mathematics. The views of three logicians show the range of interpretations offered in
response to these issues.

Paul J. Cohen, who proved that the negation of CH (Continuum Hypothesis33) is con-
sistent with ZF if ZF is consistent, draws a boundary between sets definable by properties
of the integers and other infinite sets[11, p. 10].

There certainly are some cases in which the use of infinite sets presents no essen-
tial difficulties. For example, to say that a property holds for all integers or that
it holds for all members of the set of integers, is clearly equivalent. Similarly, to
say n belongs to the set of even integers is equivalent to saying that n is even.
Thus the use of some sets can be avoided by referring back to a suitable property.
If this could always be done we would have no problem.

Cohen goes on in this paper and another published decades later to declare that he is a
formalist when it comes to the uncountable[12, p. 2416].

Does set theory, once we get beyond the integers, refer to an existing reality, or
must it be regarded, as formalists would regard it, as an interesting formal game?

33The Continuum Hypothesis states that there is no set larger than the integers (that the integers cannot
be mapped onto) and smaller then the reals (and that cannot be mapped onto the reals). Gödel proved that
ZF+CH was consistent if ZF is consistent. Cohen proved that ZF+CH was consistent if ZF is consistent.
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1. S(ζ) ≡ ζ is a successor notation.

2. L(ζ) ≡ ζ is a limit notation.

3. ζ− is defined if the least significant nonzero parameter in notation ζ is a successor.
ζ− is identical with ζ except the least significant nonzero parameter is decremented
by 1.

4. ζ[[−]] is defined if ζ meets the conditions for defining a next least prefix in Table 14.
ζ[[−]] is the prefix of ζ modified as defined by this table. All definitions in this
table that contain double square brackets define prefixes.

5. D(X) means X is defined. This applies to conditional definitions 3 and 4.

6. ζ[[−︷β]] is identical with ζ[[−]] except δm must the least significant nonzero prefix
parameter in ζ and β is appended to the prefix defined in Table 14 as σm+1. There
is an exception. Nothing is appended if the prefix from the table is shorter than
the prefix in ζ. A shorter prefix means the only legal way to decrement the prefix
is to shorten it.

7. le is an abbreviation for limitElement.

8. lo is an abbreviation for limitOrd.

9. il is an abbreviation for increasingLimit. The routine, il(δm, γ) outputs in-
creasing values > δm for increasing γ. This is needed to insure that the ourput of
le and lo produce increasing outputs for increasing inputs.

Table 13: Conventions used in tables 14, 15 and 16

Next least prefix of [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]
This is defined if the least significant prefix parameter, δm or σm, is a successor and δm = κ.

See Table 13 for conventions. The L column is line(s) in Table 17.

δm−1 and δm σm−1 and σm Next least prefix L

δm = δm−1 σm = σm−1 + 1 [[δ1︷σ1, ..., δm−1︷σm−1]] 11

δm = δm−1 σm > σm−1 + 1 [[δ1︷σ1, ..., δm−1︷σm−1, δm︷σm − 1]] 5

(δm > δm−1) ∨ (m = 1) S(σm) [[δ1︷σ1, ..., δm−1︷σm−1, δm︷σm − 1]] 2,3,15

(δm + 1 = δm−1) ∧ L(δm−1) σm = σm−1 = 0 [[δ1︷σ1, δ2︷σ2, ..., δm−1]] 4

(δm + 1 = δm−1) ∧ S(δm−1) σm = 0 [[δ1︷σ1, ..., δm−1︷σm−1, δm − 1︷σm−1 + 1]] 16,23,24

Table 14: Next least prefix
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Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η]
if (σ1 > 0 ∨m > 1) ∧ η > 0 ∧ κ = δm ∧D(ζ−) ∧D(ζ[[−]]).

See Table 13 for conventions. The L column is example line(s) in Table 17.

Conditions on ζ ζ.le(1) ζ.le(n+1) L X

S(σm) ∧ η > 1 ζ− ζ[[−]]ωζ.le(n) 6,12,33 DQB,DQE,DQC

S(σm) ∧ η = 1 ζ[[−]]ωκ ζ[[−]]ωζ.le(n) 1,5,11,32 DQA,DQB,DQE,DQC

σm = 0 ∧ S(δm) ∧ η > 1 ζ− ζ[[−︷ζ.le(n)]]ωκ 10,24 DQD,DQD

σm = 0 ∧ S(δm) ∧ η = 1 ∧ δm > δm−1 + 1 ζ[[−]]wκ ζ[[−︷ζ.le(n)]]ωκ 7 DQD

σm = 0 ∧ S(δm) ∧ η = 1 ∧ δm = δm−1 + 1 ζ[[−︷1]]wκ ζ[[−︷ζ.le(n)]]ωκ 16 DQD

Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(α)
if (σ1 > 0 ∨m > 1) ∧ κ = δm ∧D(ζ−) ∧D(ζ[[−]]).

Conditions on ζ ζ.le(1) ζ.le(n+1) L X

S(σm) ∧ α > 1 ζ− ζ[[−]]ωζ.le(n) 21,27 PLEC,PLED

S(σm) ∧ α = 1 ζ− ζ[[−]]ωζ.le(n) 30 PLED

σm = 0 ∧ S(δm) ∧ α > 1 ζ− ζ[[−︷ζ.le(n)]]ωκ 28 PLEE

σm = 0 ∧ S(δm) ∧ α = 1 ∧ δm > δm−1 + 1 ζ[[−]]wκ ζ[[−︷ζ.le(n)]]ωκ 37 PLEE

σm = 0 ∧ S(δm) ∧ α = 1 ∧ δm = δm−1 + 1 ζ[[−]]wκ ζ[[−︷ζ.le(n)]]ωκ 36 PLEE

Table 15: Rules that change [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]] by decrementing it

Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ
for ((L(δm) ∧ σm = 0) ∨ L(σm)) ∧ δm = κ.

See Table 13 for conventions. The L column is example line(s) in Table 17.

δ and σ ζ.limitOrd(β) L X

S(δm) ∧ L(σm) ∧ δm−1 < κ [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, κ︷σm[β]]]ωκ 29 NEF

S(δm) ∧ L(σm) ∧ δm−1 = κ [[δ1︷σ1, δ2︷σ2, ..., κ︷σm−1, κ︷(σm−1 + σm[β])]]ωκ 35 NEF

L(δm) ∧ σm = 0 [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, (δm−1 + κ[β])]]ωδm−1+κ[β] 26 NEG

Definition of ζ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(α)
for S(α) ∧ ((L(δm) ∧ σm = 0) ∨ L(σm)).

δ and σ (δm = κ) ζ.limitOrd(β) L X

S(δm) ∧ L(σm) ∧ δm−1 < κ [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, κ︷σm[β]]]ωκ,α− 41 NEB

S(δm) ∧ L(σm) ∧ δm−1 = κ [[δ1︷σ1, δ2︷σ2, ..., κ︷σm−1, κ︷(σm−1 + σm[β])]]ωκ,α− 34 NEB

L(δm) ∧ σm = 0 [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, (δm−1 + κ[β])]]ωδm−1+κ[β],α− 25 NEC

Table 16: Rules that change [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]] by taking a limit
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α α.limitElement(n)
n=1 n=2 X

1 [[1︷1]]ω1[12] [[1︷1]]ω1[11] [[1]]ω[[1︷1]]ω1[11] DQA
2 [[1, 3︷1]]ω3[1] [[1, 3]]ω3 [[1, 3]]ω[[1,3]]ω3

DQB
3 [[1, 3︷1]]ω3[4] [[1, 3︷1]]ω3[3] [[1, 3]]ω[[1,3︷1]]ω3[3] DQB
4 [[1, ω, ω + 1]]ωω+1[1] [[1, ω]]ωω+1 [[1, ω]]ω[[1,ω]]ωω+1

DQE
5 [[2, 3︷8]]ω3[1] [[2, 3︷7]]ω3 [[2, 3︷7]]ω[[2,3︷7]]ω3

DQB
6 [[2, 3︷8]]ω3[5] [[2, 3︷8]]ω3[4] [[2, 3︷7]]ω[[2,3︷8]]ω3[4] DQB
7 [[2, 4]]ω4[1] [[2, 3]]ω4 [[2, 3︷[[2, 3]]ω4 + 1]]ω4 DQD
8 [[2, 5︷ω1]]ωω12[ω]+5 [[2, 5︷ω1]]ωω12[ω]+5[[1]] [[2, 5︷ω1]]ωω12[ω]+5[[2]] LEDE
9 [[2︷5, 4]]ω4[1] [[2︷5, 3]]ω4 [[2︷5, 3︷[[2︷5, 3]]ω4 + 1]]ω4 DQD

10 [[2︷5, 4]]ω4[3] [[2︷5, 4]]ω4[2] [[2︷5, 3︷[[2︷5, 4]]ω4[2] + 1]]ω4 DQD
11 [[2, 3︷4, 3︷5]]ω3[1] [[2, 3︷4]]ω3 [[2, 3︷4]]ω[[2,3︷4]]ω3

DQE
12 [[2, 3︷4, 3︷5]]ω3[6] [[2, 3︷4, 3︷5]]ω3[5] [[2, 3︷4]]ω[[2,3︷4,3︷5]]ω3[5] DQE
13 [[2, 3︷4, 3︷8]]ω3[[1]] ω [[2, 3︷4, 3︷8]]ω3[ω] DCBO
14 [[3︷ω]]ω3 [[3︷1]]ω3 [[3︷2]]ω3 NEF
15 [[3︷ω + 1]]ω3[1] [[3︷ω]]ω3 [[3︷ω]]ω[[3︷ω]]ω3

DQB
16 [[3, 4]]ω4[1] [[3, 3︷1]]ω4 [[3, 3︷[[3, 3︷1]]ω4 + 1]]ω4 DQD
17 [[3, ω]]ωω [[3, 4]]ω4 [[3, 5]]ω5 NEG
18 [[3, ω]]ωω(1) [[3, 4]]ω4,[[3,ω]]ωω+1 [[3, 5]]ω5,[[3,ω]]ωω+1 NEC
19 [[3, ω]]ωωω [[3, ω]]ωω2 [[3, ω]]ωω2+ω LEEE
20 [[3, ω15]]ωωω [[3, ω15]]ωω16 [[3, ω15]]ωω2+ω15 LEEE
21 [[3︷2, 3︷3]]ω3(8) [[3︷2, 3︷3]]ω3(7) [[3︷2]]ω[[3︷2,3︷3]]ω3(7) PLEC
22 [[3︷5, 3︷7]]ω3[[9]] [[3︷5, 3︷7]]ω3[[8]] [[3︷5, 3︷7]]ω3[[[3︷5, 3︷7]]ω3[[8]]] DCCS
23 [[3︷5, 4]]ω4[1] [[3︷5, 3︷6]]ω4 [[3︷5, 3︷[[3︷5, 3︷6]]ω4 + 1]]ω4 DQD
24 [[3︷5, 4]]ω4[3] [[3︷5, 4]]ω4[2] [[3︷5, 3︷[[3︷5, 4]]ω4[2] + 1]]ω4 DQD
25 [[3︷5, ω]]ωω(5) [[3︷5, 4]]ω4,[[3︷5,ω]]ωω(4)+1 [[3︷5, 5]]ω5,[[3︷5,ω]]ωω(4)+1 NEC
26 [[3︷ω, ω]]ωω [[3︷ω, 4]]ω4 [[3︷ω, 5]]ω5 NEG
27 [[4, 7︷8]]ω7(9) [[4, 7︷8]]ω7(8) [[4, 7︷7]]ω[[4,7︷8]]ω7(8) PLED
28 [[4︷8, 7]]ω7(9) [[4︷8, 7]]ω7(8) [[4︷8, 6︷[[4︷8, 7]]ω7(8) + 1]]ω7 PLEE
29 [[4︷12, 5︷ω3]]ω5 [[4︷12, 5︷ω3[1]]]ω5 [[4︷12, 5︷ω3[2]]]ω5 NEF
30 [[4︷12, 7︷8]]ω7(1) [[4︷12, 7︷8]]ω7 [[4︷12, 7︷7]]ω[[4︷12,7︷8]]ω7

PLED
31 [[5, 6]]ω6(9) [[5, 6]]ω6(8) [[5, 5︷[[5, 6]]ω6(8) + 1]]ω6 PLEE
32 [[5, ω + 1]]ωω+1[1] [[5, ω]]ωω+1 [[5, ω]]ω[[5,ω]]ωω+1

DQC
33 [[5, ω + 1]]ωω+1[9] [[5, ω + 1]]ωω+1[8] [[5, ω]]ω[[5,ω+1]]ωω+1[8] DQC
34 [[5︷ω3, 5︷ω2]]ω5(12) [[5︷ω3, 5︷ω4]]ω5,[[5︷ω3,5︷ω2]]ω5(11)+1 [[5︷ω3, 5︷ω5]]ω5,[[5︷ω3,5︷ω2]]ω5(11)+1 NEB
35 [[5︷ω100, 5︷ω2]]ω5 [[5︷ω100, 5︷ω101]]ω5 [[5︷ω100, 5︷ω102]]ω5 NEF
36 [[8︷ω4, 9]]ω9(1) [[8︷ω4, 9]]ω9 [[8︷ω4, 8︷[[8︷ω4, 9]]ω9 + 1]]ω9 PLEE
37 [[8︷ω4, 12]]ω12(1) [[8︷ω4, 12]]ω12 [[8︷ω4, 11︷[[8︷ω4, 12]]ω12 + 1]]ω12 PLEE
38 [[12︷1]]ω12(3) [[12︷1]]ω12(2) [[12]]ω12,[[12︷1]]ω12(2)+1 PLEB
39 [[12, ω3]]ωω4(ω + 1) [[12, ω3]]ωω4[1]+ω3,[[12,ω3]]ωω4 (ω)+1 [[12, ω3]]ωω4[2]+ω3,[[12,ω3]]ωω4 (ω)+1 LCEL

40 [[15︷4]]ω15(7) [[15︷4]]ω15(6) [[15︷3]]ω[[15︷4]]ω15(6) PLED
41 [[15︷ω3]]ω15(12) [[15︷ω3[1]]]ω15,[[15︷ω3]]ω15(11)+1 [[15︷ω3[2]]]ω15,[[15︷ω3]]ω15(11)+1 NEB

Table 17: Nested embed ordinal notations in increasing order
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... Through the years I have sided more firmly with the formalist position. This
view is tempered with a sense of reverence for all mathematics which has used
set theory as a basis, and in no way do I attack the work which has been done
in set theory.

It is interesting to contrast this view with two alternatives. Solomon Feferman, the
principle editor of Gödel’s collected works, argues that the objectivity of mathematics stems
from inter-subjective human conceptions[15].

... I think the Platonistic philosophy of mathematics that is currently claimed to
justify set theory and mathematics more generally is thoroughly unsatisfactory
and that some other philosophy grounded in inter-subjective human conceptions
will have to be sought to explain the apparent objectivity of mathematics.

In a later paper he describes in detail why he believes the Continuum Hypothesis is too vague
to be definitely true or false and elaborates on his proposal of Conceptual Structuralism as
a basis for mathematical objectivity. He emphasizes that human conceptual creations, such
as money, are objective. He thinks mathematics falls in this category[16].

Finally there is the proposal by Hamkins of a Platonic multiverse[19].

In this article, I shall argue for a contrary position the multiverse view, which
holds that there are diverse distinct concepts of set, each instantiated in a corre-
sponding set-theoretic universe, which exhibit diverse set-theoretic truths. Each
such universe exists independently in the same Platonic sense that proponents of
the universe view regard their universe to exist.

This illustrates the wide range of views among logicians. I think there is a grain of
truth in all three of these views starting with the objectivity of properties of the integers (or
equivalently TMs). Much of mathematics can be defined as properties of recursive processes
including divergent properties that may involve quantification over the reals. Each of these
properties is logically determined by a recursively enumerable sequence of events. These
sequences can only be generated by computers that run forever error free with unlimited
storage. That ideal does not exist, but, as technology progresses, the ideal computer can be
approximated for ever more execution steps with ever greater probability of being error free.

For me the objective basis of mathematics lies in physical reality. However the objective
relationships between recursively enumerable events are human conceptual creations. For
example a TM halting can be a physical event, but the general concept of the halting
problem for TMs is a human conceptual creation connected to physical reality, but not
corresponding to any specific physical event. The halting problem is at the root of a a
hierarchy of relationships determined by a recursively enumerable sequence of events that
matches a mathematical hierarchy.

4.7.1 Properties of the integers

This hierarchy of mathematics starts with the arithmetical and hyperarithmetical hierar-
chies34 which have an interpretation as generalizations of the computer halting problem.

34Statements in the arithmetical hierarchy are those with a finite number of quantifiers (∀ and ∃) over the
integers on a recursive relationship. The hyperarithmetic hierarchy, loosely speaking, iterates this definition
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Every Π2 statement is equivalent to the question does a particular TM have an infinite
number of outputs. This is implied by the U quantifier. Uxr(x) is true iff r(x), a recursive
relation, is true on an infinite subset of the integers. ∀n1∃n2r1(n1, n2) can be replaced with
Unr2(n) where r1 and r2 are recursive relations[25]. It is straightforward to generate r2 from
r1. Further every Π4 statement is equivalent to the question does a particular TM have an
infinite number of outputs an infinite subset of which are the Gödel numbers of TMs that
have an infinite number of outputs. This can be generalized to define Π2n statements for any
integer n and iterated up to any recursive ordinal to define any hyperarithmetical statement.

Going further, Kleene’s O is defined by properties of TMs, albeit properties that require
quantification over the reals. The set of all members of O is a Π1

1 complete35set[31]. Finally,
the limit of the countable admissible ordinals is the first uncountable ordinal and these are
defined as Kleene’s O is defined for TMs with an oracle for smaller admissible ordinals[1].

4.7.2 The reals

Does a TM that accepts an arbitrarily long sequence of integer inputs halt for every possible
sequence? This question is logically determined by a recursively enumerable sequence: which
finite sequences of inputs cause the TM to halt. A nondeterministic TM36 can enumerate all
of these events. If the sequences that halt include an initial segment of every real number
than the answer is yes and no otherwise. Some initial segments obviously cover every possible
real number. For the binary reals less than 1, the decimal fractions that start with .0 and .1
cover every real number.

Some statements that require quantification over the reals are about properties of a
TM along divergent paths such that every event that determines the outcome is logically
determined and recursively enumerable. These statements are objectively true or false.
This is not true for other statements reals such as the Continuum Hypothesis. Like the
three logicians quoted in Section 4.7, I doubt that that the Continuum Hypothesis has
a definite truth value. I draw the line with processes that are logically determined by a
recursively enumerable sequence of events. That definition clearly includes many statements
and excludes many others. However it is not precise enough to define exactly what statements
are included. From Gödel we know that every mathematical system of sufficient strength
will be incomplete with respect to provability. I think it will also be incomplete with respect
to definability.

In light of the Lowenheim-Skolem theorem and at least relative to an always finite but
potentially infinite universe Cantor’s proof that the reals are not countable is an incom-
pleteness theorem. It cannot tell us something about the relative size of completed infinite
totalities if no such thing exists. This interpretation suggests that the cardinal numbers are
not definite sets but reflect ways the countable sets can always be expanded in a “correct”
formal system. For example in a Löwenheim-Skolem derived countable model for ZF all the
sets that are seen as uncountable within ZF are countable in the model.

up to any recursive ordinal.
35A set is Π1

1 complete if a TM with an oracle for this set can decide any Π1
1 statement.

36A nondeterministic TM simulates all the TMs with Gödel numbers in a specified recursively enumerable
sequence. It is straightforward to write a single TM program that does exactly what every one of these
individual TMs do for every time step.
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4.7.3 Expanding mathematics

Cohen concludes his second philosophical paper on a pessimistic note[12, p. 2418].

I believe that the vast majority of statements about the integers are totally and
permanently beyond proof in any reasonable system. ...

In this pessimistic spirit, I may conclude by asking if we are witnessing the
end of the era of pure proof, begun so gloriously by the Greeks. I hope that
mathematics lives for a very long time, and that we do not reach that dead end
for many generations to come.

There is a way to explore all objective mathematical truth in an always finite but un-
bounded universe. With no limits, civilization can try everything. That may seem absurd
but it appears to be how the mathematically capable human mind evolved. It is doubtful
that this could have happened in a world that was significantly less diverse than ours. Of
course biological evolution has only a small random component. Mostly it builds on it-
self. Over billions of years, random perturbations have created humanity with the ability to
understand where we came from and perhaps to choose where we go.

One can extend mathematics in a similar selective and divergent way. The multiverse
of Hamkins may not be a Platonic reality, but a partial map of the possible ways in which
mathematics can be extended. It is essential that we build on what exists but extend this
with ever expanding diversity. Otherwise we will run into a what I call a Gödel limit.
This is a sequence of ever more powerful mathematical models all of which may eventually
be discovered in a single path of mathematical exploration and development that extends
forever. However all of the results are subsumed by a single more powerful result that will
never be discovered inside the Gödel limit. The only way to avoid a Gödel limit is through
an unbounded expansion of diversity.

Why would it be worth the effort to explore this mathematics? Existing mathematics
goes far beyond what is commonly used in science and engineering[15]. The answer to
this question takes us outside of mathematics to questions of ultimate meaning and value.
Bertrand Russell in 1927 at the end of the Analysis of Matter observed that intrinsic nature
and by implication intrinsic value only exists in conscious experience.

As regards the world in general, both physical and mental, everything that we
know of its intrinsic character is derived from the mental side, and almost ev-
erything that we know of its causal laws is derived from the physical side. But
from the standpoint of philosophy the distinction between physical and mental
is superficial and unreal[32, p. 402].

Science first abandoned the fundamental substances of earth, air, fire and water and later
Newtonian billiard balls for pure mathematical models lacking any fundamental substance.
This is made explicit in set theory where the fundamental entity is the empty set or nothing
at all. Intrinsic nature and thus meaning and value exists only in conscious experience.

Nonetheless the evolution of consciousness has been an evolution of structure. Repro-
ducing molecules have evolved to create the depth and richness of human consciousness.
They have also evolved to the point where we can take conscious control over future human

56



evolution. Human genetic engineering has already begun as a way to cure or prevent horrible
diseases. Over time the techniques will be perfected to the point where one may consider
using them for human enhancement. We will need to have a sense of meaning and values
that is up to the challenge this capability presents.

The depth and richness of human consciousness seems to require the level of abstraction
and self reflection that has evolved. These seem necessary for both richness of human con-
sciousness and the ability to create mathematics. The ordinal numbers are the backbone of
mathematics determining what problems are decidable and what objects are definable in a
mathematical system. Do they also impose limits on the depth and richness of human con-
sciousness? If so than diversity is critical to the unbounded exploration of possible conscious
experience. This possibility is explored in a video Mathematical Infinity and Human Destiny
and a book[4].

5 Program structure

The C++ programming language37 has two related features, subclasses and virtual functions
that are useful in developing ordinal notations. The base class, Ordinal, is an open ended
programming structure that can be expanded with subclasses. It does not represent a specific
set of ordinals and it is not limited to notations for recursive ordinals. Any function that
takes Ordinal as an argument must allow any subclass of Ordinal to be passed to it as an
argument.

5.1 virtual functions and subclasses

Virtual functions facilitate the expansion of the base class. For example there is a base
class virtual member function compare that returns 1, 0, or -1 if its argument (which
must be an element of class Ordinal) is less than, equal to or greater than the ordinal
notation it is a member function of. The base class defines notations for ordinals less
than ε0. As the base class is expanded, an extension of the compare virtual function
must be written to take care of cases involving ordinals greater than ε0. Programs that call
the compare function will continue to work properly. The correct version of compare will
automatically be invoked depending on the type of the object (ordinal notation) from which
compare is called. The original compare does not need to be changed but it does need to be
written with the expansion in mind. If the argument to compare is not in the base class

then the expanded function must be called. This can be done by calling compare recursively
using the argument to the original call to compare as the class instance from which compare

is called.
It may sound confusing to speak of subclasses as expanding a definition. The idea is that

the base class is the broadest class including all subclasses defined now or that might be
defined in the future. The subclass expands the objects in the base class by defining a

37C++ is an object oriented language combining functions and data in a class definition. The data and
code that form the class are referred to as class members. Calls to nonstatic member functions can only
be made from an instance of the class. Data class members in a member function definition refer to the
particular instance of the class from which the function is called.
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limited subset of new base class objects that are the only members of the subclass (until
and unless it gets expanded by its own subclasses). This is one way of dealing with the
inherent incompleteness of a computational approach to the ordinals.

5.2 Ordinal normal forms

Crucial to developing ordinal notations is to construct a unique representation for every
ordinal. The starting point for this is the Cantor normal form. Every ordinal, α, can be
represented by an expression of the following form:

α = ωα1n1 + ωα2n2 + ωα3n3 + ...+ ωαknk (17)

α1 > α2 > α3 > ... > αk

The αk are ordinal notations and the nk are integers > 0.

Because ε0 = ωε0 the Cantor normal form gives unique representation only for ordinals less
than ε0. This is handled by requiring that the normal form notation for a fixed point ordinal
be the simplest expression that represents the ordinal. For example, A notation for the
Veblen hierarchy used in this paper (see Section 7) defines ε0 as ϕ(1, 0). Thus the normal
form for ε0 would be ϕ(1, 0)38 not ωϕ(1,0). Note ϕ(1, 0)2 is displayed as ωε02.

The Ordinal base class represents an ordinal as a linked list of terms of the form ωαknk.
This limits the base class to ordinals of the form ωα where α is a previously defined member
of the base class. These are the ordinals less than ε0. For larger ordinals we must define
subclasses. The base class for each term of an Ordinal is CantorNormalElement and again
subclasses are required to represent ordinals larger than or equal to ε0.

5.3 Memory management

Most Ordinals are constructed from previously defined ones. Those constructions need to
reference the ordinals used in defining them. These must not be deleted while the object
that uses them still exists. This usually requires that Ordinals be created using the new C++
construct. Objects declared without using new are automatically deleted when the block in
which they occur exits. This program does not currently implement any garbage collection.
Ordinals created with new are not deleted until the program exits or the user explicitly
deletes them. With the size of memory today this is usually not a problem but eventually a
new version of the program should free space no longer being used.

6 Ordinal base class

All ordinal notations defined now or in the future in this system are include in base class,
Ordinal.39 With no subclasses only notations for ordinals < ε0 are defined. Sections 8, 9,

38In the ordinal calculator ϕ(1, α) is displayed as εα.
39Ordinal when capitalized and in tty font, refers to the expandable C++ class of ordinal notations.
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C++ code Ordinal

omega+12 ω + 12
omega*3 ω3
omega*3 + 12 ω3 + 12
omega^5 ω5

omega^(omega^12) ωω
12

(omega^(omega^12)*6) + (omega^omega)*8 +12 ωω
126 + ωω8 + 12

Table 18: Ordinal C++ code examples

11 and 13 describe subclasses that extend the notation system to large recursive ordinals
and to coutnable admissible ordinals.

The finite Ordinals and ω are defined using the constructor40 for class Ordinal.41.
Other ordinals < ε0 are usually defined with addition, multiplication and exponentiation of
previously defined Ordinals (see Section 6.4).

The Ordinal for 12 is written as “const Ordinal& twelve = * new Ordinal(12)”42 in
C++. The Ordinals for zero, one and omega are defined in global name space ord43 The
Ordinals two through six are defined as members of class Ordinal44.

The standard operations for ordinal arithmetic (+, * for × and ^ for exponentiation) are
defined for all Ordinal instances. Expressions involving exponentiation must use parenthesis
to indicate precedence because C++ gives lower precedence to ^ then it does to addition and
multiplication45. In C++ the standard use of ^ is for the boolean operation exclusive or.
Some examples of infinite Ordinals created by Ordinal expressions are shown in Table 18.

Ordinals that are a sum of terms are made up of a sequence of instances of the class

CantorNormalElement each instance of this class contains an integer factor that multiplies
the term and an Ordinal exponent of ω. For finite ordinals this exponent is 0.

6.1 normalForm and texNormalForm member functions

Two Ordinal member functions, normalForm and texNormalForm, return a C++ string

that can be output to display the value of an Ordinal in Cantor normal form or a variation
of it defined here for ordinals > ε0. normalForm creates a plain text format that is used

40The constructor of a class object is a special member function that creates an instance of the class

based on the its parameters.
41The integer ordinals are not defined in this program using the C++ int data type but a locally defined

Int data type that uses the Mpir offshoot of the Gnu Multiple Precision Arithmetic Library to allow for
arbitrarily large integers depending on the memory of the computer the program is run on.

42In the interactive ordinal calculator (see Appendix B) write “twelve = 12” or just use 12 in an
expression.

43All global variables in this implementation are defined in the namespace ord. This simplifies integration
with existing programs. Such variables must have the prefix ‘ord::’ prepended to them or occur in a file in
which the statement “using namespace ord;” occurs before the variable is referenced.

44Reference to members of class Ordinal must include the prefix “Ordinal::” except in member func-
tions of Ordinal

45The interactive mode of entering ordinal expressions (see Appendix B) has the desired precedence and
does not require parenthesis to perform exponentiation before multiplication.
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for input and output in the interactive mode of this program. texNormalForm outputs a
similar string in TEX math mode format. This string does not include the ‘$’ markers
to enter and exit TEX math mode. These must be added when this output is included in a
TEX document. There are examples of this output in Section B.11.3 on Display options.
Many of the entries in the tables in this manual are generated using texNormalForm.

6.2 compare member function

The compare function has a single Ordinal as an argument. It compares the Ordinal

instance it is a member of with its argument. It scans the terms of both Ordinals (see
equation 17) in order of decreasing significance. The exponent, αk and then the factor nk
are compared. If these are both equal the comparison proceeds to the next term of both
ordinals. compare is called recursively to compare the exponents (which are Ordinals) until
it resolves to comparing an integer with an infinite ordinal or another integer. It returns 1,
0 or -1 if the ordinal called from is greater than, equal to or less than its argument.

Each term of an ordinal (from Equation 17) is represented by an instance of class
CantorNormalElement and the bulk of the work of compare is done in member function
CantorNormalElement::compare This function compares two terms of the Cantor normal
form of an ordinal.

6.3 limitElement member function

Ordinal member function limitElement has a single integer parameter. It is only defined for
notations of limit ordinals and will abort if called from a successor Ordinal. Larger values
of this argument produce larger ordinal notations as output. The union of the ordinals
represented by the outputs for all integer inputs is equal to the ordinal represented by the
Ordinal instance limitElement is called from. This function satisfies requirement 3 on
page 10.

In the following description mathematical notation is mixed with C++ code. Thus
limitElement(i) called from an Ordinal class instance that represents ωα is written
as (ωα).limitElement(i).

The algorithm for limitElement uses the Cantor normal form in equation 17. The kernel
processing is done in CantorNormalElement::limitElement. limitElement operates on
the last or least significant term of the normal form. γ is used to represent all terms but the
least significant. If the lest significant term is infinite and has a factor, the nk in equation 17,
greater than 1, γ will also include the term ωαk(nk − 1). The outputs from limitElement

are γ and a final term that varies according to the conditions in Table 19. Table 20 gives
some examples.

6.4 Operators

The operators in the base class are built on the successor (or ‘+1’) operation and recursive
iteration of that operation. These are shown in Table 21.
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This routine has a single exit code, ‘C’.
See Section 8.2 for more about this.

α =
∑
m=0,1,...,k ω

αmnm from equation 17
γ =

∑
m=0,1,...,k−1 ω

αmnm + ωαk(nk − 1)
Last Term (ωαknk) Condition α.limitElement(i)

αk = 0 (α is not a limit) undefined abort
αk = 1 γ + i
αk > 1 ∧ αk is a successor γ + ωαk−1i
αk is a limit γ + ω(αk).limitElement(i)

Table 19: Cases for computing Ordinal::limitElement

Ordinal limitElement

ω 1 2 10 100 786

ω8 ω7 + 1 ω7 + 2 ω7 + 10 ω7 + 100 ω7 + 786
ω2 ω ω2 ω10 ω100 ω786
ω3 ω2 ω22 ω210 ω2100 ω2786
ωω ω ω2 ω10 ω100 ω786

ωω+2 ωω+1 ωω+12 ωω+110 ωω+1100 ωω+1786

ωω
ωω

ωω
ω

ωω
ω2

ωω
ω10

ωω
ω100

ωω
ω786

Table 20: Ordinal::limitElement examples.

Operation Example Description

addition α + β add 1 to α β times
multiplication α× β add α β times
exponentiation αβ multiply α β times
nested exponentiation αβ

γ
multiply α βγ times

... ... ...

Table 21: Base class Ordinal operators.

Expression Cantor Normal Form C++ code

(ω4 + 12)ω ω2 (omega*4+12)*omega

ω(ω4 + 12) ω24 + ω12 omega*(omega*4+12)

ωω(ω+3) ωω
2+ω3 omega∧(omega*(omega+3))

(ω + 4)(ω + 5) ω2 + ω5 + 4 (omega+4)*(omega+5)

(ω + 2)(ω+2) ωω+2 + ωω+12 + ωω2 (omega+2)∧(omega+2)
ωω+3 + ωω+23+

(ω + 3)(ω+3) ωω+13 + ωω3 (omega+3)∧(omega+3)

Table 22: Ordinal arithmetic examples
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The operators are addition, multiplication and exponentiation. These are implemented
as C++ overloaded operators: +, * and ^46 Arithmetic on the ordinals is not commutative,
3 + ω = ω 6= ω + 3, For this and other reasons, caution is required in writing expressions in
C++. Precedence and other rules used by the compiler are incorrect for ordinal arithmetic.
It is safest to use parenthesis to completely specify the intended operation. Some examples
are shown in Table 22.

6.4.1 Addition

In ordinal addition, all terms of the first operand that are at least a factor of ω smaller than
the leading term of the second cam be ignored because of the following:

α, β ordinals ∧ α ≥ β → β + α ∗ ω = α ∗ ω (18)

Ordinal addition operates in sequence on the terms of both operands. It starts with the
most significant terms. If they have the same exponents. their factors are added. Otherwise,
if the second operand’s exponent is larger than the first operand’s exponent, the remainder of
the first operand is ignored. Alternatively, if the second operands most significant exponent
is less than the first operands most significant exponent, the leading term of the first operand
is added to the result. The remaining terms are compared in the way just described until all
terms of both operands have been dealt with.

6.4.2 multiplication

Multiplication of infinite ordinals is complicated by the way addition works. For example:

(ω + 3)× 2 = (ω + 3) + (ω + 3) = ω × 2 + 3 (19)

Like addition, multiplication works with the leading (most significant) terms of each operand
in sequence. The operation that takes the product of terms is a member function of base class
CantorNormalElement. It can be overridden by subclasses without affecting the algorithm
than scans the terms of the two operands. When a subclass of Ordinal is added a subclass
of CantorNormalElement must also be added.

CantorNormalElement and each of its subclasses is assigned a codeLevel that grows
with the depth of class nesting. codeLevel for a CantorNormalElement is cantorCodeLevel.
Any Cantor normal form term that is of the form ωα will be at this level regardless of the
level of the terms of α. codeLevel determines when a higher level function needs to be
invoked. For example if we multiply α at cantorCodeLevel by β at a higher level then a
higher level routine must be used. This is accomplished by calling β.multiplyBy(α) which
will invoke the virtual function multiplyBy in the subclass β is an instance of.

The routine that multiplies two terms or CantorNormalElements first tests the codeLevel
of its operand and calls multiplyBy if necessary. If both operands are at cantorCodeLevel,
the routine checks if both operands are finite and, if so, returns their integer product. If the
first operand is finite and the second is infinite, the second operand is returned unchanged.

46‘^’ is used for ‘exclusive or’ in C++ and has lower precedence than any arithmetic operator such as ‘+’.
Thus C++ will evaluate x^y+1 as x^(y+1). Use parenthesis to override this as in (x^y)+1.
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All remaining cases are handled by adding the exponents of the two operands and multiply-
ing their factors. The exponents are the αi and the factors are the ni in Equation 17. A
CantorNormalElement with the computed exponent and factor is returned. If the exponents
contain terms higher then cantorCodeLevel, this will be dealt with by the routine that does
the addition of exponents.

The routine that multiplies single terms is called by a top level routine that scans the
terms of the operands. If the second operand does not have a finite term, then only the
most significant term of the first operand will affect the result by Equation 18. If the second
operand does end in a finite term then all but the most significant term of the first operand,
as illustrated by Equation 19, will be added to the result of multiplying the most significant
term of the first operand by all terms of the second operand in succession. Some examples
are shown in Table 23.

6.4.3 exponentiation

Ordinal exponentiation first handles the cases when either argument is zero or one. It then
checks if both arguments are finite and, if so, does an integer exponentiation47. If the base
is finite and the exponent is infinite, the product of the infinite terms in the exponent is
computed. If the exponent has a finite term, this product is multiplied by the base taken to
the power of this finite term. This product is the result.

If the base is infinite and the exponent is an integer, n, the base is multiplied by itself
n times. To do this efficiently, all powers of two less than n are computed. The product of
those powers of 2 necessary to generate the result is computed.

If both the base and exponent are infinite, then the infinite terms of the exponent are
scanned in decreasing sequence. Each is is used as an exponent applied to the most significant
term of the base. The sequence of exponentials is multiplied. If the exponent has a finite
term then the entire base, not just the leading term, is raised to this finite power using the
algorithm described above for a finite exponent and infinite base. That factor is then applied
to the previous product of powers.

To compute the above result requires a routine for taking the exponential of a single
infinite term of the Cantor normal form i. e. a CantorNormalElement (see Equation 17) by
another infinite single term. (When Ordinal subclasses are defined this is the only routine
that must be overridden.) The algorithm is to multiply the exponent of ω from the first
operand (the base) by the second operand, That product is used as the exponent of ω in the
term returned. Table 24 gives some examples with C++ code and some additional examples
are shown in Table 25.

7 The Veblen hierarchy

This section gives a brief overview of the Veblen hierarchy and the ∆ operator. See [35, 27, 18]
for a more a complete treatment. This is followed by the development of a computational

47A large integer exponent can require more memory than is available to store the result and abort the
program.
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α β α× β
ω + 1 ω + 1 ω2 + ω + 1
ω + 1 ω + 2 ω2 + ω2 + 1
ω + 1 ω3 ω4

ω + 1 ω32 + 2 ω42 + ω2 + 1
ω + 1 ω4 + ω3 + ω7 + 3 ω5 + ω4 + ω27 + ω3 + 1
ω + 1 ωω3 ωω3
ω + 2 ω + 1 ω2 + ω + 2
ω + 2 ω + 2 ω2 + ω2 + 2
ω + 2 ω3 ω4

ω + 2 ω32 + 2 ω42 + ω2 + 2
ω + 2 ω4 + ω3 + ω7 + 3 ω5 + ω4 + ω27 + ω3 + 2
ω + 2 ωω3 ωω3
ω3 ω + 1 ω4 + ω3

ω3 ω + 2 ω4 + ω32
ω3 ω3 ω6

ω3 ω32 + 2 ω62 + ω32
ω3 ω4 + ω3 + ω7 + 3 ω7 + ω6 + ω47 + ω33
ω3 ωω3 ωω3

ω32 + 2 ω + 1 ω4 + ω32 + 2
ω32 + 2 ω + 2 ω4 + ω34 + 2
ω32 + 2 ω3 ω6

ω32 + 2 ω32 + 2 ω62 + ω34 + 2
ω32 + 2 ω4 + ω3 + ω7 + 3 ω7 + ω6 + ω47 + ω36 + 2
ω32 + 2 ωω3 ωω3

ω4 + ω3 + ω7 + 3 ω + 1 ω5 + ω4 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ω + 2 ω5 + ω42 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ω3 ω7

ω4 + ω3 + ω7 + 3 ω32 + 2 ω72 + ω42 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ω4 + ω3 + ω7 + 3 ω8 + ω7 + ω57 + ω43 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ωω3 ωω3

ωω3 ω + 1 ωω+1 + ωω3
ωω3 ω + 2 ωω+1 + ωω6
ωω3 ω3 ωω+3

ωω3 ω32 + 2 ωω+32 + ωω6
ωω3 ω4 + ω3 + ω7 + 3 ωω+4 + ωω+3 + ωω+17 + ωω9
ωω3 ωω3 ωω23

Table 23: Ordinal multiply examples
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Expression Cantor Normal Form C++ code

Ordinal four(4);

4ω
7+3 ω764 four∧((omega∧7)+3)

five∧
5ω

7+ω+3 ω8125 ((omega∧7)+omega+3)
(ω + 1)4 ω4 + ω3 + ω2 + ω + 1 (omega+1)∧4

ωω
2+ω+2 + ωω

2+ω+1+ ((omega∧2)+omega+3)∧
(ω2 + ω + 3)ω

2+ω+1 ωω
2+ω3 ((omega∧2)+omega+1)

ωω
2+ω+4 + ωω

2+ω+3+ ((omega∧2)+omega+3)∧
(ω2 + ω + 3)ω

2+ω+2 ωω
2+ω+23 + ωω

2+ω+1 + ωω
2+ω3 ((omega∧2)+omega+2)

Table 24: C++ Ordinal exponentiation examples

approach for constructing notations for these ordinals up to (but not including) the large
Veblen ordinal. We go further in Sections 10 and 11.

The Veblen hierarchy extends the recursive ordinals beyond ε0. A Veblen hierarchy can
be constructed from any strictly increasing continuous function48f , whose domain and range
are the countable ordinals such that f(0) > 0. f(x) = ωx satisfies these conditions and is
the starting point for constructing the standard Veblen hierarchy. One core idea is to define
a new function from an existing one so that the new function enumerates the fixed points of
the first one. A fixed point of f is a value v such that f(v) = v. Given an infinite sequence
of such functions one can define a new function that enumerates the common fixed points of
all functions in the sequence. In this way one can iterate the construction of a new function
up to any countable ordinal. The Veblen hierarchy based on f(x) = ωx is written as ϕ(α, β)
and defined as follows.

ϕ(0, β) = ωβ.
ϕ(α + 1, β) enumerates the fixed points of ϕ(α, β).
ϕ(α, β) for α a limit ordinal, α, enumerates the intersection of the fixed points of ϕ(γ, β)

for γ less than α.

From a Veblen hierarchy of the above sort, one can define a diagonalization function
ϕ(x, 0) from which a new Veblen hierarchy can be constructed. This can be iterated and the
∆ operator does this in a powerful way.

7.1 The delta operator

The ∆ operator is defined as follows[27, 18].

• ∆0(ψ) enumerates the fixed points of the normal (continuous and strictly increasing)
function on the ordinals ψ.

48A continuous function, f , on the ordinals must map limits to limits. Thus for every infinite limit ordinal
y, f(y) = sup{f(v) : v < y}. A continuous strictly increasing function on the ordinals is called a normal
function.
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α β αβ

ω + 1 ω + 1 ωω+1 + ωω

ω + 1 ω + 2 ωω+2 + ωω+1 + ωω

ω + 1 ω3 ωω
3

ω + 1 ω32 + 2 ωω
32+2 + ωω

32+1 + ωω
32

ω + 1 ω4 + 3 ωω
4+3 + ωω

4+2 + ωω
4+1 + ωω

4

ω + 1 ωω3 ωω
ω3

ω + 2 ω + 1 ωω+1 + ωω2
ω + 2 ω + 2 ωω+2 + ωω+12 + ωω2

ω + 2 ω3 ωω
3

ω + 2 ω32 + 2 ωω
32+2 + ωω

32+12 + ωω
322

ω + 2 ω4 + 3 ωω
4+3 + ωω

4+22 + ωω
4+12 + ωω

4
2

ω + 2 ωω3 ωω
ω3

ω3 ω + 1 ωω+3

ω3 ω + 2 ωω+6

ω3 ω3 ωω
3

ω3 ω32 + 2 ωω
32+6

ω3 ω4 + 3 ωω
4+9

ω3 ωω3 ωω
ω3

ω32 + 2 ω + 1 ωω+32 + ωω2
ω32 + 2 ω + 2 ωω+62 + ωω+34 + ωω2

ω32 + 2 ω3 ωω
3

ω32 + 2 ω32 + 2 ωω
32+62 + ωω

32+34 + ωω
322

ω32 + 2 ω4 + 3 ωω
4+92 + ωω

4+64 + ωω
4+34 + ωω

4
2

ω32 + 2 ωω3 ωω
ω3

ω4 + 3 ω + 1 ωω+4 + ωω3
ω4 + 3 ω + 2 ωω+8 + ωω+43 + ωω3

ω4 + 3 ω3 ωω
3

ω4 + 3 ω32 + 2 ωω
32+8 + ωω

32+43 + ωω
323

ω4 + 3 ω4 + 3 ωω
4+12 + ωω

4+83 + ωω
4+43 + ωω

4
3

ω4 + 3 ωω3 ωω
ω3

ωω3 ω + 1 ωω
2+ω3

ωω3 ω + 2 ωω
2+ω23

ωω3 ω3 ωω
4

ωω3 ω32 + 2 ωω
42+ω23

ωω3 ω4 + 3 ωω
5+ω33

ωω3 ωω3 ωω
ω3

Table 25: Ordinal exponential examples

66



• ∆α′(ϕ) = ∆0(ϕα(−, 0)). That is it enumerates the fixed points of the diagonalization
of the Veblen hierarchy constructed from ϕα.

• ∆α(ϕ) for α a limit ordinal enumerates
⋂
γ<α range ∆γ(ϕ).

• ϕα0 = ϕ.

• ϕαβ′ = ∆α(ϕαβ).

• ϕαβ for β a limit ordinal enumerates
⋂
γ<β range ϕαγ .

The function that enumerates the fixed points of a base function is a function on functions.
The Veblen hierarchy is constructed by iterating this function on functions starting with
ωx. A generalized Veblen hierarchy is constructed by a similar iteration starting with any
function on the countable ordinals, f(x), that is strictly increasing and continuous (see Note
48) with f(0) > 0. The ∆ operator defines a higher level function. Starting with the
function on functions used to define a general Veblen hierarchy, it defines a hierarchy of
functions on functions. The ∆ operator constructs a higher level function that builds and
then diagonalizing a Veblen hierarchy.

In a computational approach, such functions can only be partially defined on objects in
an always expandable computational framework. The classes in which the functions are
defined and the functions themselves are designed to be extensible as future subclasses are
added to the system.

7.2 A finite function hierarchy

An obvious extension called the Veblen function is to iterate the functional hierarchy any
finite number of times. This can be represented as a function on ordinal notations,

ϕ(β1, β2, ..., βn). (20)

Each of the parameters is an ordinal notation and the function evaluates to an ordinal
notation. The first parameter is the most significant. It represents the iteration of the highest
level function. Each successive ordinal49 operand specifies the level of iteration of the next
lowest level function. With a single parameter Equation 20 is the function ωx (ϕ(α) = ωα).
With two parameters, ϕ(α, β), it is the Veblen hierarchy constructed from the base function
ωx. With three parameters we have the ∆ hierarchy built on this initial Veblen hierarchy.
In particular the following holds.

ϕ(α, β, x) = ∆αϕ
α
β(x) (21)

49 All references to ordinals in the context of describing the computational approach refer to ordinal
notations. The word notation will sometimes be omitted when it is obviously meant and would be tedious
to keep repeating.
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7.3 The finite function normal form

The Veblen function and its extension to a function with an arbitrary finite number of
parameters requires the following extension to the Cantor Normal Form in Equation 17.

α = α1n1 + α2n2 + α3n3 + ...+ αknk (22)

αi = ϕ(β1,i, β2,i, ..., βmi,i)

k ≥ 1, k ≥ i ≥ 1,mi ≥ 1, nk ≥ 1, α1 > α2 > α3 > ... > αk

αi and βi,j are ordinals; i, j, k,mi, nk are integers.

Note that ϕ(β) = ωβ so the above includes the Cantor normal form terms. To obtain
a unique representation for each ordinal the rule is adopted that all normal forms must be
reduced to the simplest expression that represents the same ordinal. For example ϕ(1, 0) =
ε0 = ωε0 = ϕ(ϕ(1, 0)). This requires that fixed points be detected and reduced as described
in 8.3.

In this computational approach, the meaning of ordinal notations is defined by functions
compare and limitElement. What compare must do is defined by limitElement which
defines each notation in terms of notations for smaller ordinals.

7.4 limitElement for finite functions

The LimitElement member function for an ordinal notation ord defines ord by enumerating
notations for smaller ordinals such that the union of the ordinals those notations represent is
the ordinal represented by ord. As with base class Ordinal all but the least significant term
is copied unchanged to each output of limitElement. Table 19 for Ordinal::limitElement
specifies how terms, excluding the least significant and the factors (the ni in Equation 17),
are handled. The treatment of these excluded terms does not change for the extended normal
form in Equation 22 and is handled by base class routines. Table 26 extends Table 19 by
specifying how the least significant normal form term (if it is ≥ ε0) is handled in constructing
limitElement(i). If the factor of this term is greater than 1 or there are other terms in
the ordinal notation then the algorithms from Table 19 must also be used in computing the
final output.

Table 26 uses pseudo C++ code adapted from the implementation of limitElement.
Variable names have been shortened to limit the size of the table and other simplifications
have been made. However the code accurately describes the logic of the program. Variable
ret is the result or output of the subroutine. Different sequences are generated based on
the two least significant non zero parameters of ϕ in Equation 20 and whether the least
significant non zero term is the least significant term (including those that are zero). The
idea is to construct an infinite sequence with a limit that is not reachable with a finite
sequence of smaller notations.
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α = ϕ(β1, β2, ..., βm) from Equation 22.

lp1, rep1 and rep2 abbreviate limPlus 1 replace1 and replace2.

Conditions on the least Routines rep1 and rep2 replace 1 or 2
significant non zero parameters in Equation 22. The index and value
parameters, leastOrd to replace (one or two instances) are the parameters
(index least) and to these routines. lp1() avoids fixed points by
nxtOrd (index nxt) adding one to an ordinal with

psuedoCodeLevel > cantorCodeLevel (see
Section 8.3 on fixed points). ret is the result returned.

X nxtOrd leastOrd ret=α.limitElement(i)

FB ignore successor2 ret=rep2(least,leastOrd-1,least+1,1);

for (int j=1; j<i; j++)

ret= rep2(least,leastOrd-1,least+1,ret.lp1());

FD successor successor3 ret=rep1(least,leastOrd-1).lp1();

for (int j=1; j<i; j++)

ret=rep2(nxt, nxtOrd-1, nxt+1,ret.lp1());

FL ignore limit1 ret=rep1(least,leastOrd.limitElement(i).lp1());
FN limit successor3 tmp=rep1(least,leastOrd-1).lp1();

ret=rep2(nxt,nxtOrd.limitElement(i).lp1(),

nxt+1,tmp);

The ‘X’ column gives the exit code from limitElement (see Section 8.2).
1 least significant non zero parameter may or may not be least significant.
2 least significant non zero parameter is not least significant.
3 least significant non zero parameter is least significant.

Table 26: Cases for computing ϕ(β1, β2, ..., βm).limitElement(i)
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7.5 An iterative functional hierarchy

A finite functional hierarchy with an arbitrarily large number of parameters can be expanded
with a limit that is a sequence of finite functionals with an ever increasing number of param-
eters. Using this as the successor operation and taking the union of all hierarchies defined
by a limit ordinal allows iteration of a functional hierarchy up to any recursive ordinal. The
key to defining this iteration is the limitElement member function.

To support this expanded notation the normal form in Equation 22 is expanded as follows.

α = α1n1 + α2n2 + α3n3 + ...+ αknk

αi = ϕγi(β1,i, β2,i, ..., βmi,i) (23)

k ≥ 1, k ≥ i ≥ 1,mi ≥ 1, nk ≥ 1, α1 > α2 > α3 > ... > αk

αi and βi,j are ordinals; i, j, k,mi, nk are integers.

γi, the subscript to ϕ, is the ordinal the functional hierarchy is iterated up to. ϕ0(β1, β2, ..., βm)
= ϕ(β1, β2, ..., βn). ϕ1(0) = ϕ1 is the notation for an infinite union of the ordinals repre-
sented by finite functionals. Specifically it represents the union of ordinals with notations:
ϕ(1), ϕ(1, 0).ϕ(1, 0, 0), ...,. ϕ(1) = ω, ϕ(1, 0) = ε0 and ϕ(1, 0, 0) = Γ0. ϕ0(α) = ϕ(α) = ωα

and ϕγ+1 = ϕγ(1) ∪ ϕγ(1, 0) ∪ ϕγ(1, 0, 0), ...,.
The definition of limitElement for this hierarchy is shown in Table 36. This is an

extension of Table 26. That table and the definition of compare (See Section 9.1) define
the notations represented by Equation 23. The subclass FiniteFuncOrdinal (Section 8)
defines finite functional notations for recursive ordinals. The subclass IterFuncOrdinal

(Section 9) defines iterative functional notations for recursive ordinals.

8 FiniteFuncOrdinal class

FiniteFuncOrdinal class is derived from Ordinal base class. It implements ordinal
notations for the normal form in Equation 22. Each term or αini is defined by an in-
stance of class FiniteFuncNormalElement or CantorNormalElement. Any term that is a
FiniteFuncNormalElement will have member codeLevel set to finiteFuncCodeLevel.

The FiniteFuncOrdinal class should not be used directly to create ordinal notations.
Instead use functions psi or finiteFunctional50. psi constructs notations for the ini-
tial Veblen hierarchy. It requires exactly two parameters (for the single parameter case
use ϕ(α) = ωα). finiteFunctional accepts 3 to 5 parameters. For more than 5 use a
NULL terminated array of pointers to Ordinals or createParameters to create this array.
createParameters can have 1 to 9 parameters all of which must be pointers to Ordinals.

Some examples are show in Table 28. The direct use of the FiniteFuncOrdinal construc-
tor is shown in Table 29. The ‘Ordinal’ column of both tables is created using Ordinal::

texNormalForm which uses the standard notation for εα and Γα where appropriate. These

50In the interactive ordinal calculator the psi function can be use with any number of parameters to define
a FiniteFuncOrdinal. See Section B.11.5 for some examples.
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functions reduce fixed points to their simplest expression and declare an Ordinal instead of
a FiniteFuncOrdinal if appropriate. The first line of Table 28 is an example of this.

FiniteFuncOrdinal can be called with 3 or 4 parameters. For additional parame-
ters, it can be called with a NULL terminated array of pointers to Ordinal notations.
createParameters can be used to create this array as shown in the last line of Table 2851.

8.1 compare member function

Because of virtual functions, there is no need for FiniteFuncOrdinal::compare. The work
of comparing the sequence of terms in Equation 22 is done by Ordinal::compare and rou-
tines it calls. FiniteFuncNormalElement::compare is automatically called for comparing in-
dividual terms in the normal form from Equation 22. It overrides CantorNormalElement::compare.
It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than
its argument term. The βj,i in Equation 22 are represented by the elements of array
funcParameters in C++.

The FiniteFuncNormalElement object compare (or any class member function) is
called from is ‘this’ in C++. The CantorNormalElement argument to compare is trm.
If trm.codeLevel > finiteFuncCodeLevel52 then -trm.compare(*this) is returned. This
invokes the subclass member function associated with the subclass and codeLevel of trm.

CantorNormalElement::compare only needs to test the exponents and if those are equal
the factors of the two normal form terms being compared. An arbitrarily large number
of Ordinal parameters are used to construct a FiniteFuncNormalElement. Thus a se-
ries of tests is required. This is facilitated by a member function CantorNormalElement::

getMaxParameter that returns the largest parameter used in constructing this normal form
term53. If trm.codeLevel < finiteFuncCodeLevel then trm > this only if the maximum
parameter of trm is greater than this. However the value of factor for this must be ig-
nored in making this comparison because trm ≥ ωtrm.getMaxParameter() and this will swamp the
effect of any finite factor.

The following describes FiniteFuncNormalElement::compare with a single
CantorNormalElement parameter trm.

1. If trm.codeLevel < finiteFuncCodeLevel the first (and thus largest) term of the
exponent of the argument is compared to this, ignoring the two factors. If the result
is nonzero that result is returned. Otherwise -1 is returned.

2. If the first term of the maximum parameter of the ordinal notation compare is called
from is, ignoring factors, ≥ trm, return 1.

3. If this ≤ the maximum parameter of trm return -1.

51The ‘&’ character in the last line in Table 28 is the C++ syntax that constructs a pointer to the object
‘&’ precedes.

52 finiteFuncCodeLevel is the codeLevel(see Section 6.4.2) of a FiniteFuncNormalElement.
53For efficiency the constructor of a FiniteFuncNormalElement finds and saves the maximum parameter.

For a CantorNormalElement the maximum parameter is the exponent as this is the only parameter that
can be infinite. The case when the factor is larger than the exponent can be safely ignored.
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Ordinal Calculator code Ordinal
( w^w ) ωω

epsilon( 0) ε0

epsilon( 1) ε1

psi( epsilon( 0), 1 ) ϕ(ε0, 1)
epsilon( 2) ε2

gamma( 0 ) Γ0

gamma( 1 ) Γ1

gamma( 2 ) Γ2

psi( 1, 2, 0 ) ϕ(1, 2, 0)
gamma( w ) Γω
psi( 1, epsilon( 0), w ) ϕ(1, ε0, ω)
psi( 1, 0, 0, 0 ) ϕ(1, 0, 0, 0)
psi( 2, 0, 0 ) ϕ(2, 0, 0)
psi( 3, 0, 0 ) ϕ(3, 0, 0)
psi( w, 1, 0 ) ϕ(ω, 1, 0)
psi( 1, 0, 0, 0 ) ϕ(1, 0, 0, 0)
psi( w + 4, 0, 0 ) ϕ(ω + 4, 0, 0)
psi( 4, 12 ) ϕ(4, 12)
psi( 3, ( w^2 ) + 2 ) ϕ(3, ω2 + 2)
psi( 1, 1, 1 ) ϕ(1, 1, 1)
psi( w, 1, 1 ) ϕ(ω, 1, 1)
psi( 2, 0, 2, 1 ) ϕ(2, 0, 2, 1)
psi( w, 0 ) ϕ(ω, 0)
psi( w, w ) ϕ(ω, ω)
psi( ( w^w ), 0, 0 ) ϕ(ωω, 0, 0)
psi( w, 0, 0 ) ϕ(ω, 0, 0)
psi( w, 0, 0, 0 ) ϕ(ω, 0, 0, 0)
psi( 2, psi( 2, 0 ), epsilon( 0) ) ϕ(2, ϕ(2, 0), ε0)
psi( 3, psi( 2, 0 ), epsilon( 0) ) ϕ(3, ϕ(2, 0), ε0)
psi( 3, psi( 2, 0, 0, 0 ), w ) ϕ(3, ϕ(2, 0, 0, 0), ω)
psi( 3, psi( 2, 0, 0, 0 ), epsilon( 0) ) ϕ(3, ϕ(2, 0, 0, 0), ε0)
psi( 3, psi( 2, 0, 0, 0 ), epsilon( 1) ) ϕ(3, ϕ(2, 0, 0, 0), ε1)
psi( psi( 2, 0 ), gamma( 0 ), epsilon( 0) ) ϕ(ϕ(2, 0),Γ0, ε0)
psi( w, 1 ) ϕ(ω, 1)
psi( w, 5 ) ϕ(ω, 5)
psi( w, 0, 1 ) ϕ(ω, 0, 1)

Table 27: finiteFunctional code examples
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C++ code Ordinal
psi(zero,omega) ωω

psi(one,zero) ε0

psi(one,one) ε1

psi(eps0,one) ϕ(ε0, 1)
psi(one,Ordinal::two) ε2

finiteFunctional(one,zero,zero) Γ0

finiteFunctional(one,zero,one) Γ1

finiteFunctional(one,zero,Ordinal::two) Γ2

finiteFunctional(one,Ordinal::two,zero) ϕ(1, 2, 0)
finiteFunctional(one,zero,omega) Γω
finiteFunctional(one,eps0,omega) ϕ(1, ε0, ω)
finiteFunctional(one,zero,zero,zero) ϕ(1, 0, 0, 0)
finiteFunctional(createParameters(

&one,&zero,&zero,&zero,&zero)) ϕ(1, 0, 0, 0, 0)

Table 28: finiteFunctional C++ code examples

C++ code Ordinal
const Ordinal * const params[] =

{&Ordinal::one,&Ordinal::zero,0};
const FiniteFuncOrdinal eps0(params); ε0

Ordinal eps0 alt = psi(1,0); ε0

const FiniteFuncOrdinal eps0 alt2(1,0); ε0

const FiniteFuncOrdinal gamma0(1,0,0); Γ0

const FiniteFuncOrdinal gammaOmega(omega,0,0); ϕ(ω, 0, 0)
const FiniteFuncOrdinal gammax(gammaOmega,gamma0,omega); ϕ(ϕ(ω, 0, 0),Γ0, ω)
const FiniteFuncOrdinal big(1,0.0,0); ϕ(1, 0, 0, 0)

Table 29: FiniteFuncOrdinal C++ code examples
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If the above is not decisive FiniteFuncNormalElement::compareFiniteParams is called
to compare in sequence the number of parameters and then the size of each parameter in
succession starting with the most significant. If any difference is encountered that is returned
as the result otherwise the result depends on the relative size of the two factors.

8.2 limitElement member function

As with compare there is no need for FiniteFuncOrdinal::limitElement. The Ordinal

member function is adequate. FiniteFuncNormalElement::limitElement overrides
CantorNormalElement::limitElement described in Section 6.3. Thus it takes a single inte-
ger parameter. Increasing values for this argument yield larger ordinal notations as output.
The union of the ordinals represented by the outputs for all integer inputs is equal to the or-
dinal represented by the FiniteFuncNormalElement class instance limitElement is called
from. This will be referred to as the input term to limitElement.

Ordinal::limitElement copies all but the last term of the normal form of its input to
the output it generates. For both Ordinals and FiniteFuncOrdinals this is actually done
in OrdinalImpl::limitElement54 The last term of the result is determined by a number of
conditions on the last term of the input in FiniteFuncNormalElement::limitElement.

Tables 19 and 26 fully define FiniteFuncOrdinal::limitElement. The ’X’ column
in Table 26 connect each table entry to the section of code preceding RETURN1. This is a
debugging macro which has a quoted letter as a parameter. This letter is an exit code that
matches the X column in Table 26. The C++ pseudo code in the table uses shorter variable
names and takes other shortcuts, but accurately reflects the logic in the source code.

54OrdinalImpl is an internal implementation class that does most of the work for instances of an Ordinal.

74



Symbols used in this table and Table 34
lp1 limPlus 1 add a to a possible fixed point
le limitElement

lNz leastNonZero index of least significant nonzero βi
nlNz nextLeastNonZero index of next to the least significant nonzero βi
rep1 replace1 replace 1 βi parameter at specified index with specified value
rep2 replace2 replace 2 βi parameters at specified indices with specified values
Rtn return what is returned from code fragment

limitElement does all its work in limitElementCom or lower level
routines. It has exit code AA when it calls CantorNormalElement(n)

and exit code AB when it calls limitElementCom. See Section 7.4 for
a description of exit codes in the X column.

α is from Expression 20, α = ϕ(β1, β2, ..., βn).
X LimitTypeInfo α.le(n)

b=rp2(lNz,βlNz-1,lNz+1,1);
for (i=1; i<n;i++)

FB paramSuccZero b=rp2(lNz,βlNz-1,lNz+1,b); Rtn b

b=rep1(sz-1,βsz−1 − 1).;
for (i=1;i<n;i++) b=rep2

FD paramsSucc (nlNz,βnlNz-1,nlNz+1,b.lp1); Rtn b

FL paramLimit rep1(lnZ,βlNz.le(n))
b=rep1(sz-1,βsz−1-1); rep2(nlNz,

FN paramNxtLimit βnlNz.le(n),nlNz+1,b.lp1)
See Table 31 for examples

Table 30: FiniteFuncNormalElement::limitElementCom cases
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8.3 fixedPoint member function

FiniteFuncOrdinal::fixedPoint is used by finiteFunctional to create an instance of
FiniteFuncOrdinal in a normal form (Equation 22) that is the simplest expression for
the ordinal represented. The routine has an index and an array of pointers to Ordinal

notations as input. This array of notations contains the parameters for the notation being
constructed. This function determines if the parameter at the specified index is a fixed
point for a FiniteFuncOrdinal created with these parameters. If it is, true is returned
and otherwise false. The routine that calls this routine selects the largest parameter in
the array of Ordinal pointers as the one to check (the value of the index parameter). It
then checks to see if all less significant parameters are 0. If not this cannot be a fixed point.
fixedPoint is only called if this condition is met.

Section 6.4.1 defines the codeLevel assigned to a CantorNormalElement. From this a
psuedoCodeLevel for an Ordinal is obtained by calling Ordinal member function with that
name. psuedoCodeLevel returns cantorCodeLevel unless the ordinal notation normal form
has a single term or CantorNormalElement with a factor of 1. In that case the codeLevel

of that term is returned. This is helpful in evaluating fixed points because a parameter with
a psuedoCodeLevel at cantorCodeLevel cannot be a fixed point.

If the parameter selected has psuedoCodeLevel ≤ cantorCodeLevel, false is returned.
If the maximum parameter psuedoCodeLevel > finiteFuncCodeLevel, true is returned.
Otherwise a FiniteFuncOrdinal is constructed from all the parameters except that selected
by the index which is set to zero55. If this value is less than the maximum parameter, true
is returned and otherwise false.

8.4 operators

FiniteFuncOrdinal operators are extensions of the Ordinal operators defined in Section 6.4.
No new code is required for addition.

8.4.1 multiplication

The code that combines the terms of a product for class Ordinal can be used without change
for FiniteFuncOrdinal. The only routines that need to be overridden are those that take the
product of two terms, i. e. two CantorNormalElements with at least one of these also being
a FiniteFuncNormalElement. The two routines overridden are multiply and multiplyBy.
Overriding these insures that, if either operand is a FiniteFuncNormalElement subclass of
CantorNormalElement, the higher level virtual function will be called.

The key to multiplying two terms of the normal form representation, at least one of
which is at finiteFuncCodeLevel, is the observation that every normal form term at
finiteFuncCodeLevel with a factor of 1 is a fixed point of ωx, i. e. a = ωa. Thus
the product of two such terms, a and b is ωa+b. Further the product of term a at this level
and b = ωβ for any term b at cantorCodeLevel is ωa+β. Note in all cases if the first term

55If there is only one nonzero parameter (which must be the most significant), then the parameter array is
increased by 1 and the most significant parameter is set to one in the value to compare with the maximum
parameter.
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has a factor other than 1 it will be ignored. The second term’s factor will be applied to
the result.

Multiply is mostly implemented in FiniteFuncNormalElement::doMultiply which is a
static function56 that takes both multiply arguments as operands. This routine is called
by both multiply and multiplyBy. It first checks to insure that neither argument exceeds
finiteFuncCodeLevel and that at least one argument is at finiteFuncCodeLevel. The
two arguments are called op1 and op2.

Following are the steps taken in FiniteFuncNormalElement::doMultiply. s1 and s2

are temporary variables.

1. If op1 is finite return a copy of op2 with its factor multiplied by op1 and return that
value.

2. If op1 is at cantorCodeLevel assign to s1 the exponent of op1 otherwise assign to s1

a copy of op1 with factor set to 1.

3. If op2 is at cantorCodeLevel assign to s2 the exponent of op2 otherwise assign to s2

a copy of op2 with factor set to 1.

4. Add s1 and s2 to create newExp.

5. If newExp has a single term and the codeLevel of that term is ≥
finiteFuncCodeLevel and the factor of that term is 1 then return the value of the
single term of newExp.

6. Create and return a CantorNormalElement with exponent equal to newExp and factor

equal to the factor or op2.

Some examples are shown in Table 32.

56A C++ static function is a member function of a class that is not associated with a particular instance
of that class.
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8.4.2 exponentiation

Exponentiation has a structure similar to multiplication. The only routines that need to be
overridden involve ab when both a and b are single terms in a normal form expansion. The
routines overridden are toPower and powerOf. Most of the work is done by static mem-
ber function FiniteFuncNormalElement::doToPower which takes both parameters as argu-
ments. The two routines that call this only check if both operands are at cantorCodeLevel
and if so call the corresponding CantorNormalElement member function.

The key to the algorithm is again the observation that every normal form term at
finiteFuncCodeLevel with a factor of 1 is a fixed point of ωx, i. e. a = ωa. The value of
factor can be ignored in the base part of an exponential expression where the exponent is
a limit ordinal. All infinite normal form terms are limit ordinals. Thus ab where both a and
b are at finiteFuncCodeLevel and b ≤ a is ωab or equivalently ωω

a+b
which is the normal

form result. If the base, a, of the exponential is at cantorCodeLevel then a = ωα and the
result is ωαb.

Following is a more detailed summary of FiniteFuncNormalElement::doToPower. This
summary describes how baseexpon is computed.

• If (base < expon) ∧ (expon.factor = 1) ∧ (expon.expTerm()57 == true) then expon

is returned.

• p1 = base.codeLevel ≥ finiteFuncCodeLevel ?base : base.exponent58

• newExp = p1 × expon

• If newExp has a single term with a factor of 1 and the codeLevel of that term is ≥
finiteFuncCodeLevel then return newExp because it is a fixed point of ωx.

• Otherwise return ωnewExp.

57CantorNormalElement::expTerm returns true iff the term it is called from is at cantorCodeLevel, has
a factor or 1, has an exponent with a single term and such that exponent.expTerm() returns true.

58In C++ ‘boolean expression ? optionTrue : optionFalse’ evaluates to ‘optionTrue’ if ‘boolean expression’
is true and ‘optionFalse’ otherwise
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See Table 30 for symbols used here.
α is from Expression 20, α = ϕ(β1, β2, ..., βn).

X LimitTypeInfo α.le(n)

b=rep1(sz-1,βsz−1-1); Rtn

OFA paramNxtLimit rep2(nlNz,βnlNz.le(n),nlNz+1,b.lp1)
OFB paramLimit rep1(lnZ,βlNz.le(n))

See Table TO BE ADDED for examples

Table 34: FiniteFuncNormalElement::limitOrdCom

8.5 limitOrd member function

limitOrd is analogous to limitElement but it supports ordinals ≥ ωCK1 , the ordinal of the
recursive ordinals. We have do not have notations for such ordinals at the code level discusses
up to this point. This routine will only be used in conjunction with notations defined in
later sections. limitOrdCom is a subroutine called by limitOrd to do most of the work and
structured in such a way that it can be used by notations at higher code level. It creates
virtual objects that can automatically fill in parameters from higher level objects that call
limitOrdCom.

9 IterFuncOrdinal class

C++ class IterFuncOrdinal is derived from class FiniteFuncOrdinal which in turn is
derived from class Ordinal. It implements the iterative functional hierarchy described in
Section 7.5. It uses the normal form in Equation 23. Each term of that normal form, each
αini, is represented by an instance of class IterFuncNormalElement or one of the classes
this class is derived from. These are FiniteFuncNormalElement and CantorNormalElement.
Terms that are IterFuncNormalElements have a codeLevel of iterFuncCodeLevel.

The IterFuncOrdinal class should not be used directly to create ordinal notations.
Instead use function iterativeFunctional59. This function takes two arguments. The
first gives the level of iteration or the value of γi in Equation 23. The second gives a NULL

terminated array of pointers to Ordinals which are the βi,j in Equation 23. This second
parameter is optional and can be created with function createParameters described in
Section 8. Some examples are shown in Table 35.

iterativeFunctional creates an Ordinal or FiniteFuncOrdinal instead of an
IterFuncOrdinal if appropriate. The first three lines of Table 35 are examples. It also
reduces fixed points to their simplest possible expression. The last line of the table is an
example.

59The interactive ordinal calculator supports a TeX like syntax. To define ϕa(b, c, d) write psi {a}(b,c,d).
Any number of parameters in parenthesis may be entered or the parenthesis may be omitted. See Sec-
tion B.11.6 for examples.
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‘cp’ stands for function createParameters

C++ code Ordinal
iterativeFunctional(zero,cp(&one)) ω
iterativeFunctional(zero,cp(&one,&zero)) ε0

iterativeFunctional(zero,cp(&one,&one,&zero)) ϕ(1, 1, 0)
iterativeFunctional(one) ϕ1

iterativeFunctional(one,cp(&one)) ϕ1(1)
iterativeFunctional(one,cp(&one,&omega)) ϕ1(1, ω)
iterativeFunctional(one,cp(&one,&omega,&zero,&zero)) ϕ1(1, ω, 0, 0)
iterativeFunctional(omega,cp(&one,&omega,&zero,&zero)) ϕω(1, ω, 0, 0)
iterativeFunctional(omega) ϕω
iterativeFunctional(one,cp(&iterativeFunctional(omega))) ϕω

Table 35: iterativeFunctional C++ code examples

9.1 compare member function

IterFuncNormalElement::compare supports one term in the extended normal form in Equa-
tion 23. IterFuncNormalElement::compare with a single CantorNormalElement argument
overrides FiniteFuncNormalElement::compare with the same argument (see Section 8.1).
It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its
argument term.

The IterFuncNormalElement object compare (or any class member function) is called
from is this in C++. The CantorNormalElement argument to compare is trm. If trm.codeLevel
> iterFuncCodeLevel then -trm.compare(*this) is returned. This invokes the subclass
member function associated with the codeLevel of trm.

This compare is similar to that for class FiniteFuncOrdinal described in Section 8.1.
The main difference is additional tests on γi from Equation 23.

If trm.codeLevel < iterFuncCodeLevel then trm > this only if the maximum param-
eter of trm is greater than this. However the values of factor must be ignored in making
this comparison because trm ≥ ωtrm.getMaxParameter() and this will swamp the effect of any finite
factor.

Following is an outline of IterFuncNormalElement::compare with a CantorNormalElement
parameter trm.

1. If trm.codeLevel < iterFuncCodeLevel, this is compared with the first (largest)
term of the maximum parameter of the argument (ignoring the two factors). If the
result is ≤ 0, -1 is returned. Otherwise 1 is returned.

2. this is compared to the maximum parameter of the argument. If the result is less
than than or equal -1 is returned.

3. The maximum parameter of this is compared against the argument trm. If the result
is greater or equal 1 is returned.

4. The function level (functionLevel) (γi from Equation 23) of this is compared to the
functionLevel of trm. If the result is nonzero it is returned.
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If no result is obtained IterFuncNormalElement::compareFiniteParams is called to
compare in sequence the number of parameters of the two terms and then the size of each
argument in succession starting with the most significant. If any difference is encountered
that is returned as the result. If not the difference in the factors of the two terms is
returned.

9.2 limitElement member function

IterFuncNormalElement::limitElement overrides CantorNormalElement::limitElement
described in Section 6.3 and FiniteFuncNormalElement::limitElement described in Sec-
tion 8.2 This function takes a single integer parameter. Increasing values for this argument
yield larger ordinal notations as output. The union of the ordinals represented by the out-
puts for all integer inputs is equal to the ordinal represented by the IterFuncNormalElement
class instance limitElement is called from. This will be referred to as the input to
limitElement.

Ordinal::limitElement processes all but the last term of the normal form of the result
by copying it unchanged from the input Ordinal. The last term of the result is determined by
a number of conditions on the last term of the input. This is what IterFuncNormalElement::
limitElement does.

If there are two or more β parameters in ϕγ(β1, β2, ..., βm).limitElement(n) then Ta-
ble 26 describes the result with γ unchanged. Table 36 describes the cases with at most
one β parameter. The processing is done by IterFuncOrdinal::limitElementCom which
is called by IterFuncNormalElement::limitElementCom.60 The ‘Com suffix indicates that
these routines can be used by higher classes just as as IterFuncNormalElement routines can
call FiniteFuncNormalElement::limitElementCom. This routine creates its return value
with a virtual function createVirtualOrdImpl which is overridden when it is called from
a subclass object. The rep1 and rep261 of Table 26 also calls this virtual function to create
a result.

60The ’X’ column in Tables 26, 36 and others connects table entries to a section of code preceding a return.
The return is implemented with a macro that has an exit code string as a parameter. If debugging mode
is enabled for the appropriate functions these exit codes are displayed. For compare functions use setDbg

compare and for limitElement or limitOrd related functions use setDbg limit in the ordinal calculator.
In interactive mode exit codes are displayed by the member function .lec.

61The name of these functions in the C++ source are replace1 and replace2.
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Abbreviations used in this table
isSc isSuccessor true iff object is successor
lp1 limPlus 1 add a to a possible fixed point
le limitElement

sz size number of β parameters
Rtn return what is returned from code fragment

α is a notation for a single term in Equation 23
ϕγ(β1, β2, ..., βmi

X Condition(s) LimitTypeInfo α.le(n)

paramSucc

paramSuccZero

paramsSucc

paramLimit FiniteFuncNormalElement::

IF at least 1 βi(i > 1) is nonzero paramNxtLimit limitElementCom(n)

b=ϕγ−1;

Rtn ϕγ−1(b.lp1, 0, ..., 0)
IG γ.isSc ∧ sz == 0; functionSucc (n-1 zeros)

b=ϕγ(β1 − 1);
Rtnϕγ−1(b.lp1, 0, ..., 0)

II γ.isSc ∧ β1.isSc ∧ sz == 1 functionNxtSucc (n-1 zeros)
IJ γ.isLm ∧ sz == 0 functionLimit ϕγ.le(n)

IK κ.isLm ∧ sz == 1 ∧ β1.isSc functionNxtLimit ϕγ.le(n)(ϕγ(β0 − 1).lp1)
See Table for examples

Table 36: IterFuncNormalElement::limitElementCom cases
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9.3 fixedPoint member function

IterFuncOrdinal::fixedPoint is used by iterativeFunctional to create an instance of
an IterFuncOrdinal in a normal form (Equation 23) that is the simplest expression for
the ordinal represented. The routine has the following parameters for a single term in
Equation 23.

• The function level, γ.

• An index specifying the largest parameter of the ordinal notation being constructed.
If the largest parameter is the function level the index has the value iterMaxParam

defined as −1 in an enum.

• The function parameters as an array of pointers to Ordinals. These are the βj in a
normal form term.

in Equation 23.

This function determines if the parameter at the specified index is a fixed point for
an IterFuncOrdinal created with the specified parameters. If it is, true is returned and
otherwise false. The routine that calls this routine selects the largest parameter from the
function level (γ) and the array of Ordinal pointers (βj) as the one to check and indicates
this in the index parameter, The calling routine checks to see if all less significant parameters
are 0. If not this cannot be a fixed point. Thus fixedPoint is called only if this condition
is met.

Section 8.3 describes psuedoCodeLevel. If the psuedoCodeLevel of the selected param-
eter is less than or equal cantorCodeLevel, false is returned. If that level is greater than
iterFuncCodeLevel, true is returned. The most significant parameter, the function level,
cannot be a fixed point unless it has a psuedoCodeLevel > iterFuncCodeLevel. Thus,
if the index selects the the function level, and the previous test was not passed false is
returned. Finally an IterFuncOrdinal is constructed from all the parameters except that
selected by the index. If this value is less than the selected parameter, true is returned and
otherwise false.

9.4 operators

The multiply and exponential routines for FiniteFuncOrdinal and Ordinal and the classes
for normal form terms CantorNormalElement and FiniteFuncNormalElement do not have
functions that need to be overridden to support IterFuncOrdinal multiplication and expo-
nentiation. The exceptions are utilities such as that used to create a copy of normal form
term IterFuncNormalElement with a new value for factor.

Some multiply examples are shown in Table 38. Some exponential examples are shown
in Table 39.
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α β α× β
ϕ1 ϕ1 ω(ϕ12)

ϕ1 ϕ3 ϕ3

ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1 ϕ1(ω, 1) ϕ1(ω, 1)
ϕ1 ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ω(ϕ12)

ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ω(ϕ12)

ϕ3 ϕ1 ωϕ3+ϕ1

ϕ3 ϕ3 ω(ϕ32)

ϕ3 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ3 ϕ1(ω, 1) ωϕ3+ϕ1(ω,1)

ϕ3 ϕ1(ω, 1, 0) + ϕ1 ωϕ3+ϕ1(ω,1,0) + ωϕ3+ϕ1

ϕ3 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ωϕ3+ϕ1(ω,1,0) + ωϕ3+ϕ1

ϕ3(1, 0, 0) ϕ1 ωϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕ3 ωϕ3(1,0,0)+ϕ3

ϕ3(1, 0, 0) ϕ3(1, 0, 0) ω(ϕ3(1,0,0)2)

ϕ3(1, 0, 0) ϕ1(ω, 1) ωϕ3(1,0,0)+ϕ1(ω,1)

ϕ3(1, 0, 0) ϕ1(ω, 1, 0) + ϕ1 ωϕ3(1,0,0)+ϕ1(ω,1,0) + ωϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ωϕ3(1,0,0)+ϕ1(ω,1,0) + ωϕ3(1,0,0)+ϕ1

ϕ1(ω, 1) ϕ1 ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕ3 ϕ3

ϕ1(ω, 1) ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1(ω, 1) ϕ1(ω, 1) ω(ϕ1(ω,1)2)

ϕ1(ω, 1) ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ3 ϕ3

ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωϕ1(ω,1,0)+ϕ1(ω,1)

ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ω(ϕ1(ω,1,0)2) + ωϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ω(ϕ1(ω,1,0)2) + ωϕ1(ω,1,0)+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3 ωϕε0+ϕ3

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ωϕε0+ϕ3(1,0,0)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωϕε0+ϕ1(ω,1)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ϕ1(ω,1,0) + ωϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ω(ϕε02) + ωϕε0+ϕ1(ω,1,0) + ωϕε0+ϕ1

Table 38: IterFuncOrdinal multiply examples
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α β αβ

ϕ1 ϕ1 ωω
(ϕ12)

ϕ1 ϕ3 ϕ3

ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1 ϕ1(ω, 1) ϕ1(ω, 1)

ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωϕ1(ω,1,0)+ω(ϕ12)

ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ϕ1(ω,1,0)+ω(ϕ12)

ϕ3 ϕ1 ωω
ϕ3+ϕ1

ϕ3 ϕ3 ωω
(ϕ32)

ϕ3 ϕ3(1, 0, 0) ϕ3(1, 0, 0)

ϕ3 ϕ1(ω, 1) ωω
ϕ3+ϕ1(ω,1)

ϕ3 ϕ1(ω, 1, 0) + ϕ1 ωω
ϕ3+ϕ1(ω,1,0)+ωϕ3+ϕ1

ϕ3 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ωϕ3+ϕ1(ω,1,0)+ωϕ3+ϕ1

ϕ3(1, 0, 0) ϕ1 ωω
ϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕ3 ωω
ϕ3(1,0,0)+ϕ3

ϕ3(1, 0, 0) ϕ3(1, 0, 0) ωω
(ϕ3(1,0,0)2)

ϕ3(1, 0, 0) ϕ1(ω, 1) ωω
ϕ3(1,0,0)+ϕ1(ω,1)

ϕ3(1, 0, 0) ϕ1(ω, 1, 0) + ϕ1 ωω
ϕ3(1,0,0)+ϕ1(ω,1,0)+ωϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ωϕ3(1,0,0)+ϕ1(ω,1,0)+ωϕ3(1,0,0)+ϕ1

ϕ1(ω, 1) ϕ1 ωω
ϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕ3 ϕ3

ϕ1(ω, 1) ϕ3(1, 0, 0) ϕ3(1, 0, 0)

ϕ1(ω, 1) ϕ1(ω, 1) ωω
(ϕ1(ω,1)2)

ϕ1(ω, 1) ϕ1(ω, 1, 0) + ϕ1 ωϕ1(ω,1,0)+ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ϕ1(ω,1,0)+ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωω
ϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ3 ϕ3

ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)

ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωω
ϕ1(ω,1,0)+ϕ1(ω,1)

ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωω
(ϕ1(ω,1,0)2)+ωϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ω(ϕ1(ω,1,0)2)+ωϕ1(ω,1,0)+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωω
ϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3 ωω
ϕε0+ϕ3

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ωω
ϕε0+ϕ3(1,0,0)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωω
ϕε0+ϕ1(ω,1)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωω
ϕε0+ϕ1(ω,1,0)+ωϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωω
(ϕε02)+ωϕε0+ϕ1(ω,1,0)+ωϕε0+ϕ1

Table 39: IterFuncOrdinal exponential examples
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10 Countable admissible ordinals

The first admissible ordinal is ω. ωCK1 (the Church-Kleene ordinal) is the second. This latter
is the ordinal of the recursive ordinals. For simplicity it will be written as ω1 (see note 5).
Gerald Sacks proved that the countable admissible ordinals are those defined like ω1, but
using Turing Machines with oracles (see Note 9)[34]. For example ω2 is the set of all ordinals
whose structure can be enumerated by a TM with an oracle that defines the structure of all
recursive ordinals.

One can think of these orderings in terms of well founded recursive functions on integers
and subsets of integers. These subsets are neither recursive nor recursively enumerable but
they are defined by properties of recursive processes. A first order well founded process is
one that accepts an indefinite number of integer inputs and halts for every possible sequence
of these inputs. Recursive ordinals are the well orderings definable by such a process. This
definition can be iterated by defining a process of type x + 1 to be well founded for all
sequences of processes of type x. (Type 0 is the integers.) This can be iterated up to any
countable ordinal.

The admissible ordinals are a very sparse set of limit ordinals. In this document admissi-
ble level ordinals are all ordinals ≥ ω1, the ordinal of the recursive ordinals. The ‘admissible
index’ refers to the κ index in ωκ.

10.1 Generalizing recursive ordinal notations

The ordinals definable in the countable admissible hierarchy can be defined as properties of
recursive processes on non recursively enumerable domains. In turn these domains are defined
as properties of recursive routines operating on lower level similarly defined domains. This
continues down to the the set of notations for recursive ordinals. This suggest an analogue to
recursive ordinal notations for ordinal larger than ω1. This analog involves recursive function
on finite symbols from a defined, but not recursively enumerable, domain. The idea is that
a complete systems is the limit of an infinite sequences of extensions. The system can never
be complete but it should be defined so that it can be expanded without limit.

Two reasons for exploring this hierarchy are its usefulness in expanding the hierarchy of
recursive ordinals and its relevance to nondeterministic recursive processes. This approach
can expand notation systems for recursive ordinals though a general form of ordinal collaps-
ing. Modified names of admissible level ordinals are used to name larger recursive ordinals.
We can always do this no matter how far we extend the hierarchy because the limit of the
well orderings fully definable at any finite extension must be recursive. This follows because
there is a recursive enumeration of all defined notations and a recursive process for deciding
the relative size of any two defined notations.

There are formal system consistency problems or, equivalently, TM halting problems
decidable by a specific recursive ordinal and not by smaller ones. However every halting
problem is decidable by an ordinal < ω1, the ordinal of the recursive ordinals. Larger
countable ordinals can decide questions that may be of relevance to finite beings in a divergent
potentially infinite universe. For example, consider a universe that is finite at any time but
potentially infinite and recursively deterministic. The question will a species62 have an

62A species, in contrast to an individuals direct descendants, can in theory have an infinite number of
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infinite chain of descendant species is not in general decidable by a specific recursive ordinal
because it requires quantification over the real to state. If we are concerned with questions
that extend into an indefinite and possibly divergent future, the mathematics of countable
admissible ordinals becomes essential.

10.2 Notations for Admissible level ordinals

Finite notation systems for recursive ordinals can always be expanded to represent larger
ordinals. At the admissible level they can be expanded to partially fill gaps between pairs of
definable ordinals. The following notations represent larger ordinals at all defined levels of
the countable admissible hierarchy starting with the recursive ordinals. They also partially
fill gaps between ordinal notations above the level of the recursive ordinals.

The AdmisNormalElement term of an AdmisLevOrdinal is one of the following forms.

ωκ,γ(β1, β2, ..., βm) (24)

ωκ[η] (25)

[[δ]]ωκ[η] (26)

[[δ]]ωκ,γ(β1, β2, ..., βm) (27)

[[δ]]ωκ[[η]] (28)

The normal form notation for one term of an admissible level ordinal is given in expressions
24 to 28. These expressions add a parameter for the admissible index and a parameter in
square brackets which signifies a smaller ordinal then the same term without an appended
square bracketed parameter. There is a third option using double square brackets, [[]] as
both a prefix and suffix to facilitate a form or collapsing described in Section 10.5.

The rest of the expression s the same as that for an IterFuncOrdinal shown in Expres-
sion 23 except ϕ is replaced with ω to signify that this is an admissible level notation. The
C++ class for a single term of an admissible level ordinal notation is AdmisNormalElement
and the class for an admissible level ordinal notation is AdmisLevOrdinal.

The γ and βi parameters are defined as they are in expression 23. The existence of
any of these parameters defines a larger ordinal then the same notation without them. In
contrast to every parameter defined so far, the η parameter drops down to a lower level
ordinal to both fill gaps in the notation system and to partially serve the defining function
that limitElement has for recursive ordinal notations. These are explained in the next
section. For example ω1 is the ordinal of the recursive ordinals but ω1[α] is a recursive
ordinal necessarily smaller than ω1 but larger than any recursive ordinal previously defined.
The η parameter is only defined when γ and βi are zero and κ is a successor.

The δ parameter, like the η parameter, defines a smaller ordinal than the same expression
without this parameter. Any expression that begins with [[δ]] will be < ωδ no matter how
large other parameters may be. Because ωκ with κ as a limit is defined to be

⋃
α<κ ωα it is

problematic to define what is meant by a δ prefix that is a limit. Thus δ must always be a

direct descendant species. Thus this question requires quantification over the reals to state.
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successor ≤ κ. In addition if δ = κ and the single bracketed [η] suffix occurs, the δ prefix
has no affect and is deleted.

The relationship between the [[δ]] prefix and other parameters requires elaboration. Every
parameter of an ordinal with a δ prefix has the global value of [[δ]] applied to it unless it has
a smaller [[δ]] prefix. A larger internal value for δ, as part of a parameter, is not allowed.

10.3 Typed parameters and limitOrd

Notations defined in previous sections give the structure of ordinals through the limitElement
and compare member functions. For admissible level ordinals, compare is adequate, although
it is now operating on an incomplete domain. However limitElement can no longer define
how a limit ordinal is built up from smaller ordinals. Admissible level notations for limit
ordinals cannot in general be defined as the limit of ordinals represented by a recursive
sequence of notations for smaller ordinals.

limitOrd, and isValidLimitOrdParam are defined as an analog to the limitElement

Ordinal member function.
α =

⋃
n∈ω α.limitElement(n)

and
α =

⋃
β : α.isValidLimitOrdParam(β) α.limitOrd(β)63.

The system is designed so that the notations, β, that satisfy ω1.isValidLimitOrdParam(β)
can be expanded to include notations for any recursive ordinal. In general the notations,
β, satisfying ωα.isValidLimitOrdParam(β) should be expandable to represent any ordinal
< ωα.

There are three functions used by isValidLimitOrdParam: limitType, maxLimitType
and embedType 64. Successor ordinal notations have limitType = 0 or nullLimitType. No-
tations for recursive limit ordinals represent the union of ordinals represented by a recursive
sequence of notations for smaller ordinals. These have 1 (or integerLimitType) as their
limitType. ω1.limitType = 2 or recOrdLimitType. ωn.limitType = n+ 1. For infinite α,
ωα.limitType = α. α.maxLimitType is the maxima of β.limitType for β ≤ α. For ordinals,
α without a [[δ]] prefix: α.isValidLimitOrdParam(β) ≡ α.limitType > β.maxLimitType.
Any ordinal with prefix [[δ]] must be < ωδ. This puts upper bounds on both limitType and
maxLimitType.

embedType returns a null pointer and is ignored unless δ = κ in [[δ]]ωδ.... It is only used
to facilitate ordinal collapsing as discussed in Section 11.3. α.isValidLimitOrdParam(β)
first tests if β.maxLimitType() < α.limitType(). If this is true it return true. If they are
equal and embedType65 is not null the boolean expression α > β is returned.

All of these new member functions are recursive in the domain of defined ordinal nota-
tions. Because this domain is incomplete at and beyond some recursive ordinal these func-
tions need to be expanded as the notations are expanded. In C++ that can be accomplished

63The equalities refer to the notations represented by the ordinal notations.
64limitOrd, limitType, and maxLimitType are all member functions in the ordinal calculator. In addi-

tion embedType, if it is not empty, plus the other functions mentioned have their values displayed by the
limitExitCode or alternatively the lec ordinal calculator member function.

65embedType if non null is a pointer to an ordinal one greater than limitType but this value does not
need to be tested in .isValidLimitOrdParam,
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nullLimitType=0, integerLimitType=1, recOrdLimitType=2

α α.limitType α.maxLimitType

integer ≥ 0 0 0
infinite recursive ordinal (< ω1) ≤ 1 1
recursive limit ordinal 1 1
ω1 ≤ α < ω2 ≤ 2 2
ωn ≤ α < ωn+1 ≤ n+ 1 n+1
α = ωω 1 ω
ωω+5 ≤ α < ωω+6 ≤ ω + 5 ω + 5
α = ωω1 2 ω1

ωω1+1 ≤ α < ωω1+2 ≤ ω1 + 1 ω1 + 1

Table 40: limitType and maxLimitType examples

by making them virtual functions. The notation system should be expanded so the existing
limitOrd function continues to work for parameters that meet the isValidLimitOrdParam

constraint.
For example the limitOrd function applied to the notation for the Church-Kleene ordinal

must be able to operate on an expanded notation system that could include a notation for any
recursive ordinal. Because ω1.limitType = 2 and maxLimitType for any recursive ordinal
is 1 or 0, there is a trivial way to do this. Define ω1.limitOrd to be the identity function
that accepts any notation for a recursive ordinal as input and outputs its input. Then the
union of the outputs for inputs satisfying this criteria is ω1. This is not the way limitOrd

is defined. It is used to define new ordinals that help to fill the gaps between admissible
levels, but this illustrates how limitOrd is able to partially provide the defining function
that limitElement serves for recursive ordinal notations.

Table 40 shows the value of limitType and maxLimitType over ranges of ordinal values.
The explicitly typed hierarchy in this document is a bit reminiscent of the explicitly typed
hierarchy in Whitehead and Russell’s Principia Mathematica[36].

The idea of the δ parameter is to embed the notation system within itself in complex
ways a bit like the Mandelbrot set[26] is embedded in itself. Table 41 gives the equations
that define the the η suffix with single and double square brackets. The top two line of this
table define [[δ]]ωκ[η] and [[δ]]ωκ[[η]] for η a limit in an obvious way. A single bracketed suffix
(as in the first case) requires that δ 6= κ. In all cases δ ≤ κ.

The rest of the table deals with η a successor. For various values of δ, κ and ([η] or [[η]])
the table defines α0 and αi such that either

[[δ]]ωκ[η] =
⋃
i∈ω

αi

or
[[δ]ωκ[[η]] =

⋃
i∈ω

αi.

The Rf column of this table refers to lines in table 42 with examples.
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For η a limit [[δ]]ωκ[η] =
⋃
µ∈η[[δ]]ωκ[µ]

and [[δ]]ωκ[[η]] =
⋃
µ∈η[[δ]]ωκ[[µ]]

Sp(α) says α is a successor > 1.
κ must be a successor with nonzero η.

lp1 means limPlus 1 which avoids a fixed point by adding 1
if psuedoCodeLevel > cantorCodeLevel (Section 8.3).
The Rf column is the line in Table 42 of an example.

For δ, κ and η (satisfying η) this table defines α0 and αi
such that [[δ]]ωκ[η] =

⋃
i∈ω αi or [[δ]]ωκ[[η]] =

⋃
i∈ω αi

δ κ η α0 αi+1 Rf

0 1 [1] ω ϕαi.lp1 1
0 Sp(κ) [1] ωκ−1 ωκ−1,αi.lp1 10

δ = κ κ [η] Not allowed: [η] requires δ < κ
δ = κ κ [[1]] ω ωκ[αi] 11
δ = κ κ [[η > 1]] [[δ]]ωκ[[η − 1]] ωκ−1[αi] 3
δ < κ κ [1] [[δ]]ωκ−1 [[δ]]ωκ−1,αi 8
δ < κ κ [[1]] ω [[δ]]ωκ[αi] 6
δ < κ κ [η > 1] [[δ]]ωκ[η − 1] [[δ]]ωκ,αi 5
δ < κ κ [[η > 1]] [[δ]]ωκ[[η − 1]] [[δ]]ωκ[αi] 7

Table 41: Equations for [[δ]], [η] and [[η]]

Rf Ordinal limitElements

1 2 3

1 ω1[1] ω ϕω ϕϕω+1

2 [[1]]ω1[[1]] ω ω1[ω] ω1[ω1[ω]]
3 [[1]]ω1[[3]] [[1]]ω1[[2]] ω1[[[1]]ω1[[2]]] ω1[ω1[[[1]]ω1[[2]]]]
4 [[1]]ω1 [[1]]ω1[[1]] [[1]]ω1[[2]] [[1]]ω1[[3]]
5 [[1]]ω2[5] [[1]]ω2[4] [[1]]ω1,[[1]]ω2[4]+1 [[1]]ω1,[[1]]ω1,[[1]]ω2[4]+1+1

6 [[1]]ω2[[1]] ω [[1]]ω2[ω] [[1]]ω2[[[1]]ω2[ω]]
7 [[1]]ω2[[4]] [[1]]ω2[[3]] [[1]]ω2[[[1]]ω2[[3]]] [[1]]ω2[[[1]]ω2[[[1]]ω2[[3]]]]
8 [[1]]ω5[1] [[1]]ω4 [[1]]ω4,[[1]]ω4+1 [[1]]ω4,[[1]]ω4,[[1]]ω4+1+1

9 ω2[1] ω1 ω1,ω1+1 ω1,ω1,ω1+1+1

10 ω2[2] ω2[1] ω1,ω2[1]+1 ω1,ω1,ω2[1]+1+1

11 [[2]]ω2[[1]] ω ω2[ω] ω2[ω2[ω]]
12 ω3[1] ω2 ω2,ω2+1 ω2,ω2,ω2+1+1

13 ω3[2] ω3[1] ω2,ω3[1]+1 ω2,ω2,ω3[1]+1+1

14 ωω+1[ω] ωω+1[1] ωω+1[2] ωω+1[3]

Table 42: [[δ]], [[η]] and [[η]] parameter examples in increasing order
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10.4 limitType of admissible level notations

The κ parameter in expressions 24 to 28 determines the limitType of an admissible level no-
tation with no other nonzero parameters. If κ is a limit then ωκ.limitType() = κ.limitType().
If κ is a finite successor then ωκ.limitType() = κ + 1. If κ > ω and κ is a successor then
ωκ.limitType() = κ.

If an admissible level ordinal, α, has parameters other than κ, then the one or two
least significant nonzero parameters determine the limitType of α. If the least significant
parameter, αl, is a limit ordinal then α.limitType = αl.limitType. α.limitType = 1 or
integerLimitType of any of the following conditions hold.

• γ is a successor and the least significant parameter.

• There is at least one βi = 0 and a more significant βi that is the least significant
nonzero parameter.

• The least significant two parameters are successors.

If the above do not hold and the least significant parameter is a successor and the next least
significant, αn, is a limit then α.limitType = αn.limitType. There is a more complete
description of these rules and their affects on limitElement and limitOrd in sections 11.2
and 11.6,

10.5 Ordinal collapsing

Collapsing66 expands recursive ordinal notations using larger ordinals (countable or uncount-
able) to name them[3, 30]. There is an element of collapsing with the η parameter in square
brackets defined in Section 10.2 in that it diagonalizes the earlier definitions of recursive ordi-
nals by referencing a higher level notation. Before describing collapsing with the δ parameter,
we give a brief overview of an existing approach.

One can define a collapsing function, Ψ(α) on ordinals to countable ordinals67. Ψ(α) is
defined using a function C(α), from ordinals to sets of ordinals. C(α) is defined inductively
on the integers for each ordinal α using Ψ(β) for β < α.

• C(α)0 = {0, 1, ω,Ω} (Ω, is the ordinal of the countable ordinals.)

• C(α)n+1 = C(α)n ∪ {β1 + β2, β1β2, β1
β2 : β1, β2 ∈ C(α)n} ∪ {Ψ(β) : β ∈ C(α)n

∧ β < α}.

• C(α) =
⋃
n∈ω C(α)n.

66Ordinal collapsing is also known as projection. I prefer the term collapsing, because I think the proofs
have more to do with syntactical constructions of mathematical language than they do with an abstract
projection in a domain the symbols refer to. Specifically I think cardinal numbers, on which projection is
most often based, have only a relative meaning. See Section 14 for more about this philosophical approach

67This description is largely based on the Wikipedia article on “Ordinal collapsing function” as last mod-
ified on April 14, 2009 at 15:48. The notation is internally consistent in this document and differs slightly
from the Wikipedia notation.
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• Ψ(α) is defined as the least ordinal not in C(α).

Ψ(0) = ε0 because ε0 is the least ordinal not in C(0). (ε0 is the limit of ω, ωωωω
ω
, ...,.)

Similarly Ψ(1) = ε1, because C(1) includes Ψ(0) which is ε0. For a while Ψ(α) = εα.
This stops at ϕ(2, 0) which is the first fixed point of α 7→ εα. Ψ(ϕ(2, 0)) = ϕ(2, 0) but
Ψ(ϕ(2, 0) + 1) = ϕ(2, 0) also. The function remains static because ϕ(2, 0) is not in C(α) for
α ≤ Ω.

Ψ(Ω) = ϕ(2, 0), but Ω was defined to be in C(α)0 and thus C(Ω + 1) includes Ψ(Ω)
which is ϕ(2, 0). Thus Ψ(Ω + 1) = εϕ(2,0)+1. Ψ(α) becomes static again at α = ϕ(2, 1) the
second fixed point of α 7→ εα. However ordinals computed using Ω support getting past
fixed points in the same way that Ω did. The first case like this is Ψ(Ω2) = ϕ(2, 1) and thus
Ψ(Ω2 + 1) = εϕ(2,1)+1.

Each addition of 1 advances to the next ε value until Ψ gets stuck at a fixed point. Each
addition of Ω moves to the next fixed point of α 7→ εα so that Ψ(Ω(1 + α)) = ϕ(2, α) for
α < ϕ(3, 0). Powers of Ω move further up the Veblen hierarchy: Ψ(Ω2) = ϕ(3, 0), Ψ(Ωβ) =
ϕ(1 + β, 0) and Ψ(Ωβ(1 + α)) = ϕ(1 + β, α). Going further Ψ(ΩΩ) = Γ(0) = ϕ(1, 0, 0),
Ψ(ΩΩ(1+α)) = ϕ(α, 0, 0) and Ψ(ΩΩ2

) = ϕ(1, 0, 0, 0),
Collapsing, as defined here, connects basic ordinal arithmetic (addition, multiplication

and exponentiation) to higher level ordinal functions. Ordinal arithmetic on Ω gets past fixed
points in the definition of Ψ until we reach an ordinal that is not in C(α) either by definition
or by basic ordinal arithmetic on ordinals in C(α). This is the ordinal εΩ+1

68. Ψ(εΩ+1)=

Ψ(Ω)
⋃

Ψ(ΩΩ)
⋃

Ψ(ΩΩΩ
)
⋃

Ψ(ΩΩΩΩ

)
⋃
... This is the Bachmann-Howard ordinal[21]. It is the

largest ordinal in the range of Ψ as defined above. Ψ(α) is a constant for α ≥ εΩ+1 because
there is no way to incorporate Ψ(εΩ+1) into C(α).

68Note εΩ = Ω.
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Notation
# Ψ ϕ ω Bound

1 Ψ(α) εα α < ϕ(2, 0)
2 Ψ(Ω13) ϕ(2, 12)
3 Ψ(Ω(1 + α)) ϕ(2, α) α < ϕ(3, 0)
4 Ψ(Ω26) ϕ(3, 5)
5 Ψ(Ω2(1 + α)) ϕ(3, α) α < ϕ(4, 0)
6 Ψ(Ω116) ϕ(12, 5)
7 Ψ(Ωβ(1 + α)) ϕ(1 + β, α) α < ϕ(1 + β, 0) ∧ β < ϕ(1, 0, 0)
8 Ψ(ΩΩ) ϕ(1, 0, 0) = Γ0

9 Ψ(ΩΩ2) ϕ(2, 0, 0)

10 Ψ(Ω(Ω2+3)6) ϕ(2, 3, 5)

11 Ψ(ΩΩ2
) ϕ(1, 0, 0, 0)

12 Ψ(ΩΩn) ϕ(11, 02, ..., 0n+2)
13 Ψ(ΩΩnα1) ϕ(α1, 02, ..., 0n+2) α1 < ϕ(11, 02, ..., 0n+3)
14 Ψ(ΩΩω) ϕ1

15 Ψ(ΩΩω5) ϕ1(5)

16 Ψ(ΩΩω(1+α)) ϕ1(α) α < ϕ1(1, 0)

17 Ψ(Ω(Ωω(Ω4+2))) ϕ1(4, 2)

18 Ψ(ΩΩω2
) ϕ2

19 Ψ(ΩΩω
2

) ϕω

20 Ψ(ΩΩω
α

) ϕα α < ω1[1]
21 not Ψ displayable ω1[1]

22 Ψ(ΩΩΩΩ

) [[1]]ω1

23 Ψ(ΩΩΩΩΩ

) [[1]]ω2

24 Ψ(εΩ+1) [[1]]ωω

Table 43: Ψ collapsing function with bounds
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Table 43 connects the notations defined by the Ψ function to those defined with expres-
sions 20, 22, 23 and 24 to 28. Lines up to 12 follow from the above description. This line
uses parameter subscripts to indicate the number of parameters. Otherwise it is straight-
forward. In line 14 ϕ1 is the first fixed point not reachable from Veblen functions with a
finite number of parameters. ϕ1 =

⋃
n∈ω ϕ(11, 02, 03..., 0n). Lines 18, 19 and 20 illustrate how

each increment of α by one in ϕα adds a factor of ω to the the highest order exponent in Ψ
notation. This maps to the definition of ϕα in Section 7.5.

Table 44 provides additional detail to relate the Ψ notation to the notation in this doc-
ument. It covers the range of the Ψ function at critical limits. For each entry the table
gives the ordinal notation and first 4 elements in a limit sequence that converges to this
ordinal. This same information is repeated in paired lines. The first is in Ψ notation and the
second in the notation defined in this document. It illustrates the conditions in which the
Ψ notation requires another level of exponentiation. This happens with limiting sequences
that involve ever higher levels of exponentiation of the largest ordinals defined at that level
in the Ψ notation. This occurs in lines 4, 9, 11 and 12 of the table corresponding to Ω

10.6 Displaying Ordinals in Ψ format

Function Ordinal::psiNormalForm provides an additional display option for the Ψ function
format. Not all values can be converted. This is due in part to the erratic nature of Ψ as it
gets stuck at various fixed points. The purpose is to provide an automated conversion that
handles the primary cases throughout the Ψ hierarchy. If a value is not displayable then
the string ‘not Ψ displayable’ is output in TEX format. Two tables in this section use
psiNormalForm. It is accessible in the interactive calculator as described in Section B.8.2
under the opts command.

10.7 Admissible level ordinal collapsing

For any two ordinals ωα and ωα+1 there is an unclosable gap into which one can embed
the ordering structure of any finite recursive notation system. As mentioned before finite
formulations of a fragment of the countable admissible level hierarchy are a bit like the
Mandelbrot set where the entire structure is embedded again and again at many points in
an infinite tree.

The idea is to “freeze” the structure at some point in its development and then embed
this frozen image in an unfrozen version of itself. It is a bit like taking recursion to a higher
level of abstraction. The notation is frozen by not allowing any values beyond the frozen
level as η parameters. It puts no constraints on the other parameters. In a sense it brings the
entire hierarchy of notations at this stage of development into representations for ordinals
less than the level at which the notation system is frozen.

The relevant expressions are 26 ([[δ]]ωκ[η]), 27 ([[δ]]ωκ,γ(β1, β2, ..., βm)) and 28 ([[δ]]ωκ[[η]]).
They define a value < ωδ regardless of of the size of κ and other parameters (excluding η
which is constrained by δ). It is required that κ ≥ δ69. The idea is to use notations up

69Note that any notation from expressions 26, 27 and 28. with prefix [[1]] must define a recursive ordinal.
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through any ωκ definable in the frozen system to define ordinal notations < ωδ in the un-
frozen system.

This starts by diagonalizing what can be defined with ωκ[η]. See Table 45 for the definition
of [[1]]ω1. The complete definition of δ (and the other parameters in expressions 26, 27 and
28) are in sections 11.2 and 11.6 that document the limitElement and limitOrd member
functions.
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11 AdmisLevOrdinal class

The AdmisLevOrdinal class constructs notations for countable admissible ordinals begin-
ning with the Church-Kleene or second admissible ordinal70. This is the ordinal of the
recursive ordinals. class AdmisLevOrdinal is derived from base classes starting with
IterFuncOrdinal. The Ordinals it defines can be used in constructors for base class

objects. However AdmisLevOrdinals are different from ordinals constructed with its base
classes. For every recursive ordinal there is a finite notation system that can enumerate a
notation for that ordinal and every ordinal less than it. This is not true for the ordinal of
the recursive ordinals or larger ordinals.

Four new member functions: limitOrd, isValidLimitOrdParam. limitType, embedType
and maxLimitType support this level of the ordinal hierarchy. These functions are outlined
in Section 10 and described in detail in sections 11.3 to 11.5.

C++ class AdmisLevOrdinal uses an expanded version of the normal form in expres-
sion 23 given in expressions 24 to 28. The class for a single term of an AdmisLevOrdinal

is AdmisNormalElement. It is derived from IterFuncNormalElement and its base classes.
All parameters (except κ) can be zero. Omitted parameters are set to 0. To omit κ

use the notation for an IterFuncOrdinal in Expression 23. κ is the admissible index, i.
e. (the κ in ωκ). ω1 is the ordinal of the recursive ordinals or the smallest ordinal that
is not recursive. The expanded notation at this level is specified in Section 10.2. Parame-
ters γ and βi have a definition similar to that in Table 36 and are explained in section 11.2 on
AdmisNormalElement::limitElement and section 11.6 on AdmisNormalElement::

limitOrd as are the new parameters in this class: κ, η and δ.
The AdmisLevOrdinal class should not be used directly to create ordinal notations.

Instead use function admisLevelFunctional which checks for fixed points and creates unique
notations for each ordinal71. This function takes up to five arguments. The first two are
required and the rest are optional. The first gives the admissible ordinal index, the κ in ωκ.
The second gives the level of iteration or the value of γ in expressions 24 and 27. The third
gives a NULL terminated array of pointers to Ordinals which are the βi in expressions 24
and 27. This parameter is optional and can be created with function createParameters

described in Section 8. The fourth parameter is an ordinal reference that defaults to 0. It is
the value of η in expressions 25 and 26. The fifth parameter is an Ordinal reference which
defaults to zero. It is the value of δ in expressions 26, 27 and 28. Some examples are shown
in Table 46. An alternative way of defining these ordinals in C++ format is with the cppList

command in the ordinal calculator. Some examples of this output are shown in Figure 4.

11.1 compare member function

AdmisNormalElement::compare is called from a notation for one term in the form of ex-
pressions 24 to 28. It compares the CantorNormalElement parameter trm, against the
AdmisNormalElement instance compare is called from. As with FiniteFuncOrdinals and

70The first admissible ordinal is the ordinal of the integers, ω.
71 In the interactive ordinal calculator one can use notations like [[delta]] omega { kappa, lambda}

(b1,b2,...,bn). For more examples see sections B.11.7, B.11.8 and B.11.9.
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//a = w

const Ordinal& a = expFunctional(Ordinal::one) ;

//b = psi_{ 1}(1, 0)

const Ordinal& b = iterativeFunctional(

Ordinal::one,

Ordinal::one,

Ordinal::zero) ;

//c = omega_{ 1}(1, 1, 0)

const Ordinal& c = admisLevelFunctional(

Ordinal::one,

Ordinal::zero,

createParameters(

&(Ordinal::one),

&(Ordinal::one),

&(Ordinal::zero))

) ;

//d = omega_{ 1}

const Ordinal& d = admisLevelFunctional(

Ordinal::one,

Ordinal::zero,

NULL

) ;

//e = omega_{ 1}[ epsilon( 0)]

const Ordinal& e = admisLevelFunctional(

Ordinal::one,

Ordinal::zero,

NULL,

psi( Ordinal::one, Ordinal::zero)

) ;

Figure 4: Defining AdmisLevOrdinals with cppList
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‘cp’ stands for createParameters and ‘af’ stands for admisLevelFunctional

C++ code examples Ordinal

af(zero,zero,cp(&one)) ω
af(zero,one,cp(&one,&zero)) ϕ1(1, 0)
af(one,zero,cp(&one,&one,&zero)) ω1(1, 1, 0)
af(one,zero) ω1

af(one,zero,NULL,eps0) ω1[ε0]
af(one,zero,NULL,Ordinal::five) ω1[5]
af(one,omega1CK,cp(&one)) ω1,ω1(1)
af(one,one,cp(&one,&omega1CK)) ω1,1(1, ω1)
af(one,Ordinal::two, cp(&one,&omega,&zero)) ω1,2(1, ω, 0)
af(omega,omega,cp(&one,&omega1CK,&zero,&zero)) ωω,ω(1, ω1, 0, 0)
af(omega1CK,omega) ωω1,ω

af(one,omega,cp(&iterativeFunctional(omega))) ω1,ω(ϕω)
af(af(one,zero),zero,NULL,zero) ωω1

af(Ordinal::two,zero,NULL,zero,Ordinal::two) [[2]]ω2

af(Ordinal::omega,zero,NULL,zero,Ordinal::three) [[3]]ωω
af(omega,zero,NULL,zero,omega) ωω
af(Ordinal::two,omega1CK,cp(&one),zero,Ordinal::two) [[2]]ω2,ω1(1)
af(omega,omega,cp(&one,&omega1CK,&zero),zero,one) [[1]]ωω,ω(1, ω1, 0)

Table 46: admisLevelFunctional C++ code examples

IterFuncOrdinals, the work of comparing Ordinals with multiple terms is left to the
Ordinal and OrdinalImpl base class functions.

AdmisNormalElement::compare, with a CantorNormalElement and an ignore factor flag
as arguments, overrides IterFuncNormalElement::compare with the same arguments (see
Section 9.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to
or less than its argument. There are two versions of AdmisNormalElement::compare the
first has two arguments as described above. The second is for internal use only and has
two additional ‘context’ arguments. the context for the base function and the context for
the argument. The context is the value of the δ parameter in force at this stage of the
compare. The three base classes on which AdmisNormalElement is built also support this
context sensitive version of compare.

compare first checks if its argument’s codeLevel is > admisCodeLevel. If so it calls a
higher level routine by calling its argument’s member function. The code level of the class

object that AdmisNormalElement::compare is called from should always be admisCodeLevel.
The δ parameter makes comparisons context sensitive. The δ values of the base object

and compare’s parameter are relevant not just for comparing the two class instances but
also for all comparisons of internal parameters of those instances. Thus the context sensitive
version of compare passes the δ values to compares that are called recursively. For base
classes that AdmisNormalElement is derived from, these additional arguments are only used
to pass on to their internal compare calls. The δ values contexts only modify the meaning of
ordinal notations for admissible level ordinals. The context sensitive version of the virtual
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Symbol Meaning

cfp compareFiniteParams compares its βi to those in its argument
cmp obj.compare(arg) returns -1, 0 or 1 if obj <, = or > then arg
compareCom does comparisons used by higher level routines (see Table 49)
δef effective (context dependent) value of δ
diff temporary value with compare result
dd drillDown η in [η] or [[η]] suffix
effCk effectiveIndexCK returns κ adjusted for δ, η and context.
functionLevel γ parameter in expressions 24 and 27
ignoreFactor parameter to ignore factor in comparison
ignf ignoreFactor ignore factor and all but the first term
isDdE isDrillDownEmbed ≡ has [[η]] suffix
isZ isZero is value zero
maxParameter largest parameter of class instance or trm
maxParamFirstTerm first term of largest parameter of trm
parameterCompare compare itself and its argument’s largest parameter and vice versa
this pointer to class instance called from
trm parameter comparing against
X exit code (see Note 60 on page 84)

Table 47: Symbols used in compare tables 48 and 49

function compare has four arguments.

• const OrdinalImpl& embdIx — the context for the base class object from which
this compare originated.

• const OrdinalImpl& termEmbdIx — the context of the CantorNormalElement pa-
rameter of compare.

• const CantorNormalElement& trm — the term to be compared.

• bool ignoreFactor — an optional parameter that defaults to false and indicates
that an integer factor is to be ignored in the comparison.

The original version of compare, without the context arguments, calls the routine with
context parameters.

As with compare for FiniteFuncOrdinals and IterFuncOrdinals this function depends
on the getMaxParameter() that returns the maximum value of all the parameters (except
η and δ) in expressions 25, 27 and 28.

The logic of AdmisNormalElement::compare with the above four parameters is sum-
marized in tables 48 and 49. The latter is for AdmisNormalElement::compareCom which
contains comparisons suitable for use in higher level routines. It is called by compare with
identical parameters for suitable tests. Definitions used in these two tables are contained in
Table 47.
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See Table 47 for symbol definitions.
Comparisons use δ context for both operands.

Value is ord.cmp(trm) : -1, 0 or 1 if ord <,=, > trm

X Condition Value
A1 if (trm.codeLevel > admisCodeLevel) diff=-trm.cmp(*this) diff

(trm.codeLevel < admisCodeLevel) applies to A2, A3 and A4
A2 (trm.maxParameter==0) 1
A3 (maxParamFirstTerm ≥ *this) -1
A4 if neither the A2 or A3 condition is true 1
A5 (diff = parameterCompare(trm))6= 0 diff

C1 if none of the above apply diff = compareCom(trm) diff

Table 48: AdmisNormalElement::compare summary

See Table 47 for symbol definitions.
Comparisons use δ context for both operands.

Value is ord.cmp(trm) : -1, 0 or 1 if ord <,=, > trm

X Condition Value
B1 δef 6= 0 ∧ trm.δef 6= 0 ∧ ((diff=δef.cmp(trm.δef) 6= 0) diff

B2 (diff=effCk.cmp(trm.effCk)) 6= 0 diff

B3 (diff=indexCK.cmp(trm.indexCK)) 6= 0 diff

B4 (dd6= 0)∧ (trm.dd6= 0) ∧ (diff=(isDdE-trm.isDdE))6=0 diff

B5 (dd6=0)∧ (trm.dd6= 0) ∧ (diff=dd.cmp(trm.dd)6=0) diff

B6 (diff=((dd6=0) - (trm.dd 6=0)))6=0 diff

B7 (diff = γ.compare(trm.γ) 6= 0 diff

B8 ((diff = cfp(trm)) 6= 0) ∨ ignf diff

B9 (diff = factor - trm.factor) 6= 0 diff

Table 49: AdmisNormalElement::compareCom summary
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11.2 limitElement member function

AdmisNormalElement::limitElement overrides IterFuncNormalElement::limitElement

(see Section 8.2). It operates on a single term of the normal form expansion and does the
bulk of the work. It takes a single integer parameter. Increasing values for the argument
yield larger ordinal notations as output. In contrast to base class versions of this routine,
in this version the union of the ordinals represented by the outputs for all integer inputs
are not necessarily equal to the ordinal represented by the AdmisNormalElement class

instance limitElement is called from. They are equal if the limitType of this instance of
AdmisNormalElement is integerLimitType (see tables 40 and 50).

As usual Ordinal::limitElement does the work of operating on all but the last term of
an Ordinal by copying all but the last term of the result unchanged from the input Ordinal.
The last term is generated based on the last term of the Ordinal instance limitElement is
called from.

AdmisNormalElement::limitElement calls drillDownLimitElement when the [η] or
[[η]] suffix is not zero. These two routines each has a version, limitElementCom and
drillDownLimitElementCom, invoked by the base routine and suitable for routines at higher
codeLevels to use. The common routines (ending with Com) always create a result using
createVirtualOrd or createVirtualOrdImpl. These virtual functions supply any unspec-
ified parameters whenever the com routine is called from objects at higher codeLevels.

The four ...limitElement... routines are outlined in tables 52 to 55. The tables give
the LimitTypeInfo enum assigned to each limit when a new Ordinal is created. The code
that computes a limitElement often starts with a case statement on instances of this enum.
Table 50 gives the definition of these enums. The type of limit is determined by the one
or two least significant nonzero parameters and these conditions are described in this table.
The symbols used in all four tables for the variations of ...limitElement... are defined
in Table 51.

Corresponding to these four routines are tables 56 to 59 of examples with exit codes that
match those in the corresponding descriptive tables. The matching exit codes are in columns
X or UpX depending on whether the exit code is for the routine that directly generated
the result or one that calls a lower level routine to do so. The exit codes are in the same
alphabetical order in both the descriptive and example tables. Table 60 gives one example
for every value of LimitTypeInfo used by limitElement. Some additional examples are
shown in Tables 61 to 63.

One complication is addressed by routine leUse. This is required when κ is a limit and
the least significant parameter. This routine selects an element from a sequence whose union
is κ while insuring that this does not lead to a value less than δ. This selection must be
chosen so that increasing inputs produce increasing outputs and the output is always less
than the input. The same algorithm is used for limitOrd. See Note 72 on page 120 for a
description of the algorithm. leUse is a virtual function so that routines that are using it
(such as limitElementCom or limitOrdCom may be callable from higher levels.
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βi defined in: 23, 24, 27. γ defined in: 23, 24, 27.
η defined in: 25, 26, 28. κ defined in: 24, 25, 26, 27, 28.

δ defined in: 26, 27, 28.

LimitTypeInfo Least significant nonzero parameters limitType

The following is at code level cantorCodeLevel (Section 6) and above.
unknownLimit used internally
zeroLimit the ordinal zero nullLimitType

finiteLimit a succesor ordinals nullLimitType

paramSucc in ωx x is a successor integerLimitType

The following is at code level finiteFuncCodeLevel (Section 8) and above.
paramLimit βi is a limit β1.limitType

paramSuccZero successor βi followed by at least one zero integerLimitType

paramsSucc least significant βi is successor integerLimitType

paramNxtLimit Limit βi, zero or more zeros and successor. βi.limitType()
The following is at code level iterFuncCodeLevel (Section 9) and above.

functionSucc γ is successor and βi == 0. integerLimitType

functionNxtSucc γ and a single βi are successors. integerLimitType

functionLimit γ is a limit and βi == 0. γ.limitType
functionNxtLimit γ is a limit and a single βi is a successor. γ.limitType

The following is at code level admisCodeLevel (Section 11) and above.
drillDownLimit [η] or [[η]] suffix is a limit. η.limitType
drillDownSucc [η] is a successor > 1. integerLimitType

drillDownSuccCKOne (κ == 1) ∧ ([η] > 1) ∧ η is a successor. integerLimitType

drillDownSuccEmbed [[η]] is a successor > 1. integerLimitType

drillDownOne ([η] == 1)∧(κ > 1). integerLimitType

drillDownOneEmbed [[η]] == 1. integerLimitType

drillDownCKOne η == κ == 1. integerLimitType

indexCKlimit κ is a limit and δ == 0. κ.limitType
indexCKsuccParam κ and a single β are successors ∧κ 6= δ integerLimitType

indexCKsuccParamEq κ and a single β are successors ∧κ == δ integerLimitType

indexCKsuccEmbed κ is a succesor and δ > 0 indexCKtoLimitType

indexCKsuccUn κ is a succesor and δ == 0 indexCKtoLimitType

indexCKlimitParamUn κ is a limit and β1 is a successor κ.limitType
indexCKlimitEmbed κ is limit and δ > 0 κ.limitType

Table 50: LimitTypeInfo descriptions through admisCodeLevel
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Symbol Meaning

δck if κ = δ use δ − 1
dRepl copy ordinal called from replacing η parameter
IfNe IterativeFunctionNormalElement see Section 9
isDdEmb isDrillDownEmbed (true iff [[η]] suffix is nonzero)
isLm isLimit

isSc isSuccessor

indexCKtoLimitType computes limitType κ by adding 1 to κ if it is finite
le limitElement (Table 52)
α.leUse(n) Compute a safe value for le(n) and lo(n) see Section 11.2
lSg value of least significant nonzero βi
lsx index of least significant nonzero βi
lo limitOrd (Table 64)

limPlus 1 avoid fixed points by adding 1 if
lp1 psuedoCodeLevel > cantorCodeLevel (Section 8.3)
nlSg value of next to least significant nonzero βi
nlsx index of next to least significant nonzero βi
rep1 replace1, rep1(i,val) replaces βi with val in ord see Table 26
rep2 replace2, a two parameter version of rep1 see Table 26
Rtn x x is return value
sz number of βi in expressions 24 and 27
this pointer to class instance called from
X exit code (Note 60 on page 84)

Table 51: Symbols used in limitElement Tables 52 to 55 and limitOrd Table 64
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α is a notation for one of expressions 24 to 28.
ωκ,γ(β1, β2, ..., βm) ωκ[η] [[δ]]ωκ[η] [[δ]]ωκ,γ(β1, β2, ..., βm) [[δ]]ωκ[[η]]

See Table 51 for symbol definitions.

X Condition(s) LimitTypeInfo α.le(n)

LEAD (η 6= 0) drillDown* drillDownLimitElement(n)

See Table 54.
LEBC various conditions many options limitElementCom(n)

See Table 53.
κ == δ∧ b= [[κ]]ωκ(β1 − 1);
sz == 1 ∧ (γ == 0) ∧ for(i=1;i<n;i++)

LECK β1.isSc ∧ κ.isSc indexCKsuccParamEq b=ωκ−1,b.lp1 ; Rtn b

sz==0 ∧ (γ == 0) ∧
LEDC κ.isSc ∧ δ == 0 indexCKsuccUn ωκ[n]

See Table 56 for examples

Table 52: AdmisNormalElement::limitElement cases

X Condition(s) LimitTypeInfo α.le(n)

γ, isSc ∨ sz > 1 ∨ param* IterFuncNormalElement::

LCAF ((γ > 0) ∧ (sz == 1)) function* limitElementCom(n)

See Section 9.2.
LCBL κ.isLm ∧ (γ == 0) ∧ (δ == 0) indexCKlimit ωκ.le(ne).lp1()

b = ωκ(β1 − 1);
sz==1 ∧(γ == 0)∧ for (i=1;i<n;i++)

LCCI β1.isSc ∧ κ == 1 ∧ δ == 0 indexCKsuccParam b=ϕb.lp1(β1 − 1); rtn b

b = [[δ]]ωκ(β1 − 1);
sz==1 ∧(γ == 0) for (i=1;i<n;i++)

LCDP ∧β1,isSc ∧κ > 1 ∧ δ > κ indexCKsuccParam b=[[δ]]ωκ−1,b.lp1(β1 − 1); rtn b

LEDE κ.isSc ∧(δ > 0) indexCKsuccEmbed [[δ]]wκ[[n]]
LEEE κ.isLm ∧(δ > 0) indexCKlimitEmbed κ′ =incLm(δ,n); Rtn [[δ]]ωκ′

sz==1∧(γ == 0) ∧ β1.isSc l = κ.le(n);
LCEL ∧κ.isLm ∧ δ.isSc indexCKlimitParamUn [[δ]]ωleUse(l),ωκ(β1−1).lp1

See Table 57 for examples

Table 53: AdmisNormalElement::limitElementCom cases
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α is a notation from expressions 25, 26 or 28.
α = ωκ[η] α = [[δ]]ωκ[η] [[δ]]ωκ[[η]]

The δ parameter is unchanged and not displayed if optional.
See Table 51 for symbol definitions.

X Condition(s) LimitTypeInfo α.le(n)

drillDownLimit

drillDownSucc

drillDownOne

drillDownSuccEmbed

DDAC drillDownOneEmbed drillDownLimitElementCom(n)

DDBO η.isOne ∧ κ.isOne drillDownCKOne b=ω ;for(i=1;i<n;i++)b=ϕb.lp1;Rtn b

η.isSc ∧ η > 1
DDCO ∧ κ == 1 drillDownSuccCKOne for(i=1;i<n;i++)b=ϕb.lp1 ;Rtn b

See Table 58 for examples

Table 54: AdmisNormalElement::drillDownLimitElement cases

X Condition(s) LimitTypeInfo α.drillDownLimitElementCom(n)

η.isLm drillDownLimit ωκ[η.limitElement(n)] or
DCAL [[δ]]ωκ[[η.limitElement(n)]]

b= ω ; for (i=1;i<n;i++)

DCBO isDdEmb ∧η == 1 drillDownOneEmbed b= [[δ]]ωκ[b]; Rtn b;

b= [[δ]]ωκ[[η − 1]];for(i=1;i<n;i++)
DCCS η.isSc > 1∧ isDdEmb drillDownSuccEmbed b= [[δ]]ωκ[b];Rtn b

(η == 1)∧ b=[[δ]]ωκ−1; for(i=1;i<n;i++)

DCDO isDdEmb∧(κ > 1) drillDownOne b=[[δ]]ωκ−1,b.lp1; Rtn b

!isDdEmb ∧ b= ωκ[η − 1]; for(i=1;i<n;i++)

DCES (η.isSc > 1) ∧ (κ > 1) drillDownSucc b= [[δ]]ωκ−1,b.lp1; Rtn b

See Table 59 for examples

Table 55: AdmisNormalElement::drillDownLimitElementCom cases
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11.3 isValidLimitOrdParam member function

For admissible level ordinals, limitElement must be supplemented with limitOrd that
accepts Ordinals up to a given size as input as discussed in Section 10.3. Ordinal member
function isValidLimitOrdParam returns true if its single argument is a valid parameter to
limitOrd when called from the object isValidLimitOrdParam is called from. (Although
this is an Ordinal member function it is only required at classes AdmisLevOrdinal and
higher.) It uses limitType and maxLimitType as discussed below if no [[δ]] prefix is involved.
Otherwise it must also use embedType and the relative sizes of the object it is called from
and its parameter to determine if it is a legal argument. The problem is that [[δ]]ωδ (with δ
a successor) creates an ordinal < ωδ that still must accept smaller ordinals such as [[δ]]ωδ[1]
as a parameters. ([[δ]]ωδ[1].maxLimitType == [[δ]]ωδ.limitType.) When limitType of the
object limitOrd is called from equals maxLimitType of the argument and embedType is non
null the argument is valid if it is less than the object limitOrd is called from.

11.4 limitInfo, limitType and embedType member functions

Ordinarily these routines are used indirectly by calling isValidLimitOrdParam described
in the previous section. They are introduced in this class because they are not used in a
system with only notations for base classes. However they are defined in these base classes.
Only limitInfo has a version for class AdmisNormalElement. It does the bulk of the work
computing the
limitType value and the enum LimitTypeInfo used in routines limitElement and limitOrd.
The algorithm for this is outlined in see Table 50 for the description therough admisCodeLevel

and Table 68 for all clases discussed in this document along with examples in Table 69. Click-
ing on an entry in the LimitInfoType will take you do the example line in the second table.

limitType and embedType both return an OrdinalImpl. The limitType of an ordinal
is the limitType of the least significant term.

11.5 maxLimitType member function

maxLimitType is the maximum of limitType for all ordinals ≤ the ordinal reprsented
by the object maxLimitType is called from. AdmisNormalElement::maxLimitTypes calls
IterFuncNormalElement::maxLimitType for the maximum of all parameters except those
unique to class AdmisLevOrdinal. Next, the type of ωκ is computed and the maximum
of these two values is taken. Finally, the effect of the δ and η parameters are taken into
account. δ puts an upper bound on maxLimitType. If δ is zero a nonzero η reduces the value
of maxLimitType by 1 if it is a successor.

11.6 limitOrd member function

AdmisNormalElement::limitOrd extends the idea of limitElement as indirectly enumer-
ating all smaller ordinals. It does this in a limited way for ordinals that are not re-
cursive by using ordinal notations (including those yet to be defined) as arguments in
place of the integer arguments of limitElement. By defining recrusive operations on an
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incomplete domain we can retain something of the flavor of limitElement since: α =⋃
β : α.isValidLimitOrdParam(β) α.limitOrd(β) and α.isValidLimitOrdParam(β)→ β < α.

Table 64 gives the logic of AdmisNormalElement::limitOrd along with the type of limit
designated by LimitInfoType and the exit code used in debugging. Table 65 gives examples
for each exit code. Table 66 gives values of emum LimitInfoType used by limitOrd in a case

statement along with examples. Usually limitOrd is simpler than limitElement because it
adds its argument as a [η] or [[η]] parameter to an existing parameter. Sometimes it must
also decrement a succesor ordinal and incorporate this in the result. The selection of which
parameter(s) to modify is largely determined by a case statement on LimitInfoType. There
are some additional examples in Table 67.

limitOrd is defined for base classes down to Ordinal because instances of those classes
with appropriate parameters can have limitTypes greater than integerLimitType. For ex-
ample the expression ωω1×2 defines an Ordinal instance with limitType> integerLimitType.

One complication occurs when κ is the least significant non zero parameter and δ is
nonzero. Since δ cannot be a limit it must be less than κ in thise case. The value returned
by limitOrd must not have κ > δ. This is insured with routine leUse72 which in turn calls
AdmisNormalElement::increasingLimit73.

72AdmisNormalElement::leUse(lo) is called with lo = κ.limitOrd(ord) as an inargument. It calls
increasingLimit (see Note 73) to insure a valid output that will be strictly increasing for increasing inputs.

73 AdmisNormalElement::increasingLimit(effDelta, limitElt) computes a value ≥ effDelta that
will be strictly increasing for increasing values of limitElt. This insures limitElement and limitOrd will
not violate the δ constraint on κ and will produce increasing outputs from increasing inputs. Terms may be
added to the output from effDelta to insure this. All terms in effDelta that are in limitElt or less than
terms in limitElt excluding the last term in limitElt are ignored. The remainder are added to limitElt.
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α is a notation from expressions 24 to 28.
α = ωκ,γ(β1, β2, ..., βm) α = ωκ[η] α = [[δ]]ωκ[η] α = [[δ]]ωκ,γ(β1, β2, ..., βm)

See Table 51 for symbol definitions.

X Condition(s) Info α.limitOrd(ζ)

LOA η.isLm drillDownLimit ωκ[η.lo(ζ)] or
[[δ]]ωκ[[η.lo(ζ)]]

paramLimit

paramNxtLimit

least significant functionLimit

LOB βi or γ is limit functionNxtLimit α.IfNe.lo(ζ)
(sz==0)∧(γ == 0)

LOC ∧(δ == 0) ∧ κ.isLm indexCKlimit ωκ.lo(ζ)

(sz==0)∧(γ == 0)
LOD ∧δ.isSc ∧ κ.isLm indexCKlimitEmbed [[δ]]ωleUseκ(.lo(ζ))

(sz==1)∧(γ == 0) ∧ β1.isSc l = κ.lo(ζ);
LOE ∧κ.isLm ∧ δ.isSc indexCKlimitParamUn [[δ]]ωleUse(l),ωκ(β1−1).lp1

(sz==0)∧(γ == 0)
LOF ∧κ.isSc ∧ δ.isSc indexCKsuccEmbed [[δ]]ωκ[[ζ]]

(sz==0)∧(γ == 0)
LOF ∧κ.isSc ∧ (δ == 0) indexCKsuccUn ωκ[ζ]

Table 64: AdmisNormalElement::limitOrdCom cases
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βi defined in: 23, 24, 27. γ defined in: 23, 24, 27.
η defined in: 25, 26, 28. κ defined in: 24, 25, 26, 27, 28.

δ defined in: 26, 27, 28.

LimitTypeInfo Ordinal limitType Ordinal limitType

The following is at code level finiteFuncCodeLevel (Section 8) and above.
paramLimit ϕ(ω, 0) 1 [[12]]ωω(ω4) 5
paramNxtLimit ϕ(ε0, 0, 0, 33) 1 ω12(ω11, 0, 0, 3) 12

The following is at code level iterFuncCodeLevel (Section 9) and above.
functionLimit ϕϕ(4,0,0) 1 [[20]]ωω+12,ωω+10

20
functionNxtLimit ϕω(15) 1 [[ωω + 1]]ωωε0 ,ωε0+3

(ω + 5) ωω

The following is at code level admisCodeLevel (Section 11) and above.
drillDownLimit [[2]]ω3[ω] 1 ωω+1[ω12] 13

indexCKlimit ωωω 1 ωω
ωωε0+1

+1
ωω

ε0+1

+ 1

indexCKsuccEmbed [[2]]ω2 2 [[3]]ωω+4 3
indexCKsuccUn ωω+6 ω + 6 ωωϕ(ω,0,0)+1 ωϕ(ω,0,0) + 1

indexCKlimitParamUn [[ω2 + 1]]ωωω (5) 1 [[ω2 + 9]]ωωω12
(3) 13

indexCKlimitEmbed [[12]]ωω2 1 [[ϕ(ωω12
+ 1, 0, 0) + 1]]ωωω20+1

ω20 + 1

Table 66: limitOrd and LimitTypeInfo examples through admisCodeLevel

11.7 fixedPoint member function

AdmisLevOrdinal::fixedPoint is used by admisLevelFunctional to create an instance of
an AdmisLevOrdinal (expressions 24 to 28) that is the simplest representation of the ordinal.
It is not intended for direct use but it is documented here because of the importance of the
algorithm. The routine has the following parameters.

• The admissible ordinal index or κ.

• The function level or γ.

• An index specifying the largest parameter of the ordinal notation being constructed.
If the largest parameter is the function level the index has the value iterMaxParam

defined as −1.

• The function parameters (a NULL terminated array of pointers to Ordinals) or just
NULL if there are none. These are the βj from a term in Expression 23.

• An instance of class embedding that contains the value of δ.

This function determines if the parameter, at the specified index, is a fixed point for
an AdmisLevOrdinal created with the specified parameters. If so, true is returned and
otherwise false. The routine that calls this routine selects the largest parameter from the
function level (γ) and the array of Ordinal pointers (βj) and indicates this in the index
parameter. Note no legal value of η and no countable value of the ordinal represented by δ
(which is always coutable in this imiplementation) can be a fixed point. The calling routine
insures that less significant parameters are 0 and the above conditions that preclude a fixed
point are not met. This routine is called only if all these checks are passed.
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AdmisLevOrdinal limitOrd

parameter ω ε0 ω1

ω1 ω1[ω] ω1[ε0] parameter is too big
ω2 ω2[ω] ω2[ε0] ω2[ω1]
ω1 ω1[ω] ω1[ε0] parameter is too big
ω1 ω1[ω] ω1[ε0] parameter is too big
ωωω1+1(ωω1+1) ωωω1+1(ωω1+1[ω] + 1) ωωω1+1(ωω1+1[ε0] + 1) ωωω1+1(ωω1+1[ω1] + 1)

ωω1+1 ωω1+1[ω] ωω1+1[ε0] ωω1+1[ω1]
ω1,ω1 ω1,ω1[ω]+1 ω1,ω1[ε0]+1 parameter is too big
ω100 ω100[ω] ω100[ε0] ω100[ω1]
ω1,1(ω1) ω1,1(ω1[ω] + 1) ω1,1(ω1[ε0] + 1) parameter is too big
ω1,3(ω1) ω1,3(ω1[ω] + 1) ω1,3(ω1[ε0] + 1) parameter is too big
ωε0(ω1) ωε0(ω1[ω] + 1) ωε0(ω1[ε0] + 1) parameter is too big
ωε0+1(1) parameter is too big parameter is too big parameter is too big
ωε0,ω + ωω1+1 parameter is too big parameter is too big parameter is too big
[[12]]ω15,ω10 [[12]]ω15,ω10[ω]+1 [[12]]ω15,ω10[ε0]+1 [[12]]ω15,ω10[ω1]+1

[[2, 3]]ω4[1] parameter is too big parameter is too big parameter is too big
[[3]]ω4[1] parameter is too big parameter is too big parameter is too big
[[2, 4]]ω4[1] parameter is too big parameter is too big parameter is too big
[[4, 4︷1]]ω4[1] parameter is too big parameter is too big parameter is too big
[[4, 4︷1]]ω4 [[4, 4︷1]]ω4[[ω]] [[4, 4︷1]]ω4[[ε0]] [[4, 4︷1]]ω4[[ω1]]
[[4︷1, 4︷2]]ω4[1] parameter is too big parameter is too big parameter is too big

Table 67: AdmisLevOrdinal::limitOrd examples.
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Any integer factor, or smaller term in a parameter means it cannot be a fixed point.
Section 8.3 describes psuedoCodeLevel which records this as well as the codeLevel of the
term if this is not true. If that level is less than AdmisCodeLevel, false is returned.

If none of the previous tests fail, an AdmisLevOrdinal is constructed from all the pa-
rameters except that selected by the index. If this value is less than the selected parameter,
true is returned and otherwise false.

11.8 Operators

The multiplication and exponentiation. routines for FiniteFuncOrdinal, Ordinal and the
associated classes for normal form terms do not need to be overridden except for some
utilities such as that used to create a copy of an AdmisNormalElement normal form term
with a new value for factor.

12 Nested Embedding

The δ parameter in expressions 26 ([[δ]]ωκ[η]), 27 ([[δ]]ωκ,γ(β1, β2, ..., βm)) and 28 ([[δ]]ωκ[[η]])
allows a restricted version of the notation system to be embedded within itself. In this section
we describe how to generalize and nest this embedding. The idea is to index the δ level with
an ordinal notation, σ, and further expand the indexing with a list of these pairs. The first
value of δ continues to limit the size of η. Values of δ that follow it must either be increasing
or equal with increasing values of σ. κ, in turn, must be ≥ the last δ. The first δ indicates
the level at which the η parameter for the ordinal as a whole and any of its parameters is
restricted. Subsequent δs do not affect this. The additional index or σ can be any ordinal
notation with this restriction. It is not otherwise limited.

Recall that the ordinal hierarchy beyond the Church-Kleene ordinal is somewhat like the
Mandelbrot set. Any recursive formalization of the hierarchy has a well ordering less than
the Church Kleene ordinal and thus it can be embedded within itself at many places and
to any finite depth. This nesting must be managed to avoid an infinite descending chain or
inconsistency.

The expressions for the expanded notations are as follows.

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η] (29)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]] (30)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ,γ(β1, β2, ..., βn) (31)

There are restrictions that limit the above ordinal notations.

1. If κ is a limit then no η parameter is allowed.

2. The most significant δ cannot be a limit.

3. If any other δ is a limit, then the associated σ must be 0.

4. If the σ associated with the least significant δ is a limit, then no η parameter is allowed.
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12.1 Filling the Gaps

The idea is to partially fill the ultimately unclosable gaps between admissible ordinals. Ad-
ditions to the ordinal hierarchy often expand at the top and indirectly fill in lower gaps. In
this case the limit of the top is stable74 and only gaps are filled.

The rules that follow define α.limitOrd(υ) for any α that satisfies the above syntax and
restrictions and any legal parameter υ in the existing system or an expansion of it. It should
be possible to expand the system with an unbounded sequence of finite extensions that could
completely define any notation in the system in terms of smaller ones through the recursive
limitOrd algorithm. For recursive ordinals with notations in the system, notations for all
smaller ordinals are in the system and accessible through either limitOrd or limitElement.

In defining a notation for [[δ]]ωκ.limitOrd(υ) with κ > δ and κ a limit, the δ prefix
cannot be exceeded75. This and similar situations are designated by using limitOrdA in
place of limitOrd (see Note 73). There is no actual routine limitOrdA. It is a place holder
for the specific algorithm needed to insure this. The LimitTypeInfo enum(s) (see Section 11.4
and Table 68) associated with each rule are listed at the end of the rule if applicable. If two
rules apply to the same situation the first rule that matches is used.

1. Frequently, in computing α.limiOrd(υ), a parameter of α, p, must be replaced with
p.limitOrd(υ). If the this occurs where the result might generate a fixed point, 1 is
added to the limit Ordinal.

2. If κ is the least significant nonzero parameter and a limit and κ = δm then
α = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm]]ωδm and
α.limitOrd(ζ) = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm.limitOrdA(ζ)]]ωδm.limitOrdA(ζ).
There must be a δm−1 because δ1 cannot be a limit. Thus the two occurrences of
δm.limitOrdA(ζ) are adjusted identically to insure that δm.limitOrdA(ζ) is a strictly
increasing function that is always > δm−1 which must be < δm.
Corresponding LimitTypeInfo: leastLevelLimit.

3. If the least significant nonzero parameter, ζ, is a limit then ζ in α is replaced with
ζ.limitOrd(υ) in αl. If the least significant nonzero parameter is κ, ζ.limitOrdA(υ)
may need to be adjusted to be greater than the last and largest δi.
Corresponding LimitTypeInfo: paramLimit, functionLimit.

4. If κ is a successor and the least significant nonzero parameter (the δs and σs are more
significant) then α.limitOrd(η) appends η as a suffix to the notation for αl. If α
contains a nonzero δ, the appended notation is [[η]] and otherwise [η].
Corresponding LimitTypeInfo: indexCKsuccUn, indexCKsuccEmbed.

5. If the least significant nonzero parameter is a successor, β1, and the next least significant
parameter is κ a limit and there the least significant δ < κ then the following holds.
α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(β1).

74The limit of the ordinals for which notations are defined in sections 10 through 13 is the limit of the
sequence ζn where ζ0 = ω and ζi+1 = ωai which is ω, ωω, ω(ωω), ω(ω(ωω)), ....

75One could also adjust the value of δ in this sequence.
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α.limitOrd(ζ) = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ.limitOrdA(ζ),[[δ1︷σ1,δ2︷σ2,...,δm︷σm]]ωκ(β1−1).
Corresponding LimitTypeInfo: indexCKlimitParamUn

6. If the least significant parameter is κ, a limit, and and there is at least one δ prefix
then the following holds.
α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ.
α.limitOrd(ζ) = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ.limitOrdA(ζ).
Corresponding LimitTypeInfo: indexCKlimitEmbed.

7. If α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm and σm is a limit then
α.limitOrd(ζ) = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm︷σm.limitOrd(ζ)]]ωδm .
Corresponding LimitTypeInfo: leastIndexLimit.

8. If α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1) with β1 a successor and σm a limit then
γ = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1 − 1) and
α.limitOrd(ζ) = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm, σm.limitOrd(ζ)]]ωδm,b
Corresponding LimitTypeInfo: leastIndexLimitParam.

9. If the the least significant parameter is γ, a successor, in for example α = ωκ,γ, then
only integer values for the parameter of limitOrd are legal.
ωκ,γ.limitOrd(n) = ωκ,γ−1(ωκ,γ−1 + 1, 0, ..., 0) where there are n -1 zeros. If there are
other more significant parameters they are copied unchanged.
Corresponding LimitTypeInfo: functionSucc.

10. If the [η] suffix (always the lest significant if present) is a successor > 1 then only
integer values for the parameter of limitOrd are legal. If κ > 1 then the following
holds.
α.limitOrd(1) = ωκ[η − 1| and
α.limitOrd(n+ 1) = ωκ−1,α.limitOrd(n)+1.
δ and σ parameters may also be present and are copied without change if present.
Corresponding LimitTypeInfo: drillDownSucc.

11. If the [η] suffix (always the lest significant if present) is a successor > 1 then only
integer values for the parameter of limitOrd are legal. If κ = 1 then the following
holds.
α.limitOrd(1) = ωκ[η − 1| and
α.limitOrd(n+ 1) = ϕα.limitOrd(n)+1.
Corresponding LimitTypeInfo: drillDownSuccCKOne

12. If the [[η]] suffix (if present the lest significant) is a successor > 1 then only integer
values for the parameter of limitOrd are legal. For
α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]],
α.limitOrd(1) = ωκ[[η − 1|] and
α.limitOrd(n+ 1) = ωκ[[α.limitOrd(n)]].
Corresponding LimitTypeInfo: drillDownSuccEmbed.

13. If the suffix is [[1]] then only integer values for the parameter of limitOrd are legal.
For α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[1]], α.limitOrd(1) = ω and
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α.limitOrd(n+ 1) = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[α.limitOrd(n)].
The δ and σ prefix values are copied unchanged unless there a single δ1 (with no sigma)
and δ1κ. In this case δ is deleted in the limitOrd results.
Corresponding LimitTypeInfo: drillDownOneEmbed.

14. If κ is a successor and the least significant nonzero parameter and the next least signifi-
cant parameter is σn, a limit, then α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ and α.limitOrd(ζ) =
[[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm︷σn.limitOrd(ζ)]]ωκ.
Corresponding LimitTypeInfo: leastIndexLimit,

15. If κ, a limit, is the least significant parameter and there is no δ︷σ prefix then the
following hold.
α = ωκ. α.limitOrd(ζ) = ωκ.limitOrd(ζ).
Corresponding LimitTypeInfo: indexCKlimit.

16. If κ = 1 with the suffix [1], no δ are possible. If α = ω1[1] and α.limitOrd(1) = ω and
α.limitOrd(n+ 1) = ϕα.limitOrd(m)).
Corresponding LimitTypeInfo: drillDownCKOne.

17. If the η suffix is [1] then it is the least significant parameter and only integer values for
the parameter of limitOrd are legal.
Corresponding LimitTypeInfo: drillDownOne.

(a) If κ a successor > 1 and, if present, the least significant δi < κ then
α.limitOrd(1) = ωκ−1 and α.limitOrd(n+ 1) = ωκ,α.limitOrd(n).

(b) If α = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm]]ωδm and δm is a successor then
α.limitOrd(1) =
[[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm − 1, ((δm−1 + 1) == δm?1 : 0)]]ωδm and
α.limitOrd(n+ 1) = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm︷α.limitOrd(n)]]ωδm .

18. If the [η] or [[η]] suffix represents a limit ordinal in α then in α.limitOrd(ζ) η is replaced
with η.limitOrd(ζ)).
Corresponding LimitTypeInfo: drillDownLimit.

19. If the least significant nonzero parameter is β1 and the next least significant parameter
is κ then only integer values for the parameter of limitOrd are legal. If in addition
either there is no δ︷σ prefix or the least significant δ in the prefix is > kappa then the
following holds. If α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(β1) then
α.limitOrd1 = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(β1 − 1) and
α.limitOrd(n+ 1) = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ−1,α.limitOrdn).
Corresponding LimitTypeInfo: indexCKsuccParam.

20. If the least significant nonzero parameter is β1 and the next least significant parameter
is κ then only integer values for the parameter of limitOrd are legal. If there is a
single δ prefix with no σ and δ = κ then the following holds. α = [[δ]]ωδ(β1). newline
α.limitOrd1 = ωδ(β1 − 1) and
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α.limitOrd(n+ 1) = [[δ − 1]]ωδ−1,α.limitOrd(n)+1.
Corresponding LimitTypeInfo: indexCKsuccParamEq

21. If the least significant nonzero parameter is β1, a successor and the next least significant
parameter is κ, also a successor, then only integer values for the parameter of limitOrd
are legal. If in addition δm = κ then one of the following holds.

(a) If the least significant δ has a corresponding σ (which must be a successor) and
the next smallest legal prefix deletes the least significant σ︷δ pair then
α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1).
α.limitOrd(1) = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1 − 1).
α.limitOrd(n+ 1) = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1]]ωα.limitOrd(n)

Corresponding LimitTypeInfo: leastIndexSuccParam.

(b) If the least significant δ is a successor, it has a corresponding σ, the nest least
significant parameter is β1 and the next smallest prefix comes from decrementing
the least significant σ, then
α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1).
α.limitOrd(1) = α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1 − 1)
α.limitOrd(n+ 1) =
[[α = δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm, σm − 1, αlimitOrd(n)]]ωαlimitOrd)(n).
Corresponding LimitTypeInfo: leastIndexSuccParam.

(c) If the least significant δ has no corresponding σ then
α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1).
α.limitOrd(1) = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm]]ωδm(β1 − 1).
α.limitOrd(n+ 1) = [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm︷α.limitOrd(n)]ωκ.
Corresponding LimitTypeInfo: leastLevelSuccParam.

22. If the two least significant nonzero parameters are successors or there is at least one
zero βi that is less significant than the least nonzero parameter which is also a βi, then
only integer values for the parameter of limitOrd are legal. Then α.limitOrd(1) =
the original Ordinal with the least significant nonzero parameter decremented by 1.
α.limitOrd(n+1) = the original Ordinal when the more significant parameters decre-
mented by 1 and α.limitOrd(n) substituted in the next least significant parameter
whether or not it was zero).
Corresponding LimitTypeInfo: paramsSucc, paramSuccZero, functionNxtSucc.

23. If the least significant nonzero parameter is a successor and the next least nonzero
parameter, ζ, is a limit then α.limitOrd(υ) = the original Ordinal with ζ replaced
by ζ.limitOrd(υ) and the next least significant parameter replaced by the original
Ordinal with least significant nonzero parameter decremented by 1.
Corresponding LimitTypeInfo: paramNxtLimit, functionNxtLimit.

24. If the least significant nonzero parameter is β and κ is a limit equal to δm and the next
least significant parameter then the following holds.
α = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm(β1).
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α.limitOrd(ζ) =
[[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm.limitOrdA(ζ)]]ωδm.limitOrdA(ζ),[[δ1︷σ1,δ2︷σ2,...,δm︷σm]]ωδm (β1−1)+1.
Corresponding LimitTypeInfo: leastLevelLimitParam.

Following are two tables based on the enum, LimitTypeInfo. The first gives conditions for
each case, the associated limitType and the number of the above rule that applies (including
a hyperlink). The first table links to the second through entries in the LimitTypeInfo

column. This second table gives an example notation, α, and information about it for each
entry. This includes the exit code of the limitElement routine that computed the result with
a hyperlink to the table entry documenting that routine. The entry also includes the two
computed values α.limitOrd(1) and α.limitOrd(2). Note for finite parameters limitOrd

and limitElement are equivalent.
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βi defined in: 23, 24, 27, 31. γ defined in: 23, 24, 27, 31.
η defined in: 25, 26, 28, 29, 30. κ defined in: 24, 25, 26, 27, 28, 29, 31, 30.

δ defined in: 26, 27, 28, 29, 31, 30. σ defined in: 29, 31, 30.

LimitTypeInfo Least significant nonzero parameters limitType R

The following is at code level cantorCodeLevel (Section 6) and above.
unknownLimit used internally
zeroLimit the ordinal zero nullLimitType

finiteLimit a succesor ordinals nullLimitType

paramSucc in ωx x is a successor integerLimitType

The following is at code level finiteFuncCodeLevel (Section 8) and above.
paramLimit βi is a limit β1.limitType 3
paramSuccZero successor βi followed by at least one zero integerLimitType 22
paramsSucc least significant βi is successor integerLimitType 22
paramNxtLimit Limit βi, zero or more zeros and successor. βi.limitType() 23

The following is at code level iterFuncCodeLevel (Section 9) and above.
functionSucc γ is successor and βi == 0. integerLimitType 9
functionNxtSucc γ and a single βi are successors. integerLimitType 22
functionLimit γ is a limit and βi == 0. γ.limitType 3
functionNxtLimit γ is a limit and a single βi is a successor. γ.limitType 23

The following is at code level admisCodeLevel (Section 11) and above.
drillDownLimit [η] or [[η]] suffix is a limit. η.limitType 18
drillDownSucc [η] is a successor > 1. integerLimitType 10
drillDownSuccCKOne (κ == 1) ∧ ([η] > 1) ∧ η is a successor. integerLimitType 11
drillDownSuccEmbed [[η]] is a successor > 1. integerLimitType 12
drillDownOne ([η] == 1)∧(κ > 1). integerLimitType 17b
drillDownOneEmbed [[η]] == 1. integerLimitType 13
drillDownCKOne η == κ == 1. integerLimitType 16
indexCKlimit κ is a limit and δ == 0. κ.limitType 15
indexCKsuccParam κ and a single β are successors ∧κ 6= δ integerLimitType 19
indexCKsuccParamEq κ and a single β are successors ∧κ == δ integerLimitType 20
indexCKsuccEmbed κ is a succesor and δ > 0 indexCKtoLimitType 4
indexCKsuccUn κ is a succesor and δ == 0 indexCKtoLimitType 4
indexCKlimitParamUn κ is a limit and β1 is a successor κ.limitType 5
indexCKlimitEmbed κ is limit and δ > 0 κ.limitType 6

The following is at code level nestedEmbedCodeLevel (Section 12) and above.
leastIndexLimit least significant σi is a limit σm.limitType 7
leastLevelLimit least significant δi is a limit δm.limitType 2
leastIndexSuccParam β1 and least significant σi are successors integerLimitType 21a
leastLevelSuccParam β1 and least significant δi are suucessors integerLimitType 21c
leastIndexLimitParam least significant σi is a limit, β1 successor σm.limitType 8
leastLevelLimitParam least δ1 == κ both limits, β1 successor δm.limitType 24

Table 68: LimitTypeInfo descriptions through nestedEmbedCodeLevel
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βi defined in: 23, 24, 27, 31. γ defined in: 23, 24, 27, 31.
η defined in: 25, 26, 28, 29, 30. κ defined in: 24, 25, 26, 27, 28, 29, 31, 30.

δ defined in: 26, 27, 28, 29, 31, 30. σ defined in: 29, 31, 30.

limitElement

LimitTypeInfo Ordinal X 1 2

The following is at code level cantorCodeLevel (Section 6) and above.
paramSucc ωω+12 C ωω+11 ωω+112

The following is at code level finiteFuncCodeLevel (Section 8) and above.
paramLimit ϕ(ω, 0) FL ε0 ϕ(2, 0)
paramSuccZero ϕ(ω + 12, 0, 0) FB ϕ(ω + 11, 1, 0) ϕ(ω + 11, ϕ(ω + 11, 1, 0) + 1, 0)
paramsSucc ϕ(ω + 2, 5, 3) FD ϕ(ω + 2, 5, 2) ϕ(ω + 2, 4, ϕ(ω + 2, 5, 2) + 1)
paramNxtLimit ϕ(ε0, 0, 0, 33) FN ϕ(ω, ϕ(ε0, 0, 0, 32) + 1, 0, 33) ϕ(ωω , ϕ(ε0, 0, 0, 32) + 1, 0, 33)

The following is at code level iterFuncCodeLevel (Section 9) and above.
functionSucc ϕ11 IG ϕ10(ϕ10 + 1) ϕ10(ϕ10 + 1, 0)
functionNxtSucc ϕ5(4) II ϕ5(3) + 1 ϕ4(ϕ5(3) + 1, 0)
functionLimit ϕϕ(4,0,0) IJ ϕϕ(3,1,0)+1 ϕϕ(3,ϕ(3,1,0)+1,0)+1

functionNxtLimit ϕω(15) IK ϕ1(ϕω(14) + 1) ϕ2(ϕω(14) + 1)
The following is at code level admisCodeLevel (Section 11) and above.

drillDownLimit [[2]]ω3[ω] DCAL [[2]]ω3[1] [[2]]ω3[2]
drillDownSucc [[2]]ω3[5] DCES [[2]]ω3[4] [[2]]ω2,[[2]]ω3[4]+1

drillDownSuccCKOne ω1[2] DDCO ω1[1] ϕω1[1]+1

drillDownSuccEmbed [[3]]ω5[[7]] DCCS [[3]]ω5[[6]] [[3]]ω5[[[3]]ω5[[6]]]
drillDownOne [[3]]ωω+5[1] DCDO [[3]]ωω+4 [[3]]ωω+4,[[3]]ωω+4+1

drillDownOneEmbed [[3]]ωω+5[[1]] DCBO ω [[3]]ωω+5[ω]
drillDownCKOne ω1[1] DDBO ω ϕω
indexCKlimit ωωω LCBL ωω ωω2

indexCKsuccParam [[3]]ω12(7) LCDP [[3]]ω12(6) [[3]]ω11,[[3]]ω12(6)+1(6)

indexCKsuccParamEq [[12]]ω12(7) LECK [[12]]ω12(6) ω11,[[12]]ω12(6)+1

indexCKsuccEmbed [[2]]ω2 LEDE [[2]]ω2[[1]] [[2]]ω2[[2]]
indexCKsuccUn ωω+6 LEDC ωω+6[1] ωω+6[2]
indexCKlimitParamUn [[ω2 + 1]]ωωω (5) LCEL [[ω2 + 1]]ωω2+ω+1,[[ω2+1]]ωωω (4)+1 [[ω2 + 1]]ωω22+1,[[ω2+1]]ωωω (4)+1

indexCKlimitEmbed [[12]]ωω2 LEEE [[12]]ωω+12 [[12]]ωω2+12

The following is at code level nestedEmbedCodeLevel (Section 12) and above.
leastIndexLimit [[10, 20︷ω]]ω20 NEF [[10, 20︷1]]ω20 [[10, 20︷2]]ω20

leastLevelLimit [[12︷3, ω12]]ωω12 NEG [[12︷3, ω12[1] + 12]]ωω12[1]+12 [[12︷3, ω12[2] + 12]]ωω12[2]+12

leastIndexSuccParam [[12︷20]]ω12(4) PLED [[12︷20]]ω12(3) [[12︷19]]ω[[12︷20]]ω12(3)

leastLevelSuccParam [[3, 4]]ω4(4) PLEE [[3, 4]]ω4(3) [[3, 3︷[[3, 4]]ω4(3) + 1]]ω4

leastIndexLimitParam [[34︷ω]]ω34(6) NEB [[34︷1]]ω34,[[34︷ω]]ω34(5)+1 [[34︷2]]ω34,[[34︷ω]]ω34(5)+1

leastLevelLimitParam [[3, ω3]]ωω3 (4) NEC [[3, ω3[1] + 3]]ωω3[1]+3,[[3,ω3]]ωω3
(3)+1 [[3, ω3[2] + 3]]ωω3[2]+3,[[3,ω3]]ωω3

(3)+1

Table 69: limitElement and LimitTypeInfo examples through nestedEmbedCodeLevel
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13 NestedEmbedOrdinal class

class NestedEmbedOrdinal partially fills the gaps in the countable admissible hierarchy as
defined by the AdmisLevOrdinal class in Section 11 and discussed in Section 12.1. class

NestedEmbedOrdinal is derived from AdmisLevOrdinal and its base classes. As always
the ordinal notations it defines can be used in all the base classes it is derived from down to
Ordinal.

C++ class NestedEmbedOrdinal uses the notation in expressions 29 through 31. In
the ordinal calculator the ‘︷’ character is replaced with ‘/’. Examples of this are shown in
Table 70. The parameter to the left of ‘︷’ is referred to as the level and the one to the right
as the index. The number of entries in the prefix in double square brackets is the number of
δi︷σi pairs. The level or δi cannot be 0. The index (and ︷) are omitted if σi = 0.

The class for a single term of a NestedEmbedOrdinal is NestedEmbedNormalElement.
It is derived from AdmisNormalElement and its base classes.

Only the prefix in double square brackets is new. All other NestedEmbedOrdinal param-
eters are the same as those in AdmisLevOrdinals. The prefix parameters must either include
two δi︷σi entries with a non zero value for level or one entry with a nonzero value for both the
level and index. If this condition is not met than the notation defines an AdmisLevOrdinal.

The NestedEmbedNormalElement class should not be used directly to create ordinal
notations. Instead use function nestedEmbedFunctional. Often the easiest way to define
an ordinal at this level is interactively in the ordinal calculator. The command ‘cppList’
can generate C++ code for any ordinals defined interactively. Some examples are shown in
Figure 5. This figure is largely self explanatory except for the classes IndexedLevel and
NestedEmbeddings used to define the double bracketed prefix. IndexedLevel is a δi︷σi pair.
NestedEmbeddings is a class containing an array of pointers to IndexedLevels and a flag
that indicates if the drillDown suffix has double square brackets.

13.1 compare member function

NestedEmbedNormalElement::compare is called from a notation for a single term in the
form of expressions 29 through 31. It compares the CantorNormalElement parameter,
trm, against the NestedEmbedNormalElement instance compare is called from. As with
AdmisLevOrdinals and its base classes, the work of comparing Ordinals with multiple
terms is left to the Ordinal and OrdinalImpl base class functions which call the virtual

functions that operate on a single term.
NestedEmbedNormalElement::compare, with a CantorNormalElement and an ignore

factor flag as arguments, overrides AdmisNormalElement::compare with the same arguments
(see Section 11.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to
or less than its argument. There are two versions of NestedEmbedNormalElement::compare
the first has two arguments as described above. The second is for internal use only and
has two additional context arguments. the context for the base function and the context
for the argument. The context is expanded from that in Section 11.1 using an expanded
base class NestedEmbeddings from Embeddings. The expanded version includes the entire
double square bracketed prefix in force at this stage of the compare.

compare first checks if its argument’s codeLevel is > nestedEmbedCodeLevel. If so
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//a = [[w + 1, w + 1/1]]omega_{ w + 1}[ 1]

static const IndexedLevel * const a0IndexedLevel[]= {

new IndexedLevel(( * new Ordinal(expFunctional(Ordinal::one).getImpl()

.addLoc(Ordinal::one))) ,Ordinal::zero),

new IndexedLevel(( * new Ordinal(expFunctional(Ordinal::one).getImpl()

.addLoc(Ordinal::one))) ,Ordinal::one),

NULL

};

const Ordinal& a = nestedEmbedFunctional(

( * new Ordinal(expFunctional(Ordinal::one).getImpl()

.addLoc(Ordinal::one))),

Ordinal::zero,

(* new NestedEmbeddings( a0IndexedLevel, false)),

NULL,

Ordinal::one

)

;

//b = [[1, 1/1]]omega_{ 1}[ 1]

static const IndexedLevel * const b1IndexedLevel[]= {

new IndexedLevel(Ordinal::one ,Ordinal::zero),

new IndexedLevel(Ordinal::one ,Ordinal::one),

NULL

};

const Ordinal& b = nestedEmbedFunctional(

Ordinal::one,

Ordinal::zero,

(* new NestedEmbeddings( b1IndexedLevel, false)),

NULL,

Ordinal::one

)

;

Figure 5: Defining NestedEmbedOrdinals with cppList
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Interpreter code Ordinal notation

[[1, 2]]w { 2} [[1, 2]]ω2

[[1/1]]w { 1} [[1︷1]]ω1

[[1/1]]w { 1}[ 5] [[1︷1]]ω1[5]
[[1/1]]w { 1}[[ 12]] [[1︷1]]ω1[[12]]
[[1, 1/1]]w { 1}[ 1] [[1, 1︷1]]ω1[1]
[[1, w]]w { w} [[1, ω]]ωω
[[1, 2/1]]w { 2} [[1, 2︷1]]ω2

[[1, 2/w]]w { 2} [[1, 2︷ω]]ω2

[[1, 2/w]]w { w} [[1, 2︷ω]]ωω
[[3, 12]]w { w} [[3, 12]]ωω
[[1/1, 1/2]]w { 1} [[1︷1, 1︷2]]ω1

[[1, 2]]w { 2}[ 1] [[1, 2]]ω2[1]
[[1, 2]]w { 2}[[ 8]] [[1, 2]]ω2[[8]]
[[1, 1/1]]w { 1}[ 31] [[1, 1︷1]]ω1[31]
[[2, 2/1]]w { 20}[ 1] [[2, 2︷1]]ω20[1]
[[1, 2, 3, 4/1]]w { 4}[ 1] [[1, 2, 3, 4︷1]]ω4[1]
[[w + 1/1]]w { w + 1}[ 1] [[ω + 1︷1]]ωω+1[1]
[[1, 2, 2/5, w + 1]]w { w + 12}[ 1] [[1, 2, 2︷5, ω + 1]]ωω+12[1]
[[w + 1, w + 1/1]]w { w + 1}[ 1] [[ω + 1, ω + 1︷1]]ωω+1[1]

Table 70: NestedEmbedOrdinal interpreter code examples

it calls a higher level routine by calling its argument’s member function. The code level
of the class object that NestedEmbedNormalElement::compare is called from should be
nestedEmbedCodeLevel.

The prefix list of δi︷σi pairs (from expressions 29 through 31) makes comparisons context
sensitive just as the δ prefix does for an AdmisNormalElement. This context is passed as the
nestedEmbeddings member variable of a NestedEmbedNormalElement. The same structure
can also be reference as embeddings in the AdmisNormalElement base class. The context
is relevant to comparisons of internal parameters of two notations being compare. Thus
the context sensitive version of compare passes embeddings to compares that are called
recursively.

The context sensitive version of the virtual function compare has four arguments.

• const OrdinalImpl& embdIx — the context for the base class object from which
this compare originated.

• const OrdinalImpl& termEmbdIx — the context of the CantorNormalElement term
at the start of the compare.

• const CantorNormalElement& trm — the term to be compared at this point in the
comparison tree.

• bool ignoreFactor — an optional parameter that defaults to false and indicates
that an integer factor is to be ignored in the comparison.
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As with compare for AdmisLevOrdinals and its base classes. this function depends on
the getMaxParameter() that returns the maximum value of all the parameters (except η
and the list of δ︷σ pairs) in expressions 29 through 31.

The logic of NestedEmbedNormalElement::compare with the above four parameters is
summarized in Table 72. This is an extension of Table 48 and uses definitions from that
table and depends on the NestedEmbeddings::compare function.

13.2 class NestedEmbeddings

NestedEmbeddings is defined within class NestedEmbedNormalElement using the base class
Embeddings. It contains the list of δi︷σi pairs and a flag Embeddings::isDrillDownEmbed

indicating if the prefix is [η] (returns false) or [[η]] (returns true). It contains a variety of
other flags and functions to facilitate operations on Embeddings and NestedEmbeddings. Of
particular importance is the ability to compare the size of two Embeddings and to find the
nextLeast most significant index (assuming the least significant parameter is not a limit).
These latter two routines are documented next.

13.2.1 compare member function

compare with a single parameter of class Embeddings is a virtual function of both
NestedEmbeddings and its base class. It returns 1, 0 or -1 if its argument is less than,
equal to or greater than the NestedEmbeddings instance it is called from. The comparison
starts with the most significant δ in the list of δ︷σ pairs in the notation prefixes. If they
are not equal the result of this comparison is returned. If not the counts of δ values are
compared. If they are not equal the difference is returned. If not, the σs paired with the
first δs are compared. Again if a there is a difference that result is returned. If the first pairs
are identical the same test is applied to the second pair. This is repeated until there is no
further δ or σ to check in one or both pairs. If this is true of only one prefix then the other
pair is greater. If it is true of both they are equal.

When checking against an argument that is of only type Embeddings there is at most a
single δ value to compare. If there is no δ value to compare -1 is returned. If the two δs are
equal +1 is returned. Otherwise the difference is returned.

13.2.2 nextLeast member function

This is a member function of both classes Embeddings and NestedEmbeddings but it is
only used at the nestedEmbedCodeLevel and above. It computes the next smallest version
of NestedEmbeddings or Embeddings consistent with the the restrictions on notations that
immediately follow expressions 29 to 31. It also sets an enum howCreated. This is used in
Table 74.

13.3 limitElement member function

NestedEmbedNormalElement::limitElement overrides base functions starting with
AdmisNormalElement::limitElement (see Section 11.2). It operates on a single term of
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Symbol Meaning

effEbd effectiveEmbedding(embed)

effectiveEmbedding returns the maximum embedding of self and parameter
embedding the [[]] prefix of an ordinal notation
embed embedding parameter for object compare is called from
embIx embedIndex from effEbd

nestEmbed nestedEmbeddings

termEmbed embedding for compare paramemeter trm
trmEffEbd trm.effectiveEmbeddings(termEmbed)

trmIxCK indexCK parameter of trm
trmPmRst termParamRestrict (term has nonzero embedding)

Table 71: Symbols used in compare Table 72

See tables 47 and 71 for symbol definitions.
Comparisons use Embeddings context for both operands.

Value is ord.compare(trm) = -1, 0 or 1 if ord <,= or > trm

X Condition Value
NEA1 (diff = parameterCompare(trm))6= 0 diff

NEA2 ((diff = nestEmbed.compare(trmEffEbd))6= 0) ∧ trmPmRst diff

NEA3 trm.codeLevel < admisCodeLevel 1
NEA4 trm.codeLevel > nestedEmbedCodeLevel

diff=-trm.compare(*this) diff

NECA (diff=(trmIxCK.compare(embIx)≥0)?-1:1) 6= 0
!trmPrmRst diff

NECZ diff = AdmisNormalElement::compareCom(trm) (see Table 49)
if none of the above conditions are met diff

Table 72: NestedEmbedNormalElement::compare summary
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the normal form expansion and does the bulk of the work. It takes a single integer param-
eter. Increasing values for the argument yield larger ordinal notations as output. In this
version, as in AdmisNormalElement::limitElement, the union of the ordinals represented
by the outputs for all integer inputs are not necessarily equal to the ordinal represented
by the NestedEmbedNormalElement class instance limitElement is called from. They are
equal if the limitType of this instance of NestedEmbedNormalElement is integerLimitType
(see Section 10.3).

As usual Ordinal::limitElement does the work of operating on all but the last term of
an Ordinal by copying all but the last term of the result unchanged from the input Ordinal.
The last term is generated based on the last term of the Ordinal instance limitElement is
called from.

limitElement calls drillDownLimitElement or drillDownLimitElementEq when there
is a nonzero value for the [] or [[]] suffix. The “Eq” version is called if κ == δm and the [[]]
prefix needs to be modified. It calls embedLimitElement in other cases where it is necessary
to modify the [[]] prefix. These four routines are outlined in tables 73 to 75. Each table
references a second table of examples using exit codes (column X) to connect lines in each
pair of tables.

One complication is addressed by routine AdmisNormalElement::increasingLimit. This
is required when κ or the least significant level in the embedding is a limit and needs to be
expanded. This routine selects an element from a sequence whose union is κ while insuring
that this does not lead to a value less than the effective δ. This selection must be chosen
so that increasing inputs produce increasing outputs and the output is always less than the
input. The same algorithm is used for limitOrd. See Note 73 on page 120 for a description
of the algorithm.
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α is a notation for one of expressions 29 to 31.
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η] [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ,γ(β1, β2, ..., βm)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]]

X Condition LimitTypeInfo α.le(n)

paramLimit

paramSuccZero

paramsSucc

paramNxtLimit

functionSucc

functionLimit

functionNxtLimit

functionNxtSucc AdmisNormalElement::

indexCKlimitParamUn limitElementCom(n)

NLA indexCKlimitEmbed See Table 53.
drillDownSucc

drillDownSuccCKOne

drillDownOne drillDownLimitElementEq(n)

NLB δm == κ drillDownCKOne See Table 74.
drillDownSucc

drillDownSuccCKOne AdmisNormalElement::
drillDownOne drillDownLimitElementCom(n)

NLC δm 6= κ drillDownCKOne See Table 55.
drillDownLimit

drillDownSuccEmbed AdmisNormalElement::

drillDownCKOne drillDownLimitElementCom(n)

NLC drillDownOneEmbed See Table 55.
indexCKlimit

indexCKsuccEmbed

indexCKsuccUn

leastIndexLimit

leastIndexLimitParam

leastLevelLimit

NLE leastLevelLimitParam See Table 75.
leastIndexSuccParam paramLimitElement(n)

NLP leastLevelSuccParam See Table 76.
See Table 77 for examples.

Table 73: NestedEmbedNormalElement::limitElement cases
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α is a notation from expression 29.
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η]

This expressions can also be written as: [[∆m]]ωκ[η]

The following satisfy η > 0∧ !σm.isLm ∧ (!σm.isZ ∨ !δm.isLm).
All entries assume sz==0∧(λ == 0) ∧ η.isSc ∧ !isDdEmb.
They use the [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m︷σ′m]] prefix (se or smallerEmbed) which is the
next smallest (nextLeast) Embeddings. See Section 13.2.2
All but the first entry initialize b and return this value when n == 1.
if (η==1) b =[[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m︷σ′m]]ωκ;
else b =[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωδm [η − 1];
(se.el == bel) is smallerEmbed.embedLevel == Embeddings::baseEmbedLevel

(se.el == bel) iff se is the prefix for an AdmisLevOrdinal.
The LimitTypeInfo options for this table are in the NLB exit code entry in Table 73.
The howCreated field is for an enum from class NestedEmbeddings. See Section 13.2.
X Condition(s) howCreated α.le(n)

if (η==1) b=[[δ′1]]ωκ
else b = [[δ1︷σ1, δ2︷σ2]]ωδm [η − 1]

DQA (se.el == bel) NA for (i=1;i<n:i++) b =[[δ′1]]ωb
indexDecr2 for(i=1;i<n.i++) b =

DQB indexDecr [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m︷σ′m]]ωb; Rtn b

for(i=1;i<n.i++) b =

levelDecrIndexSet [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m−1︷σ′m−1, δ
′
m]]ωb;

DQC δ′m.isLm levelDecr Rtn b

for(i=1;i<n.i++) b =

levelDecrIndexSet [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m−1︷σ′m−1, δ
′
m︷b.lp1]]ωκ;

DQD levelDecr Rtn b

for(i=1;i<n.i++) b =

DQE deleteLeast [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m︷σ′m]]ωb; Rtn b

See Table 78 for examples.

Table 74: NestedEmbedNormalElement::drillDownLimitElementEq cases
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Symbols used here and in Table 82
See Table 51 for additional symbols.

Symbol Meaning

le limitElement (see Table 73)
loa adjusted limitOrd or limitElement that takes

into account the constraints on κ, δ and σ from more
significant parameters. This is done with leUse (see Note 72)
and increasingLimit (see Note 73).

α is a notation for expression 29 with (η == 0) ∧ (γ == 0):
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ or [[∆m]]ωκ

See table 51 for additional symbol definitions.
The following α satisfies (η == 0) ∧ (γ == 0) ∧ (sz < 2)

X LimitTypeInfo α.le(n)

NEA indexCKsuccEmbed [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[n]]
b =[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(β1 − 1); Rtn

NEB leastIndexLimitParam [[δ1︷σ1, ..., δm−1︷σm−1, δm︷σm.loa(n)]]ωκ,b
b =[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(β1 − 1); Rtn

NEC leastLevelLimitParam [[δ1︷σ1, ..., δm−1︷σm−1, δm.loa(n)]]ωδm.loa(n),b

NEF leastIndexLimit [[δ1︷σ1, δ2︷σ2, ..., δm−1︷σm−1, δm︷σm.loa(n)]]ωκ
NEG leastLevelLimit [[δ1︷σ1, ..., δm−1︷σm−1.δm.loa(n)]]ωδm.loa(n)

See Table 79 for examples.

Table 75: NestedEmbedNormalElement::embedLimitElement cases
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α is a notation for one of expressions 29 to 31.
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[η] [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ,γ(β1, β2, ..., βm)

[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ[[η]]

All entries assume sz==1∧(λ == 0).
They initialize b = [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]κ(β1 − 1) and return this value if n == 1.
They use the [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m︷σ′m]] prefix (se or smallerEmbed) which is the
next smallest (nextLeast) Embeddings. See Section 13.2.2
(se.el == bel) is smallerEmbed.embedLevel == Embeddings::baseEmbedLevel

(se.el == bel) iff se is the prefix for an AdmisLevOrdinal.
dl is deleteLeast. hc is howCreated. nse is nestedSmallerEmbed, a version of se
in class NestedEmbeddings.
(nse.hc == dl) is true iff se was created by deleting the least significant δ︷σ pair.
X Conditions LimitTypeInfo α.le(n)

PLEB (se.el == bel) leastIndexSuccParam for (i=1;i<n;i++)b=[[δ′1]]ωδ′1,b.lp1; Rtn b

se.el6=bel∧ for (i=1;i<n:i++)b=

PLEC (nse.hc == dl) leastIndexSuccParam [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m−1︷σ′m−1]ωb; Rtn b

se.el6=bel∧ for (i=1;i<n:i++)b=

PLED nse.hc 6= dl leastIndexSuccParam [[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m−1︷σ′m−1]ωb; Rtn b

for (i=1;i<n:i++)b =

[[δ′1︷σ′1, δ′2︷σ′2, ..., δ′m−2︷σ′m−2, δm−1︷b.lp1]]
PLEE se.el6=bel leastLevelSuccParam ωκ; Rtn b

See Table 80 for examples.

Table 76: AdmisNormalElement::paramLimitElement cases
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13.4 isValidLimitOrdParam and maxLimitType member functions

Neither of these routines are overridden at this code level. See Section 11.3 for a description
of isValidLimitOrdParam and Section 11.5 for a description of maxLimitType.

13.5 limitInfo, limitType and embedType member functions

Only limitInfo overrides base clase instances of these routined. NestedEmbedNormalElement::limitInfo
computes the new types of limits and does most of the computation of computing limitType.
See Table68 for a description of this and sections 11.3 and 11.4 for more about all these rou-
tines.

13.6 limitOrd member function

As described in Section 11.6
NestedEmbedNormalElement::limitOrd extends the idea of limitElement as indirectly

enumerating all smaller ordinals. It does this in a limited way for ordinals that are not
recursive by using ordinal notations (including those yet to be defined) as arguments in
place of the integer arguments of limitElement. By defining recursive operations on an
incomplete domain we can retain something of the flavor of limitElement since: α =⋃
β : α.isValidLimitOrdParam(β) α.limitOrd(β) and α.isValidLimitOrdParam(β)→ β < α.

Table 82 gives the logic of NestedEmbedNormalElement::limitOrd along with the type
of limit designated by LimitInfoType and the exit code used in debugging. Table 65 gives
examples for each exit code. Table 84 gives values of emum LimitInfoType used by limitOrd

in a case statement along with examples. Usually limitOrd is simpler than limitElement

because it adds its argument as a [η] or [[η]] parameter to an existing parameter. Sometimes
it must also decrement a successor ordinal and incorporate this in the result. The selection of
which parameter(s) to modify is largely determined by a case statement on LimitInfoType.
There are some additional examples in Table 67.

13.7 fixedPoint member function

The algorithm is similar to that in AdmisNormalElement::fixedPoint in Section 11.7. The
two differences are that this
tt static function accepts parameter a NestedEmbeddings instead of Embeddings and it has
a final reference to a pointer to an ordinal that is used to return the value of the fixed point
if one is found i. e. if true is returned.

14 Philosophical Issues

This approach to the ordinals has its roots in a philosophy of mathematical truth that rejects
the Platonic ideal of completed infinite totalities[5, 4]. It replaces the impredictivity inherent
in that philosophy with explicit incompleteness. It is a philosophy that interprets Cantor’s
proof that the reals are not countable as the first major incompleteness theorem. Cantor
proved that any formal system that meets certain minimal requirements must be incomplete,
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α is a notation for expression 29 with η = 0:
[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ or [[∆m]]ωκ

See tables 75 and 51 for symbol definitions.
X Info α.limitOrd(ζ)

NOA indexCKlimit [[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ.loa(ζ)

NOB leastIndexLimit [[δ1︷σ1, ..., δm−1︷σm−1, δm︷σm.loa(ζ)]]ωκ
NOC leastLevelLimit [[δ1︷σ1, ..., δm−1︷σm−1, δm.loa(ζ)]]ωδm.loa(ζ)

b =[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(β1 − 1); Rtn

NOD leastLevelLimitParam [[δ1︷σ1, ..., δm−1︷σm−1, δm.loa(ζ)]]ωδm.loa(ζ),b.lp1

b =[[δ1︷σ1, δ2︷σ2, ..., δm︷σm]]ωκ(β1 − 1); Rtn

NOF leastIndexLimitParam [[δ1︷σ1, ..., δm−1︷σm−1, δm︷σm.loa(ζ)]]ωκ,b.lp1
paramLimit

paramNxtLimit

functionLimit

functionNxtLimit

drillDownLimit

indexCKsuccEmbed

indexCKlimitEmbed AdmisNormalElement::limitElementCom(n)

NOG indexCKlimitParamUn See Table 64.
See Table 83 for examples.

Table 82: NestedEmbedNormalElement::limitOrd cases

because it can always be expanded by consistently adding more real numbers to it. This can
be done, from outside the system, by a Cantor diagonalization of the reals definable within
the system.

Because of mathematics’ inherent incompleteness, it can always be expanded. Thus it is
consistent but, I suspect, incorrect to reason as if completed infinite totalities exist. This
does not mean that an algebra of infinities or infinitesimals is not useful. As long as they
get the same results as reasoning about the potentially infinite they may be of significant
practical value.

The names of all the reals provably definable in any finite (or recursively enumerable)
formal system must be recursively enumerable, as Löwenheim and Skolem observed in the
theorem that bears their names. Thus one can consistently assume the reals in a consistent
formal system that meets other requirements form a completed totality, albeit one that is not
recursively enumerable within the system.

The current philosophical approach to mathematical truth has been enormously success-
ful. This is the most powerful argument in support of it. However, I believe the approach,
that was so successful in the past, is increasingly becoming a major obstacle to mathematical
progress. If mathematics is about completed infinite totalities, then computer technology is
of limited value in expanding the foundations. For computers are restricted to finite opera-
tions in contrast to the supposed human ability to transcend the finite through pure thought
and mathematical intuition. Thus the foundations of mathematics is perhaps the only major
scientific field where computers are not an essential tool for research. An ultimate goal of
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X is an exit code (see Table 82). upX is a higher level exit code from a calling routine.
X UpX α β α.limitOrd(β)

LOD NOG [[2︷5, ω4]]ωω5 ω [[2︷5, ω4]]ωω5[ω]+ω4

LOD NOG [[ωω12 + 1, ωω15 ]]ωωωω+1
ω1 [[ωω12 + 1, ωω15 ]]ωωωω+1[ω1]+ωω15

LOD NOG [[ωω12 + 1, ωω15 ]]ωωωω+1
ω1 + ω [[ωω12 + 1, ωω15 ]]ωωωω+1[ω1+ω]+ωω15

LOD NOG [[ωω12 + 1, ωω15 ]]ωωωω+1
ω1 + ω + 12 [[ωω12 + 1, ωω15 ]]ωωωω+1[ω1+ω+12]+ωω15

LOD NOG [[2, 5︷ω1]]ωω12 ω [[2, 5︷ω1]]ωω12[ω]+5

LOD NOG [[2︷5, ω4]]ωω5 ω [[2︷5, ω4]]ωω5[ω]+ω4

NOB [[3, 4︷ω1]]ω4 ω [[3, 4︷ω1[ω]]]ω4

NOB [[3︷56, 5︷7, 8︷ω3]]ω8 ω1 [[3︷56, 5︷7, 8︷ω3[ω1]]]ω8

NOB [[3︷56, 5︷7, 8︷ω3]]ω8 ω1 + ω [[3︷56, 5︷7, 8︷ω3[ω1 + ω]]]ω8

NOB [[3︷56, 5︷7, 8︷ω3]]ω8 ω1 + ω + 12 [[3︷56, 5︷7, 8︷ω3[ω1 + ω + 12]]]ω8

NOB [[4, 4︷ω1]]ω4 ω [[4, 4︷ω1[ω]]]ω4

NOB [[12︷5, 12︷ω2]]ω12 ω1 [[12︷5, 12︷ω2[ω1]]]ω12

NOB [[12︷5, 12︷ω2]]ω12 ω1 + ω [[12︷5, 12︷ω2[ω1 + ω]]]ω12

NOB [[12︷5, 12︷ω2]]ω12 ω1 + ω + 12 [[12︷5, 12︷ω2[ω1 + ω + 12]]]ω12

NOC [[3, ω2]]ωω2 12 [[3, ω2[12] + 3]]ωω2[12]+3

NOC [[3, ω2]]ωω2 ω [[3, ω2[ω]]]ωω2[ω]

NOC [[3, ω2]]ωω2 ω1 [[3, ω2[ω1]]]ωω2[ω1]

NOC [[3, ω2]]ωω2 ω1 + ω [[3, ω2[ω1 + ω]]]ωω2[ω1+ω]

NOC [[3, ω2]]ωω2 ω1 + ω + 12 [[3, ω2[ω1 + ω + 12]]]ωω2[ω1+ω+12]

LOF NOG [[3︷1, 5]]ω5 ω1 [[3︷1, 5]]ω5[[ω1]]
LOF NOG [[3︷1, 5]]ω5 ω1 + ω [[3︷1, 5]]ω5[[ω1 + ω]]
LOF NOG [[3︷1, 5]]ω5 ω1 + ω + 12 [[3︷1, 5]]ω5[[ω1 + ω + 12]]
LOD [[3]]ωω2 ω1 [[3]]ωω2[ω1]+3

LOD [[3]]ωω2 ω1 + ω [[3]]ωω2[ω1+ω]+3

LOD [[3]]ωω2 ω1 + ω + 12 [[3]]ωω2[ω1+ω+12]+3

LOF [[4]]ω6 ω1 [[4]]ω6[[ω1]]
LOF [[4]]ω6 ω1 + ω [[4]]ω6[[ω1 + ω]]
LOF [[4]]ω6 ω1 + ω + 12 [[4]]ω6[[ω1 + ω + 12]]
LOA [[4]]ω6[[[[3]]ωω2 ]] ω1 [[4]]ω6[[[[3]]ωω2[ω1]+3]]
LOA [[4]]ω6[[[[3]]ωω2 ]] ω1 + ω [[4]]ω6[[[[3]]ωω2[ω1+ω]+3]]
LOA [[4]]ω6[[[[3]]ωω2 ]] ω1 + ω + 12 [[4]]ω6[[[[3]]ωω2[ω1+ω+12]+3]]
OFB NOG [[4︷1, 5]]ω5(ω4) ω1 [[4︷1, 5]]ω5(ω4[ω1] + 1)
OFB NOG [[4︷1, 5]]ω5(ω4) ω1 + ω [[4︷1, 5]]ω5(ω4[ω1 + ω] + 1)
OFB NOG [[4︷1, 5]]ω5(ω4) ω1 + ω + 12 [[4︷1, 5]]ω5(ω4[ω1 + ω + 12] + 1)

Table 83: NestedEmbedNormalElement::limitOrd examples
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βi defined in: 23, 24, 27, 31. γ defined in: 23, 24, 27, 31.
η defined in: 25, 26, 28, 29, 30. κ defined in: 24, 25, 26, 27, 28, 29, 31, 30.

δ defined in: 26, 27, 28, 29, 31, 30. σ defined in: 29, 31, 30.

LimitTypeInfo Ordinal limitType Ordinal limitType

The following is at code level finiteFuncCodeLevel (Section 8) and above.
paramLimit ϕ(ω, 0) 1 [[12]]ωω(ω4) 5
paramNxtLimit ϕ(ε0, 0, 0, 33) 1 ω12(ω11, 0, 0, 3) 12

The following is at code level iterFuncCodeLevel (Section 9) and above.
functionLimit ϕϕ(4,0,0) 1 [[20]]ωω+12,ωω+10

20
functionNxtLimit ϕω(15) 1 [[ωω + 1]]ωωε0 ,ωε0+3

(ω + 5) ωω

The following is at code level admisCodeLevel (Section 11) and above.
drillDownLimit [[2]]ω3[ω] 1 ωω+1[ω12] 13

indexCKlimit ωωω 1 ωω
ωωε0+1

+1
ωω

ε0+1

+ 1

indexCKsuccEmbed [[2]]ω2 2 [[3]]ωω+4 3
indexCKsuccUn ωω+6 ω + 6 ωωϕ(ω,0,0)+1 ωϕ(ω,0,0) + 1

indexCKlimitParamUn [[ω2 + 1]]ωωω (5) 1 [[ω2 + 9]]ωωω12
(3) 13

indexCKlimitEmbed [[12]]ωω2 1 [[ϕ(ωω12
+ 1, 0, 0) + 1]]ωωω20+1

ω20 + 1

The following is at code level nestedEmbedCodeLevel (Section 12) and above.
leastIndexLimit [[10, 20︷ω]]ω20 1 [[ω + 2︷4, ω + 3︷ω3]]ωω+3 4
leastLevelLimit [[12︷3, ω12]]ωω12 12 [[ω + 1︷10, ω12]]ωω12 13
leastIndexLimitParam [[34︷ω]]ω34(6) 1 [[1︷ω3]]ω1(ωω + 1) 1
leastLevelLimitParam [[3, ω3]]ωω3

(4) 3 [[12, ω]]ωω(3) 1

Table 84: limitOrd and LimitTypeInfo examples through nestedEmbedCodeLevel

this research is to help to change that perspective and the practical reality of foundations
research in mathematics.

Since all ordinals beyond the integers are infinite they do not correspond to anything in
the physical world. Our idea of all integers comes from the idea that we can define what an
integer is. The property of being an integer leads to the idea that there is a set of all objects
satisfying the property. An alternative way to think of the integers is computationally.
We can write a computer program that can in theory output every integer. Of course
real programs do not run forever, error free, but that does not mean that such potentially
infinite operations as a computer running forever lack physical significance. Our universe
appears to be extraordinarily large, but finite. However, it might be potentially infinite.
Cosmology is of necessity a speculative science. Thus the idea of a potentially infinite set of
all integers, in contrast to that of completed infinite totalities, might have objective meaning
in physical reality. Most of standard mathematics has an interpretation in an always finite
but potentially infinite universe, but some questions, such as the continuum hypothesis do
not. This meshes with increasing skepticism about whether the continuum hypothesis and
other similar foundations questions are objectively true or false as Solomon Feferman and
others have suggested[15].

Appendix A is a first attempt at translating these ideas into a restricted formalization of
ZF. This appendix provides additional disussion of the philosophy underlying this approach.

Subsets of the integers are the Gödel numbers of TMs that satisfy a logically determined
property.
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A Formalizing objective mathematics

A.1 Introduction

Objective mathematics attempts to distinguishes between statements that are objectively
true or false and those that are only true, false or undecidable relative to a particular
formal system. This distinction is based on the assumption of an always finite but perhaps
potentially infinite universe76. This is a return to the earlier conception of mathematical
infinity as a potential that can never be realized. This is not to ignore the importance and
value of the algebra of the infinite that has grown out of Cantor’s approach to mathematical
infinity. It does suggest a reinterpretation of those results in terms of the countable models
implied by the Löwenheim-Skolem theorem. It also suggests approaches for expanding the
foundations of mathematics that include using the computer as a fundamental research tool.
These approaches may be more successful at gaining wide spread acceptance than large
cardinal axioms which are far removed from anything physically realizable.

A.1.1 The mathematics of recursive processes

A core idea is that only the mathematics of finite structures and properties of recursive
processes is objective. This does not include uncountable sets, but it does include much
of mathematics including some statements that require quantification over the reals[5]. For
example, the question of whether a recursive process defines a notation for a recursive ordinal
requires quantification over the reals to state but is objective.

Loosely speaking objective properties of recursive processes are those logically determined
by a recursively enumerable sequence of events. This cannot be precisely formulated, but one
can precisely state which set definitions in a formal system meet this criteria (see Section A.7).

The idea of objective mathematics is closely connected to generalized recursion theory.
The latter starts with recursive relations and expands these with quantifiers over the integers
and reals. As long as the relations between the quantified variable are recursive, the events
that logically determine the result are recursively enumerable.

A.1.2 The uncountable

It is with the uncountable that contemporary set theory becomes incompatible with infinity
as a potential that can never be realized. Proving something is true for all entities that meet
some property does not require that a collection of all objects that satisfy that property exists.
Real numbers exist as potentially infinite sequences that are either recursively enumerable
or defined by a non computable, but still logically determined, mathematical expression.
The idea of the collection of all reals is closely connected with Cantor’s proof that the reals
are not countable. For that proof to work reals must exist as completed infinite decimal
expansions or some logically equivalent structure. This requires infinity as an actuality and
not just a potential.

76A potentially infinite universe is one containing a finite amount of information at any point in time but
with unbounded growth over time in its information content.
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This appendix is a first attempt to formally define which statements in Zermelo Frankel
set theory (ZF)[10] are objective. The goal is not to offer a weaker alternative. ZF has an
objective interpretation in which all objective questions it decides are correctly decided. The
purpose is to offer a new interpretation of the theory that seems more consistent with physical
reality as we know it. This interpretation is relevant to extending mathematics. Objective
questions have a truth value independent of any formal system. If they are undecidable in
existing axiom systems, one might search for new axioms to decide them. In contrast there
is no basis on which relative questions, like the continuum hypothesis, can be objectively
decided.

A.1.3 Expanding the foundations of mathematics

Defining objective mathematics may help to shift the focus for expanding mathematics away
from large cardinal axioms. Perhaps in part because they are not objective, it has not
been possible to reach consensus about using these to expand mathematics. An objective
alternative is to expand the hierarchy of recursive and countable ordinals by using computers
to deal with the combinatorial explosion that results[8].

Throughout the history of mathematics, the nature of the infinite has been a point of
contention. There have been other attempts to make related distinctions. Most notable
is intuitionism stated by Brouwer[2]. These approaches can involve (and intuitionism does
involve) weaker formal systems that allow fewer questions to be decidable and with more
difficult proofs. Mathematicians consider Brouwer’s approach interesting and even important
but few want to be constrained by its limitations. A long term aim of the approach of this
appendix is to define a formal system that is widely accepted and is stronger than ZF in
deciding objective mathematics.

A.2 Background

The most widely used formalization of mathematics, Zermelo Frankel set theory plus the
axiom of choice (ZFC)[10], gives the same existential status to every object from the empty
set to large cardinals. Finite objects and structures can exist physically. As far as we know
this is not true of any infinite objects. Our universe could be potentially infinite but it does
not seem to harbor actual infinities.

This disconnect between physical reality and mathematics has long been a point of con-
tention. One major reason it has not been resolved is the power of the existing mathematical
framework to solve problems that are relevant to a finite but potentially infinite universe and
that cannot be solved by weaker systems. A field of mathematics has been created, called
reverse mathematics, to determine the weakest formal system that can solve specific prob-
lems. There are problems in objective mathematics that have been shown to be solvable only
by using large cardinal axioms that extend ZF. This however has not resulted in widespread
acceptance of such axioms. For one thing there are weaker axioms (in terms of definability)
that could solve these problems. There do not exist formal systems limited to objective
mathematics that include such axioms77 in part because of the combinatorial complexity

77Axioms that assert the existence of large recursive ordinals can provide objective extensions to objective
formalizations of mathematics. Large cardinal axioms imply the existence of large recursive ordinals that
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they require. Large cardinal axioms are a simpler and more elegant way to accomplish the
same result, but one can prove that alternatives exist. Mathematics can be expanded at
many levels in the ordinal hierarchy. Determining the minimal ordinal that decides some
question is different from determining the minimum formal system that does so.

A.2.1 The ordinal hierarchy

Ordinal numbers generalize induction on the integers. As such they form the backbone of
mathematics. Every integer is an ordinal. The set of all integers, ω, is the smallest infinite
ordinal. There are three types of ordinals: 0 (or the empty set), successors and limits. ω is
the first limit ordinal. The successor of an ordinal is defined to be the union of the ordinal
with itself. Thus for any two ordinals a and b a < b ≡ a ∈ b. This is very convenient, but
it masks the rich combinatorial structure required to define finite ordinal notations and the
rules for manipulating them.

From an objective standpoint it is more useful to think of ordinals as properties of
recursive processes. The recursive ordinals are those whose structure can be enumerated by
a recursive process. For any recursive ordinal, R, on can define a unique sequence of finite
symbols (a notation) to represent each ordinal ≤ R. For these notations one can define a
recursive process that evaluates the relative size of any two notations and a recursive process
that enumerates the notations for all ordinals smaller than that represented by any notation.

Starting with the recursive ordinals there are many places where the hierarchy can be
expanded. It appears that the higher up the ordinal hierarchy one works, the stronger the
results that can be obtained for a given level of effort. However, I suspect, and history
suggests, that the strongest results will ultimately be obtained by working out the details at
the level of recursive and countable ordinals. These are the objective levels.

A.3 The true power set

Going beyond the countable ordinals with the power set axiom moves beyond objective
mathematics. No formal system can capture what mathematicians want to mean by the
true power set of the integers or any other uncountable set. This follows from Cantor’s proof
that the reals are not countable and the Löwenheim-Skolem theorem that established that
every formal system that has a model must have a countable model. The collection of all the
subsets of the integers provably definable in ZF is countable. Of course it is not countable
within ZF. The union of all sets provably definable by any large cardinal axiom defined now
or that ever can be defined in any possible finite formal system is countable. One way some
mathematicians claim to get around this is to say the true ZF includes an axiom for every
true real number asserting its existence. This is a bit like the legislator who wanted to pass
a law that π is 3 1/7. You can make the law but you cannot enforce it.

My objections to ZF are not to the use of large cardinal axioms, but to some of the philo-
sophical positions associated with them and the practical implications of those positions[4].

can solve many of the problems currently only solvable with large cardinals. However, deriving explicit
formulations of the recursive ordinals provably definable in ZF alone is a task that has yet to be completed.
With large cardinal axioms one implicitly defines larger recursive ordinals than those provably definable in
ZF.
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Instead of seeing formal systems for what they are, recursive processes for enumerating theo-
rems, they are seen by some as as transcending the finite limits of physical existence. In the
Platonic philosophy of mathematics, the human mind transcends the limitations of physical
existence with direct insight into the nature of the infinite. The infinite is not a potential
that can never be realized. It is a Platonic objective reality that the human mind, when
properly trained, can have direct insight into.

This raises the status of the human mind and, most importantly, forces non mental
tools that mathematicians might use into a secondary role. This was demonstrated when
a computer was used to solve the long standing four color problem because of the large
number of special cases that had to be considered. Instead of seeing this as a mathematical
triumph that pointed the way to leveraging computer technology to aid mathematics, there
were attempts to delegitimize this approach because it went beyond what was practical to
do by human mental capacity alone.

Computer technology can help to deal with the combinatorial explosion that occurs in
directly developing axioms for large recursive ordinals[8]. Spelling out the structure of these
ordinals is likely to provide critical insight that allows much larger expansion of the ordinal
hierarchy than is possible with the unaided human mind even with large cardinal axioms. If
computers come to play a central role in expanding the foundations of mathematics, it will
significantly alter practice and training in some parts of mathematics.

A.4 Mathematical Objects

In the philosophical framework of this appendix there are three types of mathematical ‘ob-
jects’:

1. finite sets,

2. properties of finite sets and

3. properties of properties.

Finite sets are abstract idealizations of what can exist physically.
Objective properties of finite sets, like being an even integer, are logically determined

human creations. Whether a particular finite set has the property follows logically from the
definition of the property. However, the property can involve questions that are logically
determined but not determinable. One example is the set of Gödel numbers of Turing Ma-
chines (TM)78 that do not halt. What the TM does at each time step is logically determined
and thus so is the question of whether it will halt, but, if it does not halt, there is no general
way to determine this. The non-halting property is objectively determined but not in general
determinable.

78There is overwhelming evidence that one can create a Universal Turing Machine that can simulate every
possible computer. Assuming this is true, one can assign a unique integer to every possible program for
this universal computer. This is called a Gödel number because Gödel invented this idea in a different, but
related, context a few years before the concept of a Universal Turing Machine was proposed.
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A.4.1 Properties of properties

The property of being a subset of the integers has led to the idea that uncountable collecitons
exist. No finite or countable formal system can capture what mathematicians want to mean
by the set of all subsets of the integers. One can interpret this as the human mind tran-
scending the finite or that mathematics is a human creation that can always be expanded.
The inherent incompleteness of any sufficiently strong formal system similarly suggests that
mathematics is creative.

A.4.2 Gödel and mathematical creativity

Gödel proved that any formalization of mathematics strong enough to embed the primitive
recursive functions (or alternatively a Universal Turing Machine) must be either incomplete
or inconsistent[13]. In particular such a system, will be able to model itself, and will not be
able to decide if this model of itself is consistent unless it is inconsistent.

This is often seen as putting a limit on mathematical knowledge. It limits what we can
be certain about in mathematics, but not what we can explore. A divergent creative process
can, in theory, pursue every possible finite formalization of mathematics as long as it does
not have to choose which approach or approaches are correct. Of course it can rule out those
that are discovered to be inconsistent or to have other provable flaws. This may seem to be
only of theoretical interest. However the mathematically capable human mind is the product
of just such a divergent creative process known as biological evolution.

A.4.3 Cantor’s incompleteness proof

One can think of Cantor’s proof (when combined with the Löwenheim-Skolem theorem) as
the first great incompleteness proof. He proved the properties defining real numbers can
always be expanded. The standard claim is that Cantor proved that there are “more” reals
than integers. That claim depends on each real existing as a completed infinite totality. From
an objective standpoint, Cantor’s proof shows that any formal system that meets certain
prerequisites can be expanded by diagonalizing the real numbers provably definable within
the system. Of course this can only be done from outside the system.

Just as one can always define more real numbers one can always create more objective
mathematics. One wants to include as objective all statements logically determined by a
recursively enumerable sequence of events, but that can only be precisely defined relative to
a particular formal system and will always be incomplete and expandable just as the reals
are.

A.5 Axioms of ZFC

The formalization of objectivity starts with the axioms of Zermelo Frankel Set Theory plus
the axiom of choice ZFC, the most widely used formalization of mathematics. This is not
the ideal starting point for formalizing objective mathematics but it is the best approach to
clarify where in the existing mathematical hierarchy objective mathematics ends. To that
end a restricted version of these axioms will be used to define an objective formalization of
mathematics.
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The following axioms are adapted from Set Theory and the Continuum Hypothesis[10]79.

A.5.1 Axiom of extensionality

Without the axiom that defines when two sets are identical (=) there would be little point
in defining the integers or anything else. The axiom of extensionality says sets are uniquely
defined by their members.

∀x∀y (∀z z ∈ x ≡ z ∈ y) ≡ (x = y)

This axiom80 says a pair of sets x and y are equal if and only if they have exactly the
same members.

A.5.2 Axiom of the empty set

The empty set must be defined before any other set can be defined.
The axiom of the empty set is as follows.

∃x∀y ¬(y ∈ x)

This axiom81 says there exists an object x that no other set belongs to. x contains
nothing. The empty set is denoted by the symbol ∅.

A.5.3 Axiom of unordered pairs

From any two sets x and y one can construct a set that contains both x and y. The notation
for that set is {x, y}.

∀x∀y ∃z ∀w w ∈ z ≡ (w = x ∨ w = y)

This says for every pair of sets x and y there exists a set w that contains x and y and no
other members. This is written as w = x ∪ y.

A.5.4 Axiom of union

A set is an arbitrary collection of objects. The axiom of union allows one to combine the
objects in many different sets and make them members of a single new set. It says one can
go down two levels taking not the members of a set, but the members of members of a set
and combine them into a new set.

∀x∃y ∀z z ∈ y ≡ (∃t z ∈ t ∧ t ∈ x)

79The axioms use the existential quantifier (∃) and the universal quantifier (∀). ∃x g(x) means there exists
some set x for which g(x) is true. Here g(x) is any expression that includes x. ∀x g(x) means g(x) is true of
every set x.

80a ≡ b means a and b have the same truth value or are equivalent. They are either both true or both
false. It is the same as (a→ b) ∧ (b→ a).

81The ‘¬’ symbol says what follow is not true.
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This says for every set x there exists a set y that is the union of all the members of x.
Specifically, for every z that belongs to the union set y there must be some set t such that t
belongs to x and z belongs to t.

A.5.5 Axiom of infinity

The integers are defined by an axiom that asserts the existence of a set ω that contains all
the integers. ω is defined as the set containing 0 and having the property that if n is in ω
then n+ 1 is in ω. From any set x one can construct a set containing x by constructing the
unordered pair of x and x. This set is written as {x}.

∃x ∅ ∈ x ∧ [∀y (y ∈ x)→ (y ∪ {y} ∈ x)]

This says there exists a set x that contains the empty set ∅ and for every set y that
belongs to x the set y + 1 constructed as y ∪ {y} also belongs to x.

The axiom of infinity implies the principle of induction on the integers.

A.5.6 Axiom scheme of replacement

The axiom scheme for building up complex sets like the ordinals is called replacement. They
are an easily generated recursively enumerable infinite sequence of axioms.

The axiom of replacement scheme describes how new sets can be defined from existing
sets using any relationship An(x, y) that defines y as a function of x. A function maps any
element in its range (any input value) to a unique result or output value.
∃ ! y g(y) means there exists one and only one set y such that g(y) is true. The axiom of

replacement scheme is as follows.

B(u, v) ≡ [∀y(y ∈ v ≡ ∃x[x ∈ u ∧ An(x, y)])]

[∀x∃ ! yAn(x, y)]→ ∀u∃v(B(u, v))

That first line defines B(u, v) as equivalent to y ∈ v if and only if there exists an x ∈ u
such that An(x, y) is true. One can think of An(x, y) as defining a function that may have
multiple values for the same input. B(u, v) says v is the image of u under this function.

This second line says if An defines y uniquely as a function of x then the for all u there
exists v such that B(u.v) is true.

This axioms says that, if An(x, y) defines y uniquely as a function of x, then one can
take any set u and construct a new set v by applying this function to every element of u and
taking the union of the resulting sets.

This axiom schema came about because previous attempts to formalize mathematics were
too general and led to contradictions like the Barber Paradox82. By restricting new sets to
those obtained by applying well defined functions to the elements of existing sets it was felt
that one could avoid such contradictions. Sets are explicitly built up from sets defined in safe
axioms. Sets cannot be defined as the universe of all objects satisfying some relationship.
One cannot construct the set of all sets which inevitably leads to a paradox.

82 The barber paradox concerns a barber who shaves everyone in the town except those who shave them-
selves. If the barber shaves himself then he must be among the exceptions and cannot shave himself. Such
a barber cannot exist.

157



A.5.7 Power set axiom

The power set axiom says the set of all subsets of any set exists. This is not needed for finite
sets, but it is essential to define the set of all subsets of the integers.

∀x∃y∀z[z ∈ y ≡ z ⊆ x]

This says for every set x there exists a set y that contains all the subsets of x. z is a
subset of x (z ⊆ x) if every element of z is an element of x.

The axiom of the power set completes the axioms of ZF or Zermelo Frankel set theory.
From the power set axiom one can conclude that the set of all subsets of the integers exists.
From this set one can construct the real numbers.

This axioms is necessary for defining recursive ordinals which is part of objective math-
ematics. At the same time it allows for questions like the continuum hypothesis that are
relative. Drawing the line between objective and relative properties is tricky.

A.5.8 Axiom of Choice

The Axiom of Choice is not part of ZF. It is however widely accepted and critical to some
proofs. The combination of this axiom and the others in ZF is called ZFC.

The axiom states that for any collection of non empty sets C there exists a choice function
f that can select an element from every member of C. In other words for every e ∈ C
f(e) ∈ e.

∀C∃f∀e[(e ∈ C ∧ e 6= ∅)→ f(e) ∈ e]

A.6 The axioms of ZFC summary

1. Axiom of extensionality (See Section A.5.1).

∀x∀y (∀z z ∈ x ≡ z ∈ y) ≡ (x = y)

2. Axiom of the empty set (See Section A.5.2).

∃x∀y ¬(y ∈ x)

3. Axiom of unordered pairs (See Section A.5.3).

∀x∀y ∃z ∀w w ∈ z ≡ (w = x ∨ w = y)

4. Axiom of union (See Section A.5.4).

∀x∃y ∀z z ∈ y ≡ (∃t z ∈ t ∧ t ∈ x)

5. Axiom of infinity (See Section A.5.5).

∃x ∅ ∈ x ∧ [∀y (y ∈ x)→ (y ∪ {y} ∈ x)]
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6. Axiom schema of replacement (See Section A.5.6).

B(u, v) ≡ [∀y(y ∈ v ≡ ∃x[x ∈ u ∧ An(x, y)])]

[∀x∃ ! yAn(x, y)]→ ∀u∃v(B(u, v))

7. Axiom of the power set (See Section A.5.7).

∀x∃y∀z[z ∈ y ≡ z ⊆ x]

8. Axiom of choice (See Section A.5.8).

∀C∃f∀e[(e ∈ C ∧ e 6= ∅)→ f(e) ∈ e]

A.7 The Objective Parts of ZF

Objectivity is a a property of set definitions. Its domain is expressions within ZF (or any
formalization of mathematics) that define new sets (or other mathematical objects). A set
is said to be objective if it can be defined by an objective statement.

The axiom of the empty set and the axiom of infinity are objective. The axiom of
unordered pairs and the axiom of union are objective when they define new sets using only
objective sets. The power set axiom applied to an infinite set is not objective and it is
unnecessary for finite sets.

A limited version of the axiom of replacement is objective. In this version the formulas
that define functions (the An in this appendix) are limited to recursive relations on the bound
variables and objective constants. Both universal and existential quantifiers are limited to
ranging over the integers or subsets of the integers. Without the power set axiom, the subsets
of the integers do not form a set. However the property of being a subset of the integers

S(x) ≡ ∀yy ∈ x→ y ∈ ω

can be used to restrict a bound variable.
Quantifying over subsets of the integers suggests searching through an uncountable num-

ber of sets. However, by only allowing a recursive relation between bound variables and
objective constants, one can enumerate all the events that determine the outcome. A com-
puter program that implements a recursive relationship on a finite number of subsets of the
integers must do a finite number of finite tests so the result can be produced in a finite time.
A nondeterministic computer program83 can enumerate all of these results. For example the
formula

∀rS(r)→ ∃n(n ∈ ω → a(r, n))

83In this context nondeterministic refers to a a computer that simulates many other computer programs
by emulating each of them and switching in time between them in such a way that every program is
fully executed. The emulation of a program stops only if the emulated program halts. The programs
being emulated must be finite or recursively enumerable. In this context nondeterministic does not mean
unpredictable.
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is determined by what a recursive process does for every finite initial segment of every
subset of the integers84. One might think of this approach as a few steps removed from
constructivism. One does not need to produce a constructive proof that a set exists. One
does need to prove that every event that determines the members of the set is constructible.

A.8 Formalization of the Objective Parts of ZF

Following are axioms that define the objective parts of ZF as outlined in the previous section.
The purpose is not to offer a weaker alternative to ZF but to distinguish the objective and
relative parts of that system.

A.8.1 Axioms unchanged from ZF

As long as the universe of all sets is restricted to objective sets the following axioms are
unchanged from ZF.

1. Axiom of extensionality

∀x∀y (∀z z ∈ x ≡ z ∈ y) ≡ (x = y)

2. Axiom of the empty set
∃x∀y ¬(y ∈ x)

3. Axiom of unordered pairs

∀x∀y ∃z ∀w w ∈ z ≡ (w = x ∨ w = y)

4. Axiom of union
∀x∃y ∀z z ∈ y ≡ (∃t z ∈ t ∧ t ∈ x)

5. Axiom of infinity
∃x ∅ ∈ x ∧ [∀y (y ∈ x)→ (y ∪ {y} ∈ x)]

A.8.2 Objective axiom of replacement

In the following An is any recursive relation in the language of ZF in which constants are
objectively defined and quantifiers are restricted to range over the integers (ω) or be restricted
to subsets of the integers. Aside from these restrictions on An, the objective active of
replacement is the same as it is in ZF.

B(u, v) ≡ [∀y(y ∈ v ≡ ∃x[x ∈ u ∧ An(x, y)])]

[∀x∃ ! yAn(x, y)]→ ∀u∃v(B(u, v))

84Initial segments of subsets of the integers are ordered and thus defined by the size of the integers.
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A.9 An Objective Interpretation of ZFC

I suspect it is consistent to assume the power set axiom in ZF, because all subsets of the inte-
gers (and larger cardinals) that are provably definable in ZF form a definite, albeit countable,
collection. These are definite collections only relative to a specific formal system. Expand
ZF with an axiom like “there exists an inaccessible cardinal” and these collections expand.

Uncountable sets in ZF suggest how the objective parts of ZF can be expanded. Create
an explicitly countable definition of the countable ordinals defined by the ordinals that are
uncountable within ZF. Expand ZF to ZF+ with axioms that assert the existence of these
structures. This approach to expansion can be repeated with ZF+. The procedure can be
iterated and it must have a fixed point that is unreachable with these iterations.

Ordinal collapsing functions[3] do something like this. They use uncountable ordinals
as notations for recursive ordinals to expand the recursive ordinals. Ordinal collapsing can
also use countable ordinals larger than the recursive ordinals. This is possible at multiple
places in the ordinal hierarchy. I suspect that uncountable ordinals provide a relatively weak
way to expand the recursive and larger countable ordinal hierarchies. The countable ordinal
hierarchy is a bit like the Mandelbrot set[26]. The hierarchy definable in any particular
formal system can be embedded within itself at many places.

The objective interpretation of ZFC see it as a recursive process for defining finite sets,
properties of finite sets and properties of properties. These exist either as physical objects
that embody the structure of finite sets or as expressions in a formal language that can be
connected to finite objects and/or expressions that define properties. Names of all the objects
that provably satisfy the definition of any set in ZF are recursively enumerable because all
proofs in any formal system are. These names and their relationships form an interpretation
of ZF.

A.10 A Creative Philosophy of Mathematics

Platonic philosophy visualizes an ideal realm of absolute truth and beauty of which the
physical world is a dim reflection. This ideal reality is perfect, complete and thus static.
In stark contrast, the universe we inhabit is spectacularly creative. An almost amorphous
cosmic big bang has evolved into an immense universe of galaxies each of which is of a size and
complexity that takes ones breath away. On at least one minuscule part of one of the these
galaxies, reproducing molecules have evolved into the depth and richness of human conscious
experience. There is no reason to think that we at a limit of this creative process. There may
be no finite limit to the evolution of physical structure and the evolution of consciousness.
This is what the history of the universe, this planet and the facts of mathematics suggest to
me. We need a new philosophy of mathematics grounded in our scientific understanding and
the creativity that mathematics itself suggests is central to both developing mathematics
and the content created in doing do.

Mathematics is both objective and creative. If a TM runs forever, this is logically de-
termined by its program. Yet it takes creativity to develop a mathematical system to prove
this. Gödel proved that no formal system that is sufficiently strong can be complete, but
there is nothing (except resources) to prevent an exploration over time of every possible
formalization of mathematics. As mentioned earlier, it is just such a process that created
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the mathematically capable human mind. The immense diversity of biological evolution was
probably a necessary prerequisite for evolving that mind.

Our species has a capacity for mathematics as a genetic heritage. We will eventually
exhaust what we can understand from exploiting that biological legacy through cultural
evolution. This exhaustion will not occur as an event but a process that keeps making
progress. However there must be a Gödel limit to the entire process even if it continues
forever. Following a single path of mathematical development will lead to an infinite sequence
of results all of which are encompassed in a single axiom that will never be explored. This
axiom will only be explored if mathematics becomes sufficiently diverse. In the long run,
the only way to avoid a Gödel limit to mathematical creativity is through ever expanding
diversity.

There is a mathematics of creativity that can guide us in pursuing diversity. Loosely
speaking the boundary between the mathematics of convergent processes and that of diver-
gent creative processes is the Church-Kleene ordinal or the ordinal of the recursive ordinals.
For every recursive ordinal r0 there is a recursive ordinal r1(r0 ≤ r1) such that there are
halting problems decidable by r1 and not by any smaller ordinal. In turn every halting
problem is decidable by some recursive ordinal. The recursive ordinals can decide the objec-
tive mathematics of convergent or finite path processes. Larger countable ordinals define a
mathematics of divergent processes, like biological evolution, that follow an ever expanding
number of paths85

The structure of biological evolution can be connected to a divergent recursive process.
To illustrate this consider a TM that has an indefinite sequence of outputs that are either
terminal nodes or the Gödel numbers of other recursive processes. In the latter case the TM
that corresponds to the output must have its program executed and its outputs similarly
interpreted. A path is a sequence of integers that corresponds to the output index at each
level in the simulation hierarchy. For example the initial path segment (4, 1, 3) indexes a
path that corresponds to the fourth output of the root TM (r4), the first output of r4 (r4,1)
and the third output of r4,1 (r4,1,3). These paths have the structure of the tree of life that
shows what species were descended from which other species.

Questions about divergent recursive processes can be of interest to inhabitants of an
always finite but potentially infinite universe. For example one might want to know if a
given species will evolve an infinite chain of descendant species. In a deterministic uni-
verse. this problem can be stated using divergent recursive processes to model species. We
evolved through a divergent creative process that might or might not be recursive. Quantum
mechanics implies that there are random perturbations, but that may not be the final word.

Even with random perturbations, questions about all the paths a divergent recursive
process can follow, may be connected to biological and human creativity. Understanding
these processes may become increasingly important in the next few decades as we learn to
control and direct biological evolution. Today there is intense research on using genetic
engineering to cure horrible diseases. In time these techniques will become safe, reliable and
predictable. The range of applications will inevitably expand. At that point it will become

85In a finite universe there are no truly divergent processes. Biological evolution can be truly divergent
only if our universe is potentially infinite and life on earth migrates to other planets, solar systems and
eventually galaxies.
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extremely important to have as deep an understanding as possible of what we may be doing.
To learn more about this see[4].

B Command line interface

This appendix is a stand alone manual for a command line interface to most of the capabilities
described in this document.

B.1 Introduction

The Ordinal Calculator is an interactive tool for understanding the hierarchies of recursive
and countable ordinals[35, 27, 18]. It is also a research tool to help to expand these hierar-
chies. Its motivating goal is ultimately to expand the foundations of mathematics by using
computer technology to manage the combinatorial explosion in complexity that comes with
explicitly defining the recursive ordinals implicitly defined by the axioms of Zermelo-Frankel
set theory[10, 4]. The underlying philosophy focuses on what formal systems tell us about
physically realizable combinatorial processes[5].

The source code and documentation is licensed for use and distribution under the Gnu
General Public License, Version 2, June 1991 and subsequent versions. A copy of this license
must be distributed with the program. It is also at:

http://www.gnu.org/licenses/gpl-2.0.html. The ordinal calculator source code, docu-
mentation and some executables can be downloaded from: http://www.mtnmath.com/ord

or https://sourceforge.net/projects/ord.

Most of this manual is automatically extracted from the online documentation.

This is a command line interactive interface to a program for exploring the ordinals. It
supports recursive ordinals through and beyond the Veblen hierarchy[35]. It defines nota-
tions for the Church-Kleene ordinal (the ordinal of the recursive ordinals) and some larger
countable ordinals. They are used in a form of ordinal collapsing to define large recursive
ordinals.

B.2 Command line options

The standard name for the ordinal calculator is ord. Typing ord (or ./ord) ENTER will
start ord in command line mode on most Unix or Linux based systems. The command line
options are mostly for validating or documenting ord. They are:

‘cmd’ — Read specified command file and enter command line mode.
‘cmdTex’ — Read specified command file and enter TeX command line mode.
‘version’ — Print program version.
‘help’ — Describe command line options.
‘cmdDoc’ — Write manual for command line mode in TeX format.
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‘tex’ — Output TeX documentation files.
‘psi’ — Do tests of Veblen hierarchy.
‘base’ — Do tests of base class Ordinal.
‘try’ — Do tests of class FiniteFuncOrdinal.
‘gamma’ — Test for consistent use of gamma and epsilon.
‘iter’ — Do tests of class IterFuncOrdinal.
‘admis’ — Do tests of class AdmisLevOrdinal.
‘admis2’ — Do additional tests of class AdmisLevOrdinal.
‘play’ — Do integrating tests.
‘descend’ — Test descending trees.
‘collapse’ — Ordinal collapsing tests.
‘nested’ — Ordinal nested collapsing tests.
‘nested2’ — Ordinal nested collapsing tests 2.
‘nested3’ — Ordinal nested collapsing tests 3.
‘exitCode’ — LimitElement exit code base test.
‘exitCode2’ — LimitElement exit code base test 2.
‘limitEltExitCode’ — Admissible level LimitElement exit code test 0.
‘limitEltExitCode1’ — Admissible level limitElement exit code test 1.
‘limitEltExitCode2’ — Admissible level limitElement exit code test 2.
‘limitEltExitCode3’ — Admissible level limitElement exit code test 3.
‘limitOrdExitCode’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode1’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode2’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode3’ — Admissible level limitOrd exit code test.
‘admisLimitElementExitCode’ — Admissible level limitElement exit code test.
‘admisDrillDownLimitExitCode’ — Admissible level drillDownLimitElement exit code test.
‘admisDrillDownLimitComExitCode’ — Admissible level drillDownLimitElementCom exit
code test.
‘admisLimitElementComExitCode’ — Admissible level exit code test for limitElmentCom.
‘admisExamples’ — Admissible level tests of examples.
‘nestedLimitEltExitCode’ — Nested level limitElement exit code test.
‘nestedLimitEltExitCode2’ — Nested level limitElement exit code test 2.
‘nestedBaseLimitEltExitCode’ — Nested level base class limit exit code test.
‘nestedLimitOrdExitCode’ — Nested level limitOrd exit code test.
‘nestedCmpExitCode’ — Nested level compare exit code test.
‘nestedEmbedNextLeast’ — Nested embed next least test.
‘transition’ — Admissible level transition test.
‘cmpExitCode’ — Admissible level compare exit code test.
‘drillDownExitCode’ — Admissible level compare exit code test.
‘embedExitCode’ — Admissible level compare exit code test.
‘fixedPoint’ — test fixed point detection.
‘nestedEmbed’ — basic nested embed tests.
‘nestedEmbedPaperTables’ — test tables in ordarith paper.
‘nestedEmbedPaperTables2’ — test tables in ordarith paper.
‘nestedEmbedPaperTables3’ — test tables in ordarith paper.
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‘infoLimitTypeExamp’ — test inforLimitTypeExamples.
‘cppTest’ — test interactive C++ code generation.
‘cppTestTeX’ — test interactive C++ code that generates TeX.
‘test’ — a stub at the end of validate.cpp used to degug code.
‘helpTex’ — TeX document command line options.
‘paper’ — generate tables for paper on the calculator.

B.3 Help topics

Following are topics with more information. Type ‘help topic’ to access them.

‘cmds’ – lists commands.
‘defined’ – list predefined ordinal variables.
‘compare’ – describes comparison operators.
‘members’ – describes member functions.
‘ordinal’ – describes available ordinal notations.
‘ordlist’ – describes ordinal lists and their use.
‘purpose’ – describes the purpose and philosophy of this project.
‘syntax’ – describes syntax.
‘version’ – displays program version.

This program supports line editing and history.

B.4 Ordinals

Ordinals are displayed in plain text (the default) and/or LaTeX format. (Enter ‘help opts’
to control this.) The finite ordinals are the nonnegative integers. The ordinal operators are
+, * and ^ for addition, multiplication and exponentiation. Exponentiation has the highest
precedence. Parenthesis can be used to group subexpressions.

The ordinal of the integers, omega, is also represented by the single lowercase letter: ‘w’. The
Veblen function is specified as ‘psi(p1,p2,...,pn)’ where n is any integer > 0. Special
notations are displayed in some cases. Specifically psi(x) is displayed as w^x. psi(1,x) is
displayed as epsilon(x). psi(1,0,x) is displayed as gamma(x). In all cases the displayed
version can be entered as input.

Larger ordinals in the Veblen hierarchy are specified as psi {l}(a1,a2,...,an). The
first parameter is enclosed in {brackets} not parenthesis. psi {1} is defined as the union
of w, epsilon(0), gamma(0), psi(1, 0, 0, 0), psi(1, 0, 0, 0, 0), psi(1, 0, 0,

0, 0, 0), psi(1, 0, 0, 0, 0, 0, 0), ... You can access the sequence whose union
is a specific ordinal using member functions. Type help members to learn more about
this. Larger notations beyond the recursive ordinals are also available. The format for
the countable admissible ordinals and their countable limits is omega {k}. To partially
fill the gaps introduced with these notations, the following additional notations are used:
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omega {k,g}(a1,a2,...,an), omega {k}[e],
[[d1/s1,d2/s2,..,dn/sn]]omega {k,g}(a1,a1,...,an),
[[d1/s1,d2/s2,..,dn/sn]]omega {k}[e],
[[d1/s1,d2/s2,..,dn/sn]]omega {k}[[e]].
See the documentation ‘A Computational Approach to the Ordinal Numbers’[9] to learn
more about these notations.

There are several predefined ordinals. ‘w’ and ‘omega’ can be be used interchangeably for the
ordinal of the integers. ‘eps0’ and ‘omega1CK’ are also predefined. Type ‘help defined’ to
learn more.

B.5 Predefined ordinals

The predefined ordinal variables are:
omega = ω
w = ω
omega1CK = ω1

w1 = ω1

w1CK = ω1

eps0 = ε0

B.6 Syntax

The syntax is that of restricted arithmetic expressions and assignment statements. The
tokens are variable names, nonnegative integers and the operators: +, * and ^ (addition,
multiplication and exponentiation). Comparison operators are also supported. Type ‘help
comparison’ to learn about them. The letter ‘w’ is predefined as omega the ordinal of the
integers. Type ‘help defined’ for a list of all predefined variables. To learn more about
ordinals type ‘help ordinal’. C++ style member functions are supported with a ‘.’ sepa-
rating the variable name (or expression enclosed in parenthesis) from the member function
name. Enter ‘help members’ for the list of member functions.

An assignment statement or ordinal expression can be entered and it will be evaluated and
displayed in normal form. Typing ‘help opts’ lists the display options. Assignment state-
ments are stored. They can be listed (command ‘list’) and their value can be used in
subsequent expressions. All statements end at the end of a line unless the last character is
‘\’. Lines can be continued indefinitely. Comments must be preceded by either ‘%’ or ‘//’.

Commands can be entered as one or more names separated by white space. File names
should be enclosed in double quotes (") if they contain any non alphanumeric characters
such as dot, ‘.’. Command names can be used as variables. Enter ‘help cmds’ to get a list
of commands and their functions.
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B.7 Ordinal lists

Lists are a sequence of ordinals. An assignment statement can name a single ordinal or a
list of them separated by commas. In most circumstances only the first element in the list is
used, but some functions (such as member function ‘limitOrdLst’) use the full list. Type
‘help members’ to learn more about ‘limitOrdLst’.

B.8 Commands

B.8.1 All commands

The following commands are available:
‘cmpCheck’ – toggle comparison checking for debugging.
‘cppList’ – list the C++ code for assignments or write to an optional file.
‘examples’ – shows examples.
‘exit’ – exits the program.
‘exportTeX’ – exports assignments statements in TeX format.
‘help’ – displays information on various topics.
‘list’ – lists assignment statements.
‘log’ – write log file (ord.log default) (see help logopt).
‘listTeX’ – lists assignment statements in TeX format.
‘logopt’ – control log file (see help log).
‘name’ – toggle assignment of names to expressions.
‘opts’ – controls display format and other options.
‘prompt’ – prompts for ENTER with optional string argument.
‘quit’ – exits the program.
‘quitf’ – exits only if not started in interactive mode.
‘read’ – read “input file” (ord calc.ord default).
‘readall’ – same as read but no ’wait for ENTER‘ prompt.
‘save’ – saves assignment statements to a file (ord calc.ord default).
‘setDbg’ – set debugging options.
‘tabList’ – lists assignment values as C++ code to generate a LaTeX table.
‘yydebug’ – enables parser debugging (off option).

B.8.2 Commands with options

Following are the commands with options.

Command ‘examples’ – shows examples.
It has one parameter with the following options.
‘arith’ – demonstrates ordinal arithmetic.
‘compare’ – shows compare examples.
‘display’ – shows how display options work.
‘member’ – demonstrates member functions.
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‘VeblenFinite’ – demonstrates Veblen functions of a finite number of ordinals.
‘VeblenExtend’ – demonstrates Veblen functions iterated up to a recursive ordinal.
‘admissible’ – demonstrates admissible level ordinal notations.
‘admissibleDrillDown’ – demonstrates admissible notations dropping down one level.
‘admissibleContext’ – demonstrates extended admissible ordinal parameters.
‘list’ – shows how lists work.
‘desLimitOrdLst’ – shows how to construct a list of descending trees.

Command ‘logopt’ – control log file (see help log).
It has one parameter with the following options.
‘flush’ – flush log file.
‘stop’ – stop logging.

Command ‘opts’ – controls display format and other options.
It has one parameter with the following options.
‘both’ – display ordinals in both plain text and TeX formats.
‘tex’ – display ordinals in TeX format only.
‘text’ – display ordinals in plain text format only (default).
‘psi’ – additionally display ordinals in Psi format (turned off by the above options).
‘promptLimit’ – lines to display before pausing, < 4 disables pause.

Command ‘setDbg’ – set debugging options.
It has one parameter with the following options.
‘all’ – turn on all debugging.
‘arith’ – debug ordinal arithmetic.
‘clear’ – turn off all debugging.
‘compare’ – debug compare.
‘exp’ – debug exponential.
‘limArith’ – limited debugging of arithmetic.
‘limit’ – debug limit element functions.
‘construct’ – debug constructors.

B.9 Member functions

Every ordinal (except 0) is the union of smaller ordinals. Every limit ordinal is the union of
an infinite sequence of smaller ordinals. Member functions allow access to to these smaller
ordinals. One can specify how many elements of this sequence to display or get the value
of a specific instance of the sequence. For a limit ordinal, the sequence displayed, were it
extended to infinity and its union taken, that union would equal the original ordinal.

The syntax for a member function begins with either an ordinal name (from an assignment
statement) or an ordinal expression enclosed in parenthesis. This is followed by a dot (.)
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and then the member function name and its parameters enclosed in parenthesis. The format
is ‘ordinal name.memberFunction(p)’ where p may be optional. Functions ‘limitOrdLst’
and ‘desLimitOrdLst’ return a list. All other member functions return a scalar value. Unless
specified otherwise, the returned value is that of the ordinal the function was called from.

The member functions are:

‘cpp’ – output C++ code to define this ordinal.
‘descend’ – (n,m) iteratively (up to m) take nth limit element.
‘descendFull’ – (n,m,k) iteratively (up to m) take n limit elements with root k.
‘desLimitOrdLst’ – (depth, list) does limitOrdLst iteratively on all outputs depth times.
‘ek’ – effective kappa (or indexCK) for debugging.
‘getCompareIx’ – display admissible compare index.
‘isValidLimitOrdParam’ – return true or false.
‘iv’ – alias for isValidLimitOrdParam.
‘le’ – evaluates to specified finite limit element.
‘lec’ – alias to return limitExitCode (for debugging).
‘limitElement’ – an alias for ‘le’.
‘limitExitCode’ – return limitExitCode (for debugging).
‘listLimitElts’ – lists specified (default 10) limit elements.
‘listElts’ – alias for listLimitElts.
‘limitOrd’ – evaluates to specified (may be infinite) limit element.
‘limitOrdLst’ – apply each input from list to limitOrd and return that list.
‘lo’ – alias for limitOrd.
‘limitType’ – return limitType.
‘maxLimitType’ – return maxLimitType.
‘maxParameter’ – return maxParameter (for debugging).
‘blt’ – return baseLimitTypeEquiv if defined for first term (for debugging).

B.10 Comparison operators

Any two ordinals or ordinal expressions can be compared using the operators: <, <=, >, >=

and ==. The result of the comparison is the text either TRUE or FALSE. Comparison operators
have lower precedence than ordinal operators.

B.11 Examples

In the examples a line that begins with the standard prompt ‘ordCalc> ’ contains user in-
put. All other lines contain program output

To select an examples type ‘examples’ followed by one of the following options.
‘arith’ – demonstrates ordinal arithmetic.
‘compare’ – shows compare examples.
‘display’ – shows how display options work.
‘member’ – demonstrates member functions.
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‘VeblenFinite’ – demonstrates Veblen functions of a finite number of ordinals.
‘VeblenExtend’ – demonstrates Veblen functions iterated up to a recursive ordinal.
‘admissible’ – demonstrates admissible level ordinal notations.
‘admissibleDrillDown’ – demonstrates admissible notations dropping down one level.
‘admissibleContext’ – demonstrates extended admissible ordinal parameters.
‘list’ – shows how lists work.
‘desLimitOrdLst’ – shows how to construct a list of descending trees.

B.11.1 Simple ordinal arithmetic

The following demonstrates ordinal arithmetic.

ordCalc> a=w^w

Assigning ( w^w ) to ‘a’.

ordCalc> b=w*w

Assigning ( w^2 ) to ‘b’.

ordCalc> c=a+b

Assigning ( w^w ) + ( w^2 ) to ‘c’.

ordCalc> d=b+a

Assigning ( w^w ) to ‘d’.

B.11.2 Comparison operators

The following shows compare examples.

ordCalc> psi(1,0,0) == gamma(0)

gamma( 0 ) == gamma( 0 ) :: TRUE

ordCalc> psi(1,w) == epsilon(w)

epsilon( w) == epsilon( w) :: TRUE

ordCalc> w^w < psi(1)

( w^w ) < w :: FALSE

ordCalc> psi(1)

Normal form: w

B.11.3 Display options

The following shows how display options work.

ordCalc> a=w^(w^w)

Assigning ( w^( w^w ) ) to ‘a’.

ordCalc> b=epsilon(a)

Assigning epsilon( ( w^( w^w ) )) to ‘b’.

ordCalc> c=gamma(b)
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Assigning gamma( epsilon( ( w^( w^w ) )) ) to ‘c’.

ordCalc> list

a = ( w^( w^w ) )

b = epsilon( ( w^( w^w ) ))

c = gamma( epsilon( ( w^( w^w ) )) )

%Total 3 variables listed.

ordCalc> opts tex

ordCalc> list

a = \omega{}^{\omega{}^{\omega{}}}
b = \varepsilon {\omega{}^{\omega{}^{\omega{}}}}
c = \Gamma {\varepsilon {\omega{}^{\omega{}^{\omega{}}}}}
%Total 3 variables listed.

ordCalc> opts both

ordCalc> list

a = ( w^( w^w ) )

a = \omega{}^{\omega{}^{\omega{}}}
b = epsilon( ( w^( w^w ) ))

b = \varepsilon {\omega{}^{\omega{}^{\omega{}}}}
c = gamma( epsilon( ( w^( w^w ) )) )

c = \Gamma {\varepsilon {\omega{}^{\omega{}^{\omega{}}}}}
%Total 3 variables listed.

B.11.4 Member functions

The following demonstrates member functions.

ordCalc> a=psi(1,0,0,0,0)

Assigning psi( 1, 0, 0, 0, 0 ) to ‘a’.

ordCalc> a.listElts(3)

3 limitElements for psi( 1, 0, 0, 0, 0 )

le(1) = psi( 1, 0, 0, 0 )

le(2) = psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 )

le(3) = psi( psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 )

End limitElements

Normal form: psi( 1, 0, 0, 0, 0 )

ordCalc> b=a.le(6)

Assigning psi( psi( psi( psi( psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0,

0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) to ‘b’.

B.11.5 Veblen function of N ordinals

The following demonstrates Veblen functions of a finite number of ordinals.

171



The Veblen function with a finite number of parameters, psi(x1,x2,...xn) is built up
from the function omega^x. psi(x) = omega^x. psi(1,x) enumerates the fixed points of
omega^x. This is epsilon(x) which equals psi(1,x). Each additional variable diagonalizes
the functions definable with existing variables. These functions can have any finite number
of parameters.

ordCalc> a=psi(w,w)

Assigning psi( w, w ) to ‘a’.

ordCalc> b=psi(a,3,1)

Assigning psi( psi( w, w ), 3, 1 ) to ‘b’.

ordCalc> b.listElts(3)

3 limitElements for psi( psi( w, w ), 3, 1 )

le(1) = psi( psi( w, w ), 3, 0 )

le(2) = psi( psi( w, w ), 2, psi( psi( w, w ), 3, 0 ) + 1 )

le(3) = psi( psi( w, w ), 2, psi( psi( w, w ), 2, psi( psi( w, w ), 3, 0 ) + 1

) + 1 )

End limitElements

Normal form: psi( psi( w, w ), 3, 1 )

ordCalc> c=psi(a,a,b,1,3)

Assigning psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 3 ) to ‘c’.

ordCalc> c.listElts(3)

3 limitElements for psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1,

3 )

le(1) = psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 2 )

le(2) = psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 0, psi( psi(

w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 2 ) + 1 )

le(3) = psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 0, psi( psi(

w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 0, psi( psi( w, w ), psi( w, w

), psi( psi( w, w ), 3, 1 ), 1, 2 ) + 1 ) + 1 )

End limitElements

Normal form: psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 3 )

B.11.6 Extended Veblen function

The following demonstrates Veblen functions iterated up to a recursive ordinal.

The extended Veblen function, psi {a}(x1,x2,...,xn), iterates the idea of the Veblen
function up to any recursive ordinal. The first parameter is the recursive ordinal of this
iteration.

ordCalc> a=psi {1}(1)
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Assigning psi { 1}(1) to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for psi { 1}(1)
le(1) = psi { 1} + 1

le(2) = psi( psi { 1} + 1, 0 )

le(3) = psi( psi { 1} + 1, 0, 0 )

le(4) = psi( psi { 1} + 1, 0, 0, 0 )

End limitElements

Normal form: psi { 1}(1)
ordCalc> b=psi {w+1}(3)
Assigning psi { w + 1}(3) to ‘b’.

ordCalc> b.listElts(4)

4 limitElements for psi { w + 1}(3)
le(1) = psi { w + 1}(2) + 1

le(2) = psi { w}(psi { w + 1}(2) + 1, 0)

le(3) = psi { w}(psi { w + 1}(2) + 1, 0, 0)

le(4) = psi { w}(psi { w + 1}(2) + 1, 0, 0, 0)

End limitElements

Normal form: psi { w + 1}(3)

B.11.7 Admissible ordinal notations

The following demonstrates admissible level ordinal notations.

Countable admissible ordinal notations and their limits are w {k}. The gaps introduced by
these notations are partially filled by using notations and ideas from the Veblen hierarchy.
The notation for this is omega {k,g}(x1,x2,x3,..,xn). The first parameter is the admissi-
ble level. omega {1} is the Church-Kleene ordinal, the ordinal of the recursive ordinals. The
remaining parameters are similar to those defined in the Veblen hierarchy.

ordCalc> a=w {1}(1)
Assigning omega { 1}(1) to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for omega { 1}(1)
le(1) = omega { 1}
le(2) = psi { omega { 1} + 1}
le(3) = psi { psi { omega { 1} + 1} + 1}
le(4) = psi { psi { psi { omega { 1} + 1} + 1} + 1}
End limitElements
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Normal form: omega { 1}(1)

B.11.8 Admissible notations drop down parameter

The following demonstrates admissible notations dropping down one level.

Admissible level ordinals have the a limit sequence defined in terms of lower levels. The
lowest admissible level is that of recursive ordinals. To implement this definition of limit
sequence, a trailing parameter in square brackets is used. This parameter (if present) defines
an ordinal at one admissible level lower than indicated by other parameters.

ordCalc> a=w {1}[1]
Assigning omega { 1}[ 1] to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for omega { 1}[ 1]

le(1) = w

le(2) = psi { w}
le(3) = psi { psi { w} + 1}
le(4) = psi { psi { psi { w} + 1} + 1}
End limitElements

Normal form: omega { 1}[ 1]

ordCalc> b=w {1}
Assigning omega { 1} to ‘b’.

ordCalc> c=b.limitOrd(w^3)

Assigning omega { 1}[ ( w^3 )] to ‘c’.

ordCalc> c.listElts(4)

4 limitElements for omega { 1}[ ( w^3 )]

le(1) = omega { 1}[ ( w^2 )]

le(2) = omega { 1}[ (( w^2 )*2 )]

le(3) = omega { 1}[ (( w^2 )*3 )]

le(4) = omega { 1}[ (( w^2 )*4 )]

End limitElements

Normal form: omega { 1}[ ( w^3 )]

ordCalc> d=w {5,c}(3,0)
Assigning omega { 5, omega { 1}[ ( w^3 )]}(3, 0) to ‘d’.

ordCalc> d.listElts(4)

4 limitElements for omega { 5, omega { 1}[ ( w^3 )]}(3, 0)

le(1) = omega { 5, omega { 1}[ ( w^3 )]}(2, 1)
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le(2) = omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2,
1) + 1)

le(3) = omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2,
omega { 5, omega { 1}[ ( w^3 )]}(2, 1) + 1) + 1)

le(4) = omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2,
omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2, 1) + 1)

+ 1) + 1)

End limitElements

Normal form: omega { 5, omega { 1}[ ( w^3 )]}(3, 0)

B.11.9 Admissble notation parameters

The following demonstrates extended admissible ordinal parameters.

The context parameter in admissible level ordinals allows one to use any notation at any ad-
missible level to define notations at any lower admissible level or to define recursive ordinals.

ordCalc> a=w {1}(4)
Assigning omega { 1}(4) to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for omega { 1}(4)
le(1) = omega { 1}(3)
le(2) = psi { omega { 1}(3) + 1}(3)
le(3) = psi { psi { omega { 1}(3) + 1}(3) + 1}(3)
le(4) = psi { psi { psi { omega { 1}(3) + 1}(3) + 1}(3) + 1}(3)
End limitElements

Normal form: omega { 1}(4)
ordCalc> b=w {1}(1)
Assigning omega { 1}(1) to ‘b’.

ordCalc> b.listElts(4)

4 limitElements for omega { 1}(1)
le(1) = omega { 1}
le(2) = psi { omega { 1} + 1}
le(3) = psi { psi { omega { 1} + 1} + 1}
le(4) = psi { psi { psi { omega { 1} + 1} + 1} + 1}
End limitElements

Normal form: omega { 1}(1)
ordCalc> c=w {1,7}
Assigning omega { 1, 7} to ‘c’.
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ordCalc> c.listElts(4)

4 limitElements for omega { 1, 7}
le(1) = omega { 1, 6}(omega { 1, 6} + 1)

le(2) = omega { 1, 6}(omega { 1, 6} + 1, 0)

le(3) = omega { 1, 6}(omega { 1, 6} + 1, 0, 0)

le(4) = omega { 1, 6}(omega { 1, 6} + 1, 0, 0, 0)

End limitElements

Normal form: omega { 1, 7}
ordCalc> r=[[1]]w {1}
Assigning [[1]]omega { 1} to ‘r’.

ordCalc> r.listElts(4)

4 limitElements for [[1]]omega { 1}
le(1) = [[1]]omega { 1}[[ 1]]

le(2) = [[1]]omega { 1}[[ 2]]

le(3) = [[1]]omega { 1}[[ 3]]

le(4) = [[1]]omega { 1}[[ 4]]

End limitElements

Normal form: [[1]]omega { 1}

B.11.10 Lists of ordinals

The following shows how lists work.

Lists are a sequence of ordinals (including integers). A list can be assigned to a variable just
as a single ordinal can be. In most circumstances lists are evaluated as the first ordinal in
the list. In ‘limitOrdLst’ all of the list entries are used. These member functions return a
list with an input list

ordCalc> lst = 1, 12, w, gamma(w^w), w1

Assigning 1, 12, w, gamma( ( w^w ) ), omega { 1} to ‘lst’.

ordCalc> a=w1.limitOrdLst(lst)

( omega { 1} ).limitOrd( 12 ) = omega { 1}[ 12]

( omega { 1} ).limitOrd( w ) = omega { 1}[ w]

( omega { 1} ).limitOrd( gamma( ( w^w ) ) ) = omega { 1}[ gamma( ( w^w ) )]

Assigning omega { 1}[ 12], omega { 1}[ w], omega { 1}[ gamma( ( w^w ) )] to ‘a’.

ordCalc> bg = w {w+33}
Assigning omega { w + 33} to ‘bg’.

ordCalc> c=bg.limitOrdLst(lst)

( omega { w + 33} ).limitOrd( 12 ) = omega { w + 33}[ 12]

( omega { w + 33} ).limitOrd( w ) = omega { w + 33}[ w]
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( omega { w + 33} ).limitOrd( gamma( ( w^w ) ) ) = omega { w + 33}[ gamma( ( w^w

) )]

( omega { w + 33} ).limitOrd( omega { 1} ) = omega { w + 33}[ omega { 1}]
Assigning omega { w + 33}[ 12], omega { w + 33}[ w], omega { w + 33}[ gamma( (

w^w ) )], omega { w + 33}[ omega { 1}] to ‘c’.

B.11.11 List of descending trees

The following shows how to construct a list of descending trees.

‘desLimitOrdLst’ iterates ‘limitOrdLst’ to a specified ‘depth’. The first parameter is the
integer depth of iteration and the second is the list of parameters to be used. This routine
first takes ‘limitOrd’ of each element in the second parameter creating a list of outputs. It
then takes this list and evaluates ‘limitOrd’ for each of these values at each entry in the
original parameter list. All of these results are combined in a new list and the process is
iterated ‘depth’ times. The number of results grows exponentially with ‘depth’.

ordCalc> lst = 1, 5, w, psi(2,3)

Assigning 1, 5, w, psi( 2, 3 ) to ‘lst’.

ordCalc> bg = w {3}
Assigning omega { 3} to ‘bg’.

ordCalc> d= bg.desLimitOrdLst(2,lst)

( omega { 3} ).limitOrd( 1 ) = omega { 3}[ 1]

( omega { 3} ).limitOrd( 5 ) = omega { 3}[ 5]

( omega { 3} ).limitOrd( w ) = omega { 3}[ w]

( omega { 3} ).limitOrd( psi( 2, 3 ) ) = omega { 3}[ psi( 2, 3 )]

Descending to 1 for omega { 3}
( omega { 3}[ 1] ).limitOrd( 1 ) = omega { 2}
( omega { 3}[ 1] ).limitOrd( 5 ) = omega { 2, omega { 2, omega { 2, omega { 2,

omega { 2} + 1} + 1} + 1} + 1}
( omega { 3}[ 5] ).limitOrd( 1 ) = omega { 3}[ 4]

( omega { 3}[ 5] ).limitOrd( 5 ) = omega { 2, omega { 2, omega { 2, omega { 2,

omega { 3}[ 4] + 1} + 1} + 1} + 1}
( omega { 3}[ w] ).limitOrd( 1 ) = omega { 3}[ 1]

( omega { 3}[ w] ).limitOrd( 5 ) = omega { 3}[ 5]

( omega { 3}[ psi( 2, 3 )] ).limitOrd( 1 ) = omega { 3}[ psi( 2, 2 )]

( omega { 3}[ psi( 2, 3 )] ).limitOrd( 5 ) = omega { 3}[ epsilon( epsilon( epsilon(

epsilon( psi( 2, 2 ) + 1) + 1) + 1) + 1)]

Assigning omega { 3}[ 1], omega { 3}[ 5], omega { 3}[ w], omega { 3}[ psi( 2, 3

)], omega { 2}, omega { 2, omega { 2, omega { 2, omega { 2, omega { 2} + 1} + 1}
+ 1} + 1}, omega { 3}[ 4], omega { 2, omega { 2, omega { 2, omega { 2, omega { 3}[
4] + 1} + 1} + 1} + 1}, omega { 3}[ 1], omega { 3}[ 5], omega { 3}[ psi( 2, 2 )],

omega { 3}[ epsilon( epsilon( epsilon( epsilon( psi( 2, 2 ) + 1) + 1) + 1) + 1)]

to ‘d’.
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Index

The defining reference for a phrase, if it exists,
has the page number in italics.

The following index is semiautomated with multi-
ple entries created for some phrases and subitems
automatically detected. Hand editing would im-
prove things, but is not always practical.

Symbols

< 169
<= 169
== 169
> 169
>= 169
A(n, [lb 1], [lb 2]) 24
L([lb x]) = L(0, [lb x]) 23
L(od 1) 23
L(n, [lb x]) 23
L(r) 17
M([lb 1]) 24
R([lb x],od y) = R(0, [lb x],od y) 23
R(n, [lb x],od y) 23
S(n, [lb x]) 23
Tn 17
Tod 2t

(od 1) 23
V (m, [lb 1]) 24
Z([lb x]) 24
[lb x]m 23
[lb x]n 23
∆ 63, 65
Γα 70
Ω 12, 95
Ψ(α) 95
Ψ(εΩ+1) 96
‖lb x‖ 24
δck 109
∅ 156
≡ 156
∃ 156
∃ ! 157
∀ 156
lb syntax 21
P 16, 17
P1 18
Q 20, 25
Q[0] 21
Q[1] 21
Q[2] 21
Q[lb] 21, 23
QL 24
O 15

extending 16
Q label syntax 21

notations 21
ordinal (od) syntax 22
syntax 21

lb 1 +m 23
lb 21
od 1 <q od 2 22
od 1q 23
od 2(od 1) 23
ω 8, 11, 59, 63, 90, 153, 157
ω1 9, 90, 102
ω1.limitOrd 93
ωCK

1 20
ωCK1 9, 12, 90
ω2 90
od syntax 22
⊆ 158
ε0 11, 57, 58, 65, 68
εα 70
ϕ(1, 0) 58
ϕ(α, β) 65
ϕ(1, 0) 68
ϕ1 70
ϕγ 70
{x} 157
no 15
P ′
r 18
Q[lb 1] 23
virtual function 57
& 71
= 156
[[η]] 94

* 59
^ 59, 62

* 165

^ 165

+ 59, 165

A

AA 75
AB 75, 86

abstractions, Platonic 28

Addition 62

addition, FiniteFuncOrdinal 77
Ordinal 62

admisCodeLevel 106

admisCodeLevel 104, 108, 115, 123, 125

admisLevelFunctional 102
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C++ examples 104
AdmisLevOrdinal 91, 103, 133

AdmisLevOrdinal class 102
AdmisLevOrdinal operators 125
AdmisLevOrdinal::

fixedPoint 123
AdmisLevOrdinal::

limitElement examples 116, 117, 118
AdmisLevOrdinal::limitOrd examples 124
AdmisNormalElement 91, 102
AdmisNormalElement::

compare 102, 104, 106, 133

AdmisNormalElement::

compareCom 105, 106
AdmisNormalElement::

drillDownLimitElement 111
exit codes 113

AdmisNormalElement::

drillDownLimitElementCom 111
exit codes 114

AdmisNormalElement::

Embeddings::

compare 136

AdmisNormalElement::

fixedPoint 147

AdmisNormalElement::

increasingLimit 120, 138

AdmisNormalElement::

isValidLimitOrdParam 119, 147

AdmisNormalElement::

leUse(lo) 120
AdmisNormalElement::

limitElement 107, 110, 136

exit codes 112

AdmisNormalElement::

limitElementCom 110
exit codes 113

AdmisNormalElement::

limitInfo 119
AdmisNormalElement::

limitOrd 119
AdmisNormalElement::

limitOrdCom 121
exit codes 122

AdmisNormalElement::

maxLimitType 119, 147

AdmisNormalElement::

paramLimitElement 142
cases 142

admissble notation parameters example 175
admissible examples 43

index 90, 91, 102

level ordinal 90
Admissible level ordinal collapsing 99

admissible level ordinal notations 91
notations drop down parameter example

174
ordinal 90

ordinal notations example 173
ordinals and projection 41

admissible 168, 170

admissibleContext 168, 170

admissibleDrillDown 168, 170

all 168

ambiguous as uncountable 14, 28

arith 167, 168, 169

assignment statement 166
automated proof verification 28

theorem proving 28

axiom of choice 158
of extensionality 156
of infinity 157
of power set 158
of replacement, objective 160
of the empty set 156
of union 156
of unordered pairs 156
scheme of replacement 157

axioms of ZFC 155, 158

B

Bachmann-Howard ordinal 96
barber paradox 157
base class 57
basis, theoretical 13
beyond recursive ordinals 11

blt 169

both 168

C

C 34, 132

calculator command options 167
commands 167
examples 169
list 176

ordinal 7, 8
syntax 166

Cantor diagonalization 148

Georg 147

normal form 32, 58
Cantor’s proof 147
cantorCodeLevel 77, 78, 80

CantorNormalElement 59, 60, 70, 78, 80
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CantorNormalElement::

compare 60, 71

CantorNormalElement::

embedType 119, 147

CantorNormalElement::

expTerm 80
CantorNormalElement::

getMaxParameter 71

CantorNormalElement::

limitElement 60, 74

cfp 105, 106

choice, axiom of 158
Church, Alonzo 9, 90

Church-Kleene 125

ordinal 9, 90, 102, 173

class 57
constructor 59

class NestedEmbeddings 136
clear 168

cmds 165

cmp 105
cmpCheck 167

code, exit 74, 84, 105, 109

source 8
codeLevel 62, 71, 77, 107, 125

collapsing, admissible level ordinal 99

function 95
function, ordinal 97

ordinal 95
command line options 163

commands, calculator 167
with options 167

compareCom 105, 106

compareFiniteParams 105
comparison operators 169

operators example 170
completed infinite 147
computational interpretation 12

computer halting problem 11

construct 168

constructor 71

class 59
continuous function 65

continuum hypothesis 12, 150

conventions for P 17

for Q 22

cosmology 150

countable 147
admissible ordinal 90, 102

admissible ordinals 38

infinite 28

ordinals 20

cpp 169

cppList 102, 103, 133, 134, 167

createParameters 70, 71
createVirtualOrd 107
createVirtualOrdImpl 107
creative divergent processes 15

philosophy 161
cut, Dedekind 12

D

Darwin and creating mathematics 15

DCAL 43, 50, 111, 113, 114, 132, 143, 146

DCBO 50, 53, 111, 114, 132, 143, 146

DCCS 50, 53, 111, 113, 114, 132, 143, 146

DCDO 43, 50, 111, 113, 114, 132

DCES 43, 50, 111, 114, 132

dd 105
DDAC 111, 113

DDBO 43, 111, 112, 113, 132, 146

DDCO 43, 111, 112, 113, 132, 146

Dedekind cut 12
definability and provability 29

defined 165

definition of P 17
of Q 25

deleteLeast 140

descend 169

descendFull 169

desLimitOrdLst 168, 169, 170, 177

determined, logically 14

diagonalization, Cantor 148

display options example 170
display 167, 169

displayable, not Ψ 99

DQA 53, 140, 144, 146

DQB 53, 140, 143, 144

DQC 53, 140, 144, 146

DQD 53, 140, 144

DQE 53, 140, 143, 144, 146

dRepl 109
drillDown 105, 133

drillDownCKOne 108, 111, 115, 128, 131, 132,
139

drillDownLimitElement 107, 138

drillDownLimitElementCom 107, 139

drillDownLimitElementEq 138, 139

drillDownOne 108, 111, 115, 128, 131, 132,
139

drillDownOneEmbed 108, 111, 115, 128, 131,
132, 139

drillDownSucc 108, 111, 115, 127, 131, 132,
139

drillDownSuccCKOne 108, 111, 115, 127, 131,
132, 139
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drillDownSuccEmbed 108, 111, 115, 127, 131,
132, 139

E

effCk 105
effEbd 137
effectiveEmbedding 137
effectiveIndexCK 105
ek 169

embed 137
embedding 137

nested 44

embedding 123

Embeddings 133, 135

Embeddings::compare 136

Embeddings::

isDrillDownEmbed 136
Embeddings::nextLeast 136

embedLimitElement 138, 141
embedType 92, 102, 119, 147

embIx 137
empty set axiom 156
enumerable, recursively 11

eps0 166
epsilon(x) 165

example of admissble notation parameters 175
of admissible notations drop down parameter

174
of admissible ordinal notations 173
of comparison operators 170
of display options 170
of extended Veblen function 172
of list of descending trees 177
of lists of ordinals 176
of member functions 171
of simple ordinal arithmetic 170
of Veblen function of N ordinals 171

examples admisLevelFunctional C++ code 104
AdmisLevOrdinal::

limitElement 116, 117, 118
AdmisLevOrdinal::limitOrd 124
FiniteFuncOrdinal C++ code 73

FiniteFuncOrdinal exponential 81
FiniteFuncOrdinal multiply 79
finiteFunctional C++ code 73
finiteFunctional code 72
iterativeFunctional C++ code 83
IterFuncOrdinal exponential 89
IterFuncOrdinal multiply 88
NestedEmbedOrdinal code 135
NestedEmbedOrdinal::

drillDownLimitElementEq 144

NestedEmbedOrdinal::

enbedLimitElement 145
NestedEmbedOrdinal::

limitElement 143
NestedEmbedOrdinal::

limitOrd 149
Ordinal exponential 66
Ordinal exponentiationC++ code 65
Ordinal multiply 64
Ordinal::limitElement 61
admissible 43

calculator 169
nested 101

projection 50

examples 167

existential quantifier 156
exit code 74, 84, 105, 109

code from limitElement 69
codes AdmisNormalElement::

drillDownLimitElement 113
codes AdmisNormalElement::

drillDownLimitElementCom 114
codes AdmisNormalElement::

LimitElement 112
codes AdmisNormalElement::

limitElementCom 113
codes AdmisNormalElement::

limitOrdCom 122
codes FinitefuncNormalElement::

limitElementCom 76
exit 167

exp 168

experimental science 28

explicit incompleteness 11, 147
exponentiation 63

Ordinal 63
exportTeX 167

extended Veblen function example 172
extending O 16

O and P 20

extensionality, axiom of 156

F

factor 125

FALSE 169

FB 37, 75, 76, 86, 132

FD 34, 37, 75, 76, 86, 132

Feferman, Solomon 14, 150

Feferman’s Q1 15
finite function hierarchy 67

function normal form 68
functions limitElement 68
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ordinal 22, 25

parameter Veblen functions 33

finiteFuncCodeLevel 70, 71, 78

FiniteFuncNormalElement 70
FiniteFuncNormalElement::

compare 71, 83

FiniteFuncNormalElement::

compareFiniteParams 74
FiniteFuncNormalElement::

doMultiply 78
FiniteFuncNormalElement::

doToPower 80
FiniteFuncNormalElement::

limitElement 74
FiniteFuncNormalElement::

limitElementCom 75
FinitefuncNormalElement::

limitElementCom exit codes 76

FiniteFuncNormalElement::

limitOrd 82
FiniteFuncNormalElement::

limitOrdCom 82

FiniteFuncOrdinal 70, 71, 82

addition 77
C++ examples 73

constructor 70

exponential examples 81
exponentiation 80
multiplication 77
multiply examples 79

FiniteFuncOrdinal operators 77
FiniteFuncOrdinal::

compare 71
FiniteFuncOrdinal::

fixedPoint 77
FiniteFuncOrdinal::

limitElement 74
finiteFunctional 70, 72, 73, 77

C++ examples 73
Ordinal Calcualator examples 72

FiniteFunctionNormalElement::

limitType 119, 147

finiteLimit 108, 131
fixed point 65, 71, 80, 82

points 10
fixedPoint 77, 87, 123, 147

FL 34, 37, 75, 76, 86, 132, 143

flush 168

FN 34, 75, 76, 86, 132

FOB 122

FOC 122

form, normal 59, 91, 102

formalization objective parts of ZF 160
funcParameters 71

function, collapsing 95
continuous 65

normal 65
Veblen 165

functionLevel 105

functionNxtSucc 85, 108, 115, 129, 131, 132,
139

functions, member 57, 168
ordinal 10

functionSucc 85, 108, 115, 127, 131, 132,
139

G

Gödel number 15

game theory 15

gamma(x) 165

getCompareIx 169

getMaxParameter() 105, 136

GNU General Public License 8
Gnu Multiple Precision Arithmetic 59
God Created the Integers 12

H

help 167

Hermann Weyl 14

hierarchies of ordinal notations 20

hierarchy, hyperarithmetic 14
ordinal 28, 153

Veblen 10, 12, 20, 32, 58, 63
Howard, Bachmann- ordinal 96
hyperarithmetic hierarchy 14
hypothesis, continuum 12, 150

I

ideal, Platonic 147
IF 85, 86

IfNe 109
IG 37, 43, 85, 86, 132

ignf 105, 106

ignoreFactor 105
II 37, 85, 86, 113, 132

IJ 37, 85, 86, 132

IK 37, 85, 86, 132, 143

impredicative 11, 147

incompleteness, explicit 11, 147
theorem 147

increasingLimit 120
index, admissible 90, 91, 102
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indexCKsuccParam 108, 110, 115, 128, 131,
132

indexCKsuccParamEq 108, 110, 115, 129, 131,
132

indexCKtoLimitType 108, 109, 131

indexDecr 140

indexDecr2 140

IndexedLevel 133
induction, integer 8, 157

ordinal 10
infinite, completed 147

countable 28

ordinals 150

potentially 150

sets 8
infinity, axiom of 157
Int data type 59
integer induction 8, 157

integerLimitType 92, 93, 107, 138

integers, God created the 12

Interactive mode 31

interpretation, computational 12

of ZF, objective 161
interpretations, Platonic 14

isDdE 105
isDdEmb 109
isDrillDownEmbed 105, 109
isLimit 109

isLm 109
isSc 109
isSuccessor 109

isValidLimitOrdParam 92, 102, 119, 147, 169

isZ 105
iterative functional hierarchy 70
iterativeFunctional 82

C++ examples 83
IterativeFunctionNormalElement 109

iterFuncCodeLevel 82
IterFuncNormalElement::

compare 83, 104

IterFuncNormalElement::

limitElement 84, 107

IterFuncNormalElement::

limitElementCom 85
exit codes 86

IterFuncNormalElement::

maxLimitType 119

IterFuncOrdinal 82, 91, 102

exponential examples 89
multiply examples 88
operators 87

IterFuncOrdinal::

fixedPoint 87
iterMaxParam 87, 123

iv 169

K

Kleene, Stephen C. 9, 90

Kleene’s O 13, 15, 20

L

Löwenheim, Leopold 148

Löwenheim-Skolem theorem 148

labels, level 24

ranking 24

large cardinal axioms 15

LCAF 110, 113

LCBL 43, 110, 112, 113, 132

LCCI 43, 110, 113

LCDP 43, 50, 110, 112, 113, 132, 145

LCEL 43, 53, 110, 112, 113, 132, 143, 145

le 109, 141, 169

LEAD 110, 112, 113, 114, 146

leastIndexLimit 127, 128, 131, 132, 139, 141,

148, 150

leastIndexLimitParam 127, 131, 132, 139, 141,
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